RFC860 Telnet Timing Mark Option

0860 Telnet Timing Mark Option. J. Postel, J. Reynolds. May 1983. (Format: TXT=7881 bytes) (Obsoletes NIC 16238) (Also STD0031) (Status: STANDARD)

日本語訳
RFC一覧

参照

Network Working Group                                          J. Postel
Request for Comments: 860                                    J. Reynolds
                                                                     ISI
Obsoletes: NIC 16238                                            May 1983

                       TELNET TIMING MARK OPTION


This RFC specifies a standard for the ARPA community.  Hosts on the ARPA
Internet are expected to adopt and implement this standard.

1.  Command Name and Code

   TIMING-MARK          6

2.  Command Meanings

   IAC DO TIMING-MARK

      The sender of this command REQUESTS that the receiver of this
      command return a WILL TIMING-MARK in the data stream at the
      "appropriate place" as defined in section 4 below.

   IAC WILL TIMING-MARK

      The sender of this command ASSURES the receiver of this command
      that it is inserted in the data stream at the "appropriate place"
      to insure synchronization with a DO TIMING-MARK transmitted by the
      receiver of this command.

   IAC WON'T TIMING-MARK

      The sender of this command REFUSES to insure that this command is
      inserted in the data stream at the "appropriate place" to insure
      synchronization.

   IAC DON'T TIMING-MARK

      The sender of this command notifies the receiver of this command
      that a WILL TIMING-MARK (previously transmitted by the receiver of
      this command) has been IGNORED.

3.  Default

   WON'T TIMING-MARK, DON'T TIMING-MARK

      i.e., No explicit attempt is made to synchronize the activities at
      the two ends of the TELNET connection.

4.  Motivation for the Option



Postel & Reynolds                                               [Page 1]



RFC 860                                                         May 1983


   It is sometimes useful for a user or process at one end of a TELNET
   connection to be sure that previously transmitted data has been
   completely processed, printed, discarded, or otherwise disposed of.
   This option provides a mechanism for doing this.  In addition, even
   if the option request (DO TIMING-MARK) is refused (by WON'T
   TIMING-MARK) the requester is at least assured that the refuser has
   received (if not processed) all previous data.

   As an example of a particular application, imagine a TELNET
   connection between a physically full duplex terminal and a "full
   duplex" server system which permits the user to "type ahead" while
   the server is processing previous user input.  Suppose that both
   sides have agreed to Suppress Go Ahead and that the server has agreed
   to provide echoes.  The server now discovers a command which it
   cannot parse, perhaps because of a user typing error.  It would like
   to throw away all of the user's "type-ahead" (since failure of the
   parsing of one command is likely to lead to incorrect results if
   subsequent commands are executed), send the user an error message,
   and resume interpretation of commands which the user typed after
   seeing the error message.  If the user were local, the system would
   be able to discard the buffered input; but input may be buffered in
   the user's host or elsewhere.  Therefore, the server might send a DO
   TIMING-MARK and hope to receive a WILL TIMING-MARK from the user at
   the "appropriate place" in the data stream.

   The "appropriate place", therefore (in absence of other information)
   is clearly just before the first character which the user typed after
   seeing the error message.  That is, it should appear that the timing
   mark was "printed" on the user's terminal and that, in response, the
   user typed an answering timing mark.

   Next, suppose that the user in the example above realized that he had
   misspelled a command, realized that the server would send a DO
   TIMING-MARK, and wanted to start "typing ahead" again without waiting
   for this to occur.  He might then instruct his own system to send a
   WILL TIMING-MARK to the server and then begin "typing ahead" again.
   (Implementers should remember that the user's own system must
   remember that it sent the WILL TIMING-MARK so as to discard the
   DO/DON'T TIMING-MARK when it eventually arrives.)  Thus, in this case
   the "appropriate place" for the insertion of the WILL TIMING-MARK is
   the place defined by the user.

   It should be noted, in both of the examples above, that it is the
   responsibility of the system which transmits the DO TIMING-MARK to
   discard any unwanted characters; the WILL TIMING-MARK only provides
   help in deciding which characters are "unwanted".

5.  Description of the Option


Postel & Reynolds                                               [Page 2]



RFC 860                                                         May 1983


   Suppose that Process A of Figure 1 wishes to synchronize with B. The
   DO TIMING-MARK is sent from A to B.  B can refuse by replying WON'T
   TIMING-MARK, or agree by permitting the timing mark to flow through
   his "outgoing" buffer, BUF2.  Then, instead of delivering it to the
   terminal, B will enter the mark into his "incoming" buffer BUF1, to
   flow through toward A.  When the mark has propagated through B's
   incoming buffer, B returns the WILL TIMING-MARK over the TELNET
   connection to A.

      PROCESS A    TELNETconnection    PROCESS B           Terminal
      +-----------+                +---------------+ Timing+-------+
      |           |WILL TIMING MARK|     BUF 1     |  Mark |       |
      |           |<---------------|--|-|-|-|-|-|--|<------|       |
      |           |                |  |-|-|-|-|-|  |   ^   |       |
      |           |                |     BUF 2     |   ^   |       |
      |           |--------------->|--|-|-|-|-|-|--|------>|       |
      |           | DO TIMING MARK |  |-|-|-|-|-|  |       |       |
      +-----------+                +---------------+       +-------+
                                     (NVT process).ME;
                         Figure 1

   When A receives the WILL TIMING-MARK, he knows that all the
   information he sent to B before sending the timing mark been
   delivered, and all the information sent from B to A before turnaround
   of the timing mark has been delivered.

   Three typical applications are:

      A. Measure round-trip delay between a process and a terminal or
         another process.

      B. Resynchronizing an interaction as described in section 4 above.
         A is a process interpreting commands forwarded from a terminal
         by B. When A sees an illegal command it:

         i.   Sends , , .

         ii.  Sends DO TIMING-MARK.

         iii. Sends an error message.

         iv.  Starts reading input and throwing it away until it
              receives a WILL TIMING-MARK.

         v.   Resumes interpretation of input.





Postel & Reynolds                                               [Page 3]



RFC 860                                                         May 1983


         This achieves the effect of flushing all "type ahead" after the
         erroneous command, up to the point when the user actually saw
         the question mark.

      C.  The dual of B above.  The terminal user wants to throw away
         unwanted output from A.

         i.   B sends DO TIMING-MARK, followed by some new command.

         ii.  B starts reading output from A and throwing it away until
              it receives WILL TIMING-MARK.

         iii. B resumes forwarding A's output to the terminal.

         This achieves the effect of flushing all output from A, up to
         the point where A saw the timing mark, but not output generated
         in response to the following command.

































Postel & Reynolds                                               [Page 4]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

Zend_DBのSELECTメソッドのまとめ

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る