RFC1857 日本語訳

1857 A Model for Common Operational Statistics. M. Lambert. October 1995. (Format: TXT=55314 bytes) (Obsoletes RFC1404) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
RFC一覧
英語原文

Network Working Group                                         M. Lambert
Request For Comments: 1857              Pittsburgh Supercomputing Center
Obsoletes: 1404                                             October 1995
Category: Informational

コメントを求めるワーキンググループM.ランバート要求をネットワークでつないでください: 1857ピッツバーグスーパーコンピューティングセンターは以下を時代遅れにします。 1404 1995年10月のカテゴリ: 情報

               A Model for Common Operational Statistics

一般的な操作上の統計のためのモデル

Status of this Memo

このMemoの状態

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

このメモはインターネットコミュニティのための情報を提供します。 このメモはどんな種類のインターネット標準も指定しません。 このメモの分配は無制限です。

Abstract

要約

   This memo describes a model for operational statistics in the
   Internet.  It gives recommendations for metrics, measurements,
   polling periods and presentation formats and defines a format for the
   exchange of operational statistics.

このメモはインターネットでの操作上の統計のためにモデルについて説明します。 それは、測定基準、測定値、世論調査の期間、およびプレゼンテーション形式のために推薦を与えて、操作上の統計の交換のために書式を定義します。

Acknowledgements

承認

   The author would like to thank the members of the Operational
   Statistics Working Group of the IETF whose efforts made this memo
   possible, particularly Bernhard Stockman, author of RFC 1404, and
   Nevil Brownlee, who produced the revised BNF description of the
   model.  Wherever possible, their text has been changed as little as
   feasible.

作者はモデルの改訂されたBNF記述を起こした取り組みがこのメモを可能にしたIETFのOperational Statistics作業部会、特にバーンハードStockman、RFC1404の作者、およびネヴィル・ブラウンリーのメンバーに感謝したがっています。 どこでも、可能であるところでは、それらのテキストが可能であるとして同じくらい少ししか変えられていません。

Table of Contents

目次

   1.      Introduction ............................................. 2
   2.      The Model ................................................ 5
   2.1     Metrics and Polling Periods .............................. 5
   2.2     Format for Storing Collected Data ........................ 6
   2.3     Reports .................................................. 6
   2.4     Security Issues .......................................... 6
   3.      Categorization of Metrics ................................ 7
   3.1     Overview ................................................. 7
   3.2     Categorization of Metrics Based on Measurement Areas ..... 7
   3.2.1   Utilization Metrics ...................................... 7
   3.2.2   Performance Metrics ...................................... 7
   3.2.3   Availability Metrics ..................................... 8
   3.2.4   Stability Metrics ........................................ 8
   3.3     Categorization Based on Availability of Metrics .......... 8
   3.3.1   Per Interface Variables Already in Standard MIB .......... 8
   3.3.2   Per Interface Variables in Private Enterprise MIB ........ 9
   3.3.3   Per interface Variables Needing High Resolution Polling .. 9

1. 序論… 2 2. モデル… 5 2.1の測定基準と世論調査の期間… 5 2.2 保存のための形式はデータを集めました… 6 2.3 報告します… 6 2.4 セキュリティ問題… 6 3. 測定基準の分類… 7 3.1概要… 7 測定基準の3.2分類は領域を測定に基礎づけました… 7 3.2 .1 利用測定基準… 7 3.2 .2 パフォーマンス測定基準… 7 3.2 .3 有用性測定基準… 8 3.2 .4 安定性測定基準… 8 3.3分類は測定基準の有用性を基礎づけました… 8 3.3 .1 既に標準のMIBのインタフェース変数単位で… 8 3.3 .2 私企業MIBのインタフェース変数単位で… 9 3.3 .3 High Resolution Pollingを必要とするインタフェースVariables単位で。 9

Lambert                      Informational                      [Page 1]

RFC 1857                 Operational Statistics             October 1995

操作上の[1ページ]RFC1857統計1995年10月の情報のランバート

   3.3.4   Per Interface Variables not in any MIB ................... 9
   3.3.5   Per Node Variables ....................................... 9
   3.3.6   Metrics not being Retrievable with SNMP ................. 10
   3.4     Recommended Metrics ..................................... 10
   4.      Polling Frequencies ..................................... 10
   4.1     Variables Needing High Resolution Polling ............... 11
   4.2     Variables not Needing High Resolution Polling ........... 11
   5.      Pre-Processing of Raw Statistical Data .................. 11
   5.1     Optimizing and Concentrating Data to Resources .......... 11
   5.2     Aggregation of Data ..................................... 12
   6.      Storing of Statistical Data ............................. 12
   6.1     The Storage Format ...................................... 13
   6.1.1   The Label Section ....................................... 14
   6.1.2   The Device Section ...................................... 15
   6.1.3   The Data Section ........................................ 17
   6.2     Storage Requirement Estimations ......................... 17
   7.      Report Formats .......................................... 18
   7.1     Report Types and Contents ............................... 18
   7.2     Contents of the Reports ................................. 19
   7.2.1   Offered Load by Link .................................... 19
   7.2.2   Offered Load by Customer ................................ 19
   7.2.3   Resource Utilization Reporting .......................... 20
   7.2.3.1 Utilization as Maximum Peak Behavior .................... 20
   7.2.3.2 Utilization as Frequency Distribution of Peaks .......... 20
   8.      Considerations for Future Development ................... 20
   8.1     A Client/Server Based Statistical Exchange System ....... 21
   8.2     Inclusion of Variables not in the Internet Standard MIB . 21
   8.3     Detailed Resource Utilization Statistics ................ 21
   Appendix A  Some formulas for statistical aggregation ........... 22
   Appendix B  An example .......................................... 24
   Security Considerations ......................................... 27
   Author's Address ................................................ 27

3.3.4 どんなコネではなく、Interface VariablesあたりのMIBも… 9 3.3 .5 ノード変数単位で… 9 3.3 SNMPとRetrievableでない.6の測定基準… 10 3.4 測定基準を推薦します… 10 4. 世論調査頻度… 10 高画質世論調査を必要とする4.1の変数… 11 高画質世論調査を必要としない4.2の変数… 11 5. 生の統計データの前処理… 11 5.1 データをリソースに最適化して、集結します… 11 5.2 データの集合… 12 6. 統計データの保存… 12 6.1 ストレージ形式… 13 6.1 .1 ラベル部分… 14 6.1 .2 デバイス部分… 15 6.1 .3 資料課… 17 6.2 ストレージ要件見積り… 17 7. 書式を報告してください… 18 7.1 タイプとコンテンツを報告してください… 18 7.2 レポートのコンテンツ… 19 7.2 .1はリンクのそばで負荷を提供しました… 19 7.2 .2は顧客で負荷を提供しました… 19 7.2 .3 リソース利用報告… 20 7.2 .3 最大のピークの振舞いとしての.1利用… 20 7.2 .3 ピークの度数分布としての.2利用… 20 8. 今後の開発のための問題… 20 8.1 クライアント/サーバは統計的な交換システムを基礎づけました… 21 8.2 変数の包含はインターネット標準のMIB. 21 8.3でリソース利用統計を詳しく述べませんでした… 21 統計的な集合のための付録A Some定石… 22付録B Anの例… 24 セキュリティ問題… 27作者のアドレス… 27

1.  Introduction

1. 序論

   Many network administrations commonly collect and archive network
   management metrics that indicate network utilization, growth and
   reliability.  The primary goals of this activity are to facilitate
   near-term problem isolation and longer-term network planning within
   the organization.  There is also the broader goal of cooperative
   problem isolation and network planning among network administrations.
   This broader goal is likely to become increasingly important as the
   Internet continues to grow, particularly as the number of Internet
   service providers expands and the quality of service between
   providers becomes more of a concern.

多くのネットワーク運営が、一般的にネットワーク利用、成長、および信頼性を示すネットワークマネージメント測定基準を、集めて、格納します。 この活動のプライマリ目標は組織の中で短期間問題分離と、より長い期間ネットワーク計画を容易にすることです。 また、ネットワーク運営の中に協力的な問題分離とネットワーク計画の、より広い目標があります。 インターネットが、成長し続けているのに応じて、このより広い目標はますます重要になりそうです、特に、インターネット接続サービス業者の数が広がって、プロバイダーの間のサービスの質が一層の関心になるように。

Lambert                      Informational                      [Page 2]

RFC 1857                 Operational Statistics             October 1995

操作上の[2ページ]RFC1857統計1995年10月の情報のランバート

   There exist a variety of network management tools for the collection
   and presentation of network management metrics.  However, different
   kinds of measurement and presentation techniques make it difficult
   to compare data among networks.  In addition, there is not general
   agreement on what metrics should be regularly collected or how they
   should be displayed.

ネットワークマネージメント測定基準の収集とプレゼンテーションのためのさまざまなネットワークマネージメントツールが存在しています。 しかしながら、異種の測定とプレゼンテーションのテクニックで、ネットワークの中でデータを比較するのは難しくなります。 さらに、定期的にどんな測定基準を集めるべきであるか、そして、またはどうそれらを表示するべきであるかの一般協定がありません。

   There needs to be an agreed-upon model for

同意しているモデルは、ある必要があります。

   1)   A minimal set of common network management metrics to satisfy
        the goals stated above,

1) 上に述べられた目標を満たす1人の極小集合の一般的なネットワークマネージメント測定基準

   2)   Tools for collecting these metrics,

2) これらの測定基準を集めるためのツール

   3)   A common interchange format to facilitate the usage of these
        data by common presentation tools and

3) そして一般的なプレゼンテーション・ツールでこれらのデータの用法を容易にする一般的な置き換え形式。

   4)   Common presentation formats.

4) 一般的なプレゼンテーション形式。

   Under this Operational Statistics model, collection tools will
   collect and store data to be retrieved later in a given format by
   presentation tools displaying the data in a predefined way.  (See
   figure below.)

このOperational Statisticsモデルの下では、収集ツールは、後で事前に定義された方法でデータを表示するプレゼンテーション・ツールによって与えられた形式で検索されるためにデータを集めて、保存するでしょう。 (以下の図を参照してください。)

Lambert                      Informational                      [Page 3]

RFC 1857                 Operational Statistics             October 1995

操作上の[3ページ]RFC1857統計1995年10月の情報のランバート

The Operational Statistics Model

操作上の統計モデル

   (Collection of common metrics, by commonly available tools, stored in
   a common format, displayed in common formats by commonly available
   presentation tools.)

(一般的に利用可能なツールによる一般的な測定基準の一般的な形式で保存された収集は一般的に利用可能なプレゼンテーション・ツールによる一般的な形式で表示しました。)

                      !-----------------------!
                      !       Network         !
                      !---+---------------+---!
                         /                 \
                        /                   \
                       /                     \
              --------+------             ----+---------
              !     New     !             !    Old     !
              !  Collection !             ! Collection !
              !     Tool    !             !    Tool    !
              !---------+---!             !------+-----!
                         \                       !
                          \              !-------+--------!
                           \             ! Post-Processor !
                            \            !--+-------------!
                             \             /
                              \           /
                               \         /
                             !--+-------+---!
                             !    Common    !
                             !  Statistics  !
                             !   Database   !
                             !-+--------+---!
                              /          \
                             /            \
                            /              \
                           /              !-+-------------!
                          /               ! Pre-Processor !
                         /                !-------+-------!
            !-----------+--!                      !
            !     New      !              !-------+-------!
            ! Presentation !              !     Old       !
            !     Tool     !              ! Presentation  !
            !---------+----!              !     Tool      !
                       \                  !--+------------!
                        \                   /
                         \                 /
                        !-+---------------+-!
                        ! Graphical Output  !
                        ! (e.g., to paper   !
                        ! or X Window)      !
                        !-------------------!

!-----------------------! ! ネットワークでつないでください!---+---------------+---! / \ / \ / \ --------+------ ----+--------- ! 新しさ、老人!収集!収集!ツール!ツール!---------+---! !------+-----! \ ! \ !-------+--------! \!ポストプロセッサ!\!、--、+-------------! \ / \ / \ / !--+-------+---! ! 統計!データベース!コモン!-+--------+---! / \ / \ / \ / !-+-------------! /!プリプロセッサ/!-------+-------! !-----------+--新しく!-------+-------! ! プレゼンテーション!老人!ツール!プレゼンテーション!---------+----! ! ツール!\!、--、+------------! \ / \ / !-+---------------+! Graphical Output!、(紙!例えば、X windowへの!)-------------------!

Lambert                      Informational                      [Page 4]

RFC 1857                 Operational Statistics             October 1995

操作上の[4ページ]RFC1857統計1995年10月の情報のランバート

   This memo gives an overview of this model for common operational
   statistics. The model defines the gathering, storing and presentation
   of network operational statistics and classifies the types of
   information that should be available at each network operation center
   (NOC) conforming to this model.

このメモは一般的な操作上の統計のためにこのモデルの概要を与えます。 モデルは、ネットワークの操作上の統計の集会、保存、およびプレゼンテーションを定義して、このモデルに従いながらそれぞれのネットワークオペレーション・センター(NOC)で利用可能であるべき情報のタイプを分類します。

   The model defines a minimal set of metrics and discusses how these
   metrics should be gathered and stored.  It gives recommendations for
   the content and layout of statistical reports which make possible the
   easy comparison of network statistics among NOCs.

モデルは、1人の極小集合に関する測定基準を定義して、これらの測定基準がどう集められて、保存されるべきであるかについて議論します。 それはNOCsの中でネットワーク統計の簡単な比較を可能にする統計報告の内容とレイアウトのための推薦を与えます。

   The primary purpose of this model is to define mechanisms by which
   NOCs could share most effectively their operational statistics.  One
   intent of this model is to specify a baseline capability that NOCs
   conforming to the model may support with minimal development effort
   and minimal ongoing effort.

このモデルのプライマリ目的はNOCsが最も効果的に彼らの操作上の統計を共有できたメカニズムを定義することです。 このモデルの1つの意図はNOCsがモデルに従う場合最小量で開発努力と最小量の進行中の取り組みをサポートするかもしれない基線能力を指定することです。

2.  The Model

2. モデル

   The model defines three areas of interest on which all underlying
   concepts are based:

モデルはすべての基本的概念が基づいている興味がある3つの領域を定義します:

   1)   The definition of a minimal set of metrics to be gathered,

1) 1人の極小集合の集められるべき測定基準の定義

   2)   The definition of a format for storing collected statistical
        data and

2) そして集まっている統計データを保存するための形式の定義。

   3)   The definition of methods and formats for generating reports.

3) 生成するメソッドと形式の定義は報告します。

   The model indicates that old tools currently in use could be
   retrofitted into the new paradigm. This could be done by providing
   conversion filters between old and new tools. In this sense this
   model intends to advocate the development of freely redistributable
   software for use by participating NOCs.

モデルは、現在使用中の古いツールを新しい発想に改装できたのを示します。 古くて新しいツールの間に色温度変換フィルタを提供することによって、これができるでしょう。 この意味で、このモデルは参加しているNOCsによる使用のために自由に再配付可能なソフトウェアの開発を支持するつもりです。

   One basic idea of the model is that statistical data stored at one
   place could be retrieved and displayed at some other place.

モデルの1つの基本的な考え方はある他の場所に1つの場所に保存された統計データを検索して、表示できたということです。

2.1.  Metrics and Polling Periods

2.1. 測定基準と世論調査の期間

   Here the value is 0.

ここで、値は0です。

   The intent here is to define a minimal set of metrics that could be
   gathered easily using standard SNMP-based network management tools.
   Thus, these metrics should be available as variables in the Internet
   Standard MIB.

ここの意図は標準のSNMPベースのネットワークマネージメントツールを使用することで容易に集めることができた1人の極小集合に関する測定基準を定義することです。 したがって、これらの測定基準はインターネットStandard MIBの変数として利用可能であるべきです。

Lambert                      Informational                      [Page 5]

RFC 1857                 Operational Statistics             October 1995

操作上の[5ページ]RFC1857統計1995年10月の情報のランバート

   If the Internet Standard MIB were changed, this minimal set of
   metrics should be reconsidered, as there are many metrics regarded
   as important, but not currently defined in the standard MIB.
   Some metrics which are highly desirable to collect are probably not
   retrievable using SNMP.  Therefore, tools and methods for gathering
   such metrics should be defined explicitly if such metrics are to be
   considered. This is, however, outside of the scope of this memo.

インターネットStandard MIBを変えるなら、この極小集合に関する測定基準を再考するでしょうに、重要であると見なされますが、現在標準のMIBでは定義されていない多くの測定基準があるとき。 いくつかの集めるのにおいて非常に望ましい測定基準は、たぶんSNMPを使用することで回収可能ではありません。 したがって、そのような測定基準を集めるためのツールとメソッドはそのような測定基準が考えられることであるなら明らかに定義されるべきです。 しかしながら、これはこのメモの範囲の外にあります。

2.2.  Format for Storing Collected Data

2.2. 集まっているデータを保存するための形式

   A format for storing data is defined. The intent is to minimize
   redundant information by using a single header structure wherein all
   information relevant to a certain set of statistical data is stored.
   This header section will give information about when and where the
   corresponding statistical data were collected.

データを保存するための書式は定義されます。 意図はある統計データに関連しているすべての情報が保存されるただ一つのヘッダー構造を使用することによって余分な情報を最小にすることです。 このヘッダー部分は対応する統計データがいつ、どこであったかに関して集まった状態で知らせるでしょう。

2.3.  Reports

2.3. レポート

   Some basic classes of reports are suggested, addressing different
   views of network behavior.  Reports of total octets and packets over
   some time period are regarded as essential to give an overall view of
   the traffic flow in a network.  Differentiation between applications
   and protocols is regarded as needed to give ideas on which type of
   traffic is dominant.  Reports on resource utilization are
   recommended.

ネットワークの振舞いの異なった視点を扱って、数人の基本的なクラスのレポートは示されます。 いつかの期間にわたる総八重奏とパケットのレポートはネットワークの交通の流れの全体図を与えるために不可欠であると見なされます。 アプリケーションとプロトコルの間の分化は、どのタイプのトラフィックが優位であるかに関する考えを与えるために必要に応じて見なされます。 リソース利用に関するレポートはお勧めです。

   The time period which a report spans may vary depending on its
   intent.  In engineering and operations daily or weekly reports may be
   sufficient, whereas for capacity planning there may be a need for
   longer-term reports.

意図によって、レポートがわたる期間は異なるかもしれません。 工学と毎日の操作か週報には、より長い期間レポートの必要は、十分であるかもしれませんが、キャパシティプランニングのためにあるかもしれません。

2.4.  Security Issues

2.4. 安全保障問題

   There are legal, ethical and political concerns about data sharing.
   People, in particular Network Service Providers, are concerned about
   showing data that may make one of their networks look bad.

データ共有に関する法的で、倫理的で政治上の心配があります。 人々(特にNetwork Service Providers)はそれらのネットワークに加わるかもしれないデータが悪く見えるのを示すことに関して心配しています。

   For this reason there is a need to insure integrity, conformity and
   confidentiality of the shared data. To be useful, the same data
   should be collected from all involved sites and it should be
   collected at the same interval.

この理由で、共有データの保全、一致、および秘密性を保障する必要があります。 役に立って、同じデータであることはすべてのかかわったサイトから集まるべきです、そして、同じ間隔を置いて、それは集められるべきです。

Lambert                      Informational                      [Page 6]

RFC 1857                 Operational Statistics             October 1995

操作上の[6ページ]RFC1857統計1995年10月の情報のランバート

3.  Categorization of Metrics

3. 測定基準の分類

3.1.  Overview

3.1. 概要

   This section gives a classification of metrics with regard to scope
   and ease of retrieval. A recommendation of a minimal set of metrics
   is given. This section also gives some hints on metrics to be
   considered for future inclusion when available in the network
   management environment. Finally some thoughts on storage requirements
   are presented.

このセクションは範囲と検索の容易さに関して測定基準の分類を与えます。 1人の極小集合に関する測定基準の推薦を与えます。 また、このセクションは、ネットワークマネージメント環境で利用可能であるときに、将来の包含のために考えられるために測定基準でいくつかのヒントを与えます。 ストレージ要件に関する最終的にいくつかの考えが提示されます。

3.2.  Categorization of Metrics Based on Measurement Areas

3.2. 測定領域に基づく測定基準の分類

   The metrics used in evaluating network traffic could be classified
   into (at least) four major categories:

ネットワークトラフィックを評価する際に使用される測定基準は(少なくとも)の4つの大範疇に分類できました:

    o Utilization metrics
    o Performance metrics
    o Availability metrics
    o Stability metrics

o 利用測定基準oパフォーマンス測定基準o Availability測定基準o Stability測定基準

3.2.1.  Utilization Metrics

3.2.1. 利用測定基準

   This category describes different aspects of the total traffic being
   forwarded through the network. Possible metrics include:

このカテゴリはネットワークを通して進められる総トラフィックの異なった局面について説明します。 可能な測定基準は:

    o Total input and output packets and octets
    o Various peak metrics
    o Per protocol and per application metrics

o ピーク測定基準o Perプロトコルとアプリケーション測定基準あたりの総投入、出力パケット、および八重奏o Various

3.2.2.  Performance Metrics

3.2.2. パフォーマンス測定基準

   These metrics relate to quality of service issues such as delays and
   congestion situations. Possible metrics include:

これらの測定基準は遅れや混雑状況などのサービスの質問題に関連します。 可能な測定基準は:

    o RTT metrics on different protocol layers
    o Number of collisions on a bus network
    o Number of ICMP Source Quench messages
    o Number of packets dropped

o パケットのICMP Source Quenchメッセージo NumberのNumberが下げたバスネットワークoにおける衝突の異なったプロトコル層o NumberにおけるRTT測定基準

Lambert                      Informational                      [Page 7]

RFC 1857                 Operational Statistics             October 1995

操作上の[7ページ]RFC1857統計1995年10月の情報のランバート

3.2.3.  Availability Metrics

3.2.3. 有用性測定基準

These metrics could be viewed as gauging long term accessibility on
different protocol layers. Possible metrics include:

異なったプロトコル層で長期のアクセシビリティを測るとこれらの測定基準を見なすことができました。 可能な測定基準は:

    o Line availability as percentage uptime
    o Route availability
    o Application availability

o 割合動作可能時間のo Route有用性o Applicationの有用性としての線の有用性

3.2.4.  Stability Metrics

3.2.4. 安定性測定基準

   These metrics describe short-term fluctuations in the network which
   degrade the service level.  Changes in traffic patterns also could be
   recognized using these metrics.  Possible metrics include:

これらの測定基準はネットワークのサービスレベルを下げる一時的な変動について説明します。 これらの測定基準を使用することでトラフィック・パターンにおける変化も認識できるでしょう。 可能な測定基準は:

    o Number of fast line status transitions
    o Number of fast route changes (also known as route flapping)
    o Number of routes per interface in the tables
    o Next hop count stability
    o Short term ICMP behavior

o 速いルートのNumberがNextが飛び越すテーブルoでルートの1インタフェースあたりのo Numberに変える(また、ルートのばたつくとして、知られています)ファスト・ライン状態変遷oの数は安定性o Short用語ICMPの振舞いを数えます。

3.3.  Categorization Based on Availability of Metrics

3.3. 測定基準の有用性に基づく分類

   To be able to retrieve metrics, the corresponding variables must be
   accessible at every network object which is part of the management
   domain for which statistics are being collected.

測定基準、対応する変数を検索できるのは統計が集められている管理ドメインの一部であるあらゆるネットワークオブジェクトでアクセスしやすいに違いありません。

   Some metrics are easily retrievable because they are defined as
   variables in the Internet Standard MIB.  Other metrics may be
   retrievable because they are part of some vendor's private enterprise
   MIB subtree.  Finally, some metrics are considered irretrievable,
   either because they are not possible to include in the SNMP concept
   or because their measurement would require extensive polling (loading
   the network with management traffic).

それらがインターネットStandard MIBの変数と定義されるので、いくつかの測定基準が容易に回収可能です。 それらが、あるベンダーの私企業MIB下位木の一部であるので、他の測定基準は回収可能であるかもしれません。 最終的に、いくつかの測定基準が取り戻すことができないと考えられます、それらがSNMP概念に含むのにおいて可能でないか、または彼らの測定は大規模な世論調査を必要とするでしょう(管理トラフィックをネットワークに積んで)、したがって。

   The metrics categorized below could each be judged as important in
   evaluating network behavior.  This list may serve as a basis for
   revisiting the decisions on which metrics are to be regarded as
   reasonable and desirable to collect. If the availability of the
   metrics listed below changes, these decisions may change.

ネットワークの振舞いを評価するのにおいて重要であるとしてそれぞれ以下で分類された測定基準は判断できました。 このリストは集まる妥当で望ましいと見なされる測定基準がことである決定を再訪させる基礎として機能するかもしれません。 測定基準の有用性が変化の下にリストアップされたなら、これらの決定は変化するかもしれません。

3.3.1.  Per Interface Variables Already in Internet Standard MIB (thus
        easy to retrieve)

3.3.1. 既にインターネットの標準のMIBのインタフェース変数単位で(その結果、検索する簡単)です。

           ifInUcastPkts   (unicast packets in)
           ifOutUcastPkts  (unicast packets out)
           ifInNUcastPkts  (non-unicast packets in
           ifOutNUcastPkts (non-unicast packets out)

ifInUcastPkts(中にユニキャストパケットがある状態で)ifOutUcastPkts(ユニキャストパケットが外にある状態で)ifInNUcastPkts、(ifOutNUcastPktsの非ユニキャストパケット(非ユニキャストパケットが外にある状態で)

Lambert                      Informational                      [Page 8]

RFC 1857                 Operational Statistics             October 1995

操作上の[8ページ]RFC1857統計1995年10月の情報のランバート

           ifInOctets      (octets in)
           ifOutOctets     (octets out)
           ifOperStatus    (line status)

ifInOctets(中に八重奏がある状態で)ifOutOctets(八重奏が外にある状態で)ifOperStatus(系列状態)

3.3.2.  Per Interface Variables in Internet Private Enterprise MIB (thus
        could sometimes be retrievable)

3.3.2. インターネット私企業MIBのインタフェース変数単位で(その結果、時々回収可能であるかもしれません)

           discarded packets in
           discarded packets out
           congestion events in
           congestion events out
           aggregate errors
           interface resets

集合誤りからの混雑イベントにおける捨てられたパケットアウト混雑イベントにおける捨てられたパケットはリセットを連結します。

3.3.3.  Per Interface Variables Needing High Resolution Polling (which
        is hard due to resulting network load)

3.3.3. 高画質世論調査を必要とするインタフェース変数単位で(結果として起こるネットワーク負荷のために困難です)

           interface queue length
           seconds missing stats
           interface unavailable
           route changes
           interface next hop count

入手できないルートが変える統計インタフェースを逃すインタフェース待ち行列長さの秒が次のホップカウントを連結します。

3.3.4.  Per Interface Variables not in any Known MIB (thus impossible
        to retrieve using SNMP but possible to include in a MIB)

3.3.4. どんなKnown MIBでないところのInterface Variables単位でも(その結果、SNMPを使用することで検索する不可能ですが、MIBに含むのにおいて可能)です。

           link layer packets in
           link layer packets out
           link layer octets in
           link layer octets out
           packet interarrival times
           packet size distribution

パケットinterarrival回のパケットサイズ分布からのリンクレイヤ八重奏におけるリンクレイヤパケットアウトリンクレイヤ八重奏におけるリンクレイヤパケット

3.3.5.  Per Node Variables (not categorized here)

3.3.5. ノード変数単位で(ここで、分類されません)

           per-protocol packets in
           per-protocol packets out
           per-protocol octets in
           per-protocol octets out
           packets discarded in
           packets discarded out
           packet size distribution
           system uptime
           poll delta time
           reboot count

パケットサイズ分布システム・アップタイムの投票デルタ時間リブートから捨てられたパケットで捨てられたパケットからの1プロトコルあたりの八重奏における1プロトコルあたりの八重奏からの1プロトコルあたりのパケットの1プロトコルあたりのパケットは数えられます。

Lambert                      Informational                      [Page 9]

RFC 1857                 Operational Statistics             October 1995

操作上の[9ページ]RFC1857統計1995年10月の情報のランバート

3.3.6.  Metrics not Retrievable with SNMP

3.3.6. SNMPと共に回収可能でない測定基準

           delays (RTTs) on different protocol layers
           application layer availabilities
           peak behavior metrics

異なったプロトコル層応用層の有用性に関する遅れ(RTTs)は振舞い測定基準に最大限にします。

3.4.  Recommended Metrics

3.4. お勧めの測定基準

   A large number of metrics could be considered for collection in the
   process of doing network statistics. To facilitate general consensus
   for this model, there is a need to define a minimal set of metrics
   that are both essential and retrievable in a majority of today's
   network objects.  General retrievability is equated with presence in
   the Internet Standard MIB.

しているネットワーク統計の途中に収集のために多くの測定基準を考えることができました。 このモデルに関する全体的な合意を容易にするために、1人の極小集合の不可欠の、そして、かつ今日のネットワークオブジェクトの大部分で回収可能な測定基準を定義する必要があります。 一般再取り出し可能性はインターネットStandard MIBで存在と同一視されます。

   The following metrics from the Internet Standard MIB were chosen as
   being desirable and reasonable:

インターネットStandard MIBからの以下の測定基準は望ましくて、妥当であるとして選ばれました:

   For each interface:

それぞれに関しては、連結してください:

           ifInOctets      (octets in)
           ifOutOctets     (octets out)
           ifInUcastPkts   (unicast packets in)
           ifOutUcastPkts  (unicast packets out)
           ifInNUcastPkts  (non-unicast packets in)
           ifOutNUcastPkts (non-unicast packets out)
           ifInDiscards    (in discards)
           ifOutDiscards   (out discards)
           ifOperStatus    (line status)

ifInOctets(中に八重奏がある状態で)ifOutOctets(八重奏が外にある状態で)ifInUcastPkts(中にユニキャストパケットがある状態で)ifOutUcastPkts(ユニキャストパケットが外にある状態で)ifInNUcastPkts(中に非ユニキャストパケットがある状態で)ifOutNUcastPkts(非ユニキャストパケットが外にある状態で)ifInDiscards(破棄における)ifOutDiscards(出ている破棄)ifOperStatus(系列状態)

   For each node:

各ノードのために:

           ipForwDatagrams (IP forwards)
           ipInDiscards    (IP in discards)
           sysUpTime       (system uptime)

ipForwDatagrams(IPフォワード)ipInDiscards(破棄におけるIP)sysUpTime(システム・アップタイム)

4.  Polling Frequencies

4. 世論調査頻度

   The purpose of polling at specified intervals is to gather statistics
   to serve as a basis for trend and capacity planning. From the
   operational data it should be possible to derive engineering and
   management data. It should be noted that all polling and retention
   values given below are recommendations and are not mandatory.

指定された間隔で、世論調査の目的は傾向とキャパシティプランニングの基礎として機能するように統計を集めることです。 操作上のデータから、工学と管理データを引き出すのは可能であるべきです。 すべての世論調査と以下に与えられた保持値が推薦であり、義務的でないことに注意されるべきです。

Lambert                      Informational                     [Page 10]

RFC 1857                 Operational Statistics             October 1995

操作上の[10ページ]RFC1857統計1995年10月の情報のランバート

4.1.  Variables Needing High Resolution Polling

4.1. 高画質世論調査を必要とする変数

   To be able to detect peak behavior, it is recommended that a period
   of 1 minute (60 seconds) at a maximum be used in gathering traffic
   data. The metrics to be collected at this frequency are:

ピークの振舞いを検出できるように、最大における1分(60秒)の期間が集会トラフィックデータで費やされるのは、お勧めです。 この頻度で集められるべき測定基準は以下の通りです。

   for each interface

各インタフェースに

           ifInOctets      (octets in)
           ifOutOctets     (octets out)
           ifInUcastPkts   (unicast packets in)
           ifOutUcastPkts  (unicast packets out)

ifInOctets(中に八重奏がある状態で)ifOutOctets(八重奏が外にある状態で)ifInUcastPkts(中にユニキャストパケットがある状態で)ifOutUcastPkts(ユニキャストパケットが外にある状態で)

   If it is not possible to gather data at this high polling frequency,
   it is recommended that an exact multiple of 60 seconds be used. The
   initial polling frequency value will be part of the stored
   statistical data as described in section 6.1.2 below.

この高い世論調査頻度で資料を取り集めるのが可能でないなら、60秒の正確な倍数が使用されるのは、お勧めです。 初期の世論調査頻度価値はセクション6.1.2未満で説明されるように保存された統計データの一部になるでしょう。

4.2.  Variables not Needing High Resolution Polling

4.2. 高画質世論調査を必要としない変数

   The remainder of the recommended variables to be gathered, i.e.,

すなわち集められるべきお勧めの変数の残り

   For each interface:

それぞれに関しては、連結してください:

           ifInNUcastPkts  (non-unicast packets in)
           ifOutNUcastPkts (non-unicast packets out)
           ifInDiscards    (in discards)
           ifOutDiscards   (out discards)
           ifOperStatus    (line status)

ifInNUcastPkts(中に非ユニキャストパケットがある状態で)ifOutNUcastPkts(非ユニキャストパケットが外にある状態で)ifInDiscards(破棄における)ifOutDiscards(出ている破棄)ifOperStatus(系列状態)

   and for each node:

そして、各ノードのために:

           ipForwDatagrams (IP forwards)
           ipInDiscards    (IP in discards)
           sysUpTime       (system uptime)

ipForwDatagrams(IPフォワード)ipInDiscards(破棄におけるIP)sysUpTime(システム・アップタイム)

   could be collected at a lower polling rate. No polling rate is
   specified, but it is recommended that the period chosen be an exact
   multiple of 60 seconds.

低い世論調査率で集めることができました。 世論調査率は全く指定されませんが、選ばれた期間が60秒の正確な倍数であることはお勧めです。

5.  Pre-Processing of Raw Statistical Data

5. 生の統計データの前処理

5.1.  Optimizing and Concentrating Data to Resources

5.1. データをリソースに最適化して、集結します。

   To avoid storing redundant data in what might be a shared file
   system, it is desirable to preprocess the raw data. For example, if a
   link is down there is no need to continuously store a counter which
   is not changing. The use of the variables sysUpTime and ifOperStatus

共有ファイルシステムであるかもしれないことにおける冗長データを保存するのを避けるために、生データを前処理するのは望ましいです。 例えば、リンクが下がっているなら、絶え間なく変化しないカウンタを保存する必要は全くありません。 変数のsysUpTimeとifOperStatusの使用

Lambert                      Informational                     [Page 11]

RFC 1857                 Operational Statistics             October 1995

操作上の[11ページ]RFC1857統計1995年10月の情報のランバート

   makes it possible not to have to continuously store data collected
   from links and nodes where no traffic has been transmitted for some
   period of time.

絶え間なくトラフィックが全くいつかの期間の間に伝えられていないリンクとノードから集められたデータを保存している必要はないのを可能にします。

   Another aspect of processing is to decouple the data from the raw
   interface being polled. The intent should be to convert such data
   into the resource of interest as, for example, the traffic on a given
   link. Changes of interface in a gateway for a given link should not
   be visible in the resulting data.

処理のもう一つの側面は投票される生のインタフェースからデータの衝撃を吸収することです。 意図は与えられたリンクの上に興味があるリソースへの例えば、トラフィックのようなデータを変換することであるべきです。 与えられたリンクへのゲートウェイのインタフェースの変化は結果として起こるデータで目に見えるべきではありません。

5.2.  Aggregation of Data

5.2. データの集合

   At many sites, the volume of data generated by a polling period of 1
   minute will make aggregation of the stored data desirable if not
   necessary.

多くのサイトでは、1分の世論調査の期間までに生成されたデータ量で、記憶されたデータの集合は望ましいか必要になるでしょう。

   Aggregation here refers to the replacement of data values on a number
   of time intervals by some function of the values over the union of
   the intervals.  Either raw data or shorter-term aggregates may be
   aggregated.  Note that aggregation reduces the amount of data, but
   also reduces the available information.

ここの集合は間隔の組合の上の値の何らかの関数で多くの時間間隔のデータ値の交換品について言及します。 未加工データか、より短い期間集合のどちらかが集められるかもしれません。 集合がデータ量を減少させますが、入手可能な情報をまた減らすことに注意してください。

   In this model, the function used for the aggregation is either the
   arithmetic mean or the maximum, depending on whether it is desired to
   track the average or peak value of a variable.

このモデルでは、集合に使用される機能は、算術平均か最大のどちらかです、変数の平均かピーク値を追跡するのが必要であるかどうかよって。

   Details of the layout of the aggregated entries in the data file are
   given in section 6.1.3.

データファイルにおける、集められたエントリーのレイアウトの詳細はセクション6.1.3で明らかにされます。

   Suggestions for aggregation periods:

集合の期間の提案:

   Over a

aの上で

           24 hour period        aggregate to 15 minutes,
           1 month period        aggregate to 1 hour,
           1 year period         aggregate to 1 day

24時間の15分までの期間の集合、1カ月の1時間までの期間の集合、1年間の1日までの期間の集合

6.  Storing of Statistical Data

6. 統計データの保存

   This section describes a format for the storage of statistical data.
   The goal is to facilitate a common set of tools for the gathering,
   storage and analysis of statistical data. The format is defined with
   the intent of minimizing redundant information and thus minimizing
   storage requirements. If a client server based model for retrieving
   remote statistical data were later developed, the specified storage
   format could be used as the transmission protocol.

このセクションは統計データのストレージのために形式について説明します。 目標は統計データの集会、ストレージ、および分析のために一般的なセットのツールを容易にすることです。 書式は余分な情報を最小にして、その結果、ストレージ要件を最小にする意図をもって定義されます。 リモート統計データを検索するためのクライアントサーバに基づいているモデルが後で開発されるなら、トランスミッションプロトコルとして指定されたストレージ形式を使用できるでしょうに。

Lambert                      Informational                     [Page 12]

RFC 1857                 Operational Statistics             October 1995

操作上の[12ページ]RFC1857統計1995年10月の情報のランバート

   This model is intended to define an interchange file format, which
   would not necessarily be used for actual data storage.  That means
   its goal is to provide complete, self-contained, portable files,
   rather than to describe a full database for storing them.

このモデルは置き換えファイル形式を定義するつもりです。(ファイル形式は実際のデータ保存に必ず使用されるというわけではないでしょう)。 それは、それらを保存するための完全なデータベースについて説明するより目標がむしろ完全で、自己充足的で、携帯用のファイルを提供することであることを意味します。

6.1.  The Storage Format

6.1. The Storage Format

   All white space (including tabs, line feeds and carriage returns)
   within a file is ignored.  In addition all text from a # symbol to
   the following end of line (inclusive) is also ignored.

All white space (including tabs, line feeds and carriage returns) within a file is ignored. In addition all text from a # symbol to the following end of line (inclusive) is also ignored.

stat-data    ::= <stat-section> [ <FS> <stat-section> ]
stat-section ::= <device-section> | <label-section> | <data-section>

stat-data ::= <stat-section> [ <FS> <stat-section> ] stat-section ::= <device-section> | <label-section> | <data-section>

   A data file must contain at least one device section and at least one
   label section.  At least one data section must be associated with
   each label section.  A device section must precede any data section
   which uses tags defined within it.

A data file must contain at least one device section and at least one label section. At least one data section must be associated with each label section. A device section must precede any data section which uses tags defined within it.

   A data section may appear in the file (in which case it is called an
   internal data section and is preceded by a label section) or in
   another file (in which case it is called an external data section and
   is specified in an external label section).  Such an external file
   may contain one and only one data section.

A data section may appear in the file (in which case it is called an internal data section and is preceded by a label section) or in another file (in which case it is called an external data section and is specified in an external label section). Such an external file may contain one and only one data section.

   A label section indicates the start and finish times for its
   associated data section or sections, and a list of the names of the
   tags they contain.  Within a data file there is an ordering of label
   sections.  This depends only upon their relative position in the
   file.  All internal data sections associated with the first label
   record must precede those associated with the second label record,
   and so on.

A label section indicates the start and finish times for its associated data section or sections, and a list of the names of the tags they contain. Within a data file there is an ordering of label sections. This depends only upon their relative position in the file. All internal data sections associated with the first label record must precede those associated with the second label record, and so on.

   Here are some examples of valid data files:

Here are some examples of valid data files:

       <label-s> <device-s> <data-s> <data-s>

<label-s> <device-s> <data-s> <data-s>

       <label-s> <device-s> <data-s> <device-s> <data-s> <data-s>

<label-s> <device-s> <data-s> <device-s> <data-s> <data-s>

   Both these files start with a label section giving the times and
   tag-name lists for the device and data sections which follow.

Both these files start with a label section giving the times and tag-name lists for the device and data sections which follow.

       <dev-s> <label-s> <label-s> <label-s>

<dev-s> <label-s> <label-s> <label-s>

   This file begins with a device section (which specifies tags used in
   its data sections) then has three 'external' label sections, each of
   which points to a separate data section.  The data sections need not
   use all the tags defined in the device section; this is indicated by

This file begins with a device section (which specifies tags used in its data sections) then has three 'external' label sections, each of which points to a separate data section. The data sections need not use all the tags defined in the device section; this is indicated by

Lambert                      Informational                     [Page 13]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 13] RFC 1857 Operational Statistics October 1995

   the tag-name    lists in their label sections.

the tag-name lists in their label sections.

      <default-dev> <dev-1> <label-1> <dev-2> <label-2> ..

<default-dev> <dev-1> <label-1> <dev-2> <label-2> ..

   In this example default-dev is a full device section, including a
   complete tag-table, with initial polling and aggregation periods
   specified for each variable in each variable-field.  There is no
   label or data for default-dev--it is there purely to provide default
   tag-list information.  Dev-1, dev-2, ... are device sections for a
   series of different devices.  They each have their description fields
   (network-name, router-name, etc), but no tag-table.  Instead they
   rely on using the tag-table from default-device.  A default-dev
   record, if present, must be the first item in the data file.
   Label-1, label-2, etc. are label sections which point to files
   containing data sections for each device.

In this example default-dev is a full device section, including a complete tag-table, with initial polling and aggregation periods specified for each variable in each variable-field. There is no label or data for default-dev--it is there purely to provide default tag-list information. Dev-1, dev-2, ... are device sections for a series of different devices. They each have their description fields (network-name, router-name, etc), but no tag-table. Instead they rely on using the tag-table from default-device. A default-dev record, if present, must be the first item in the data file. Label-1, label-2, etc. are label sections which point to files containing data sections for each device.

6.1.1.  The Label Section

6.1.1. The Label Section

   label-section    ::= BEGIN_LABEL <FS> <data-location> <FS>
                           <tag-name-list> <FS>
                           <start-time> <FS> <stop-time> <FS> END_LABEL
   data-location    ::= <data-file-name> | <empty>

label-section ::= BEGIN_LABEL <FS> <data-location> <FS> <tag-name-list> <FS> <start-time> <FS> <stop-time> <FS> END_LABEL data-location ::= <data-file-name> | <empty>

   tag-name-list    ::= <LEFT> <tag> [ <FS> <tag> ] <RIGHT>

tag-name-list ::= <LEFT> <tag> [ <FS> <tag> ] <RIGHT>

   The label section gives the start and stop times for its
   corresponding data section (or sections) and a list of the tags it
   uses.  If a data location is given it specifies the name of a file
   containing its data section; otherwise the data section follows in
   this file.

The label section gives the start and stop times for its corresponding data section (or sections) and a list of the tags it uses. If a data location is given it specifies the name of a file containing its data section; otherwise the data section follows in this file.

   start-time       ::= <time-string>
   stop-time        ::= <time-string>
   data-file-name   ::= <ASCII-string>

start-time ::= <time-string> stop-time ::= <time-string> data-file-name ::= <ASCII-string>

   time-string      ::= <year><month><day><hour><minute><second>

time-string ::= <year><month><day><hour><minute><second>

   year             ::= <digit><digit><digit><digit>
   month            ::= 01..12
   day              ::= 01..31
   hour             ::= 00..23
   minute           ::= 00..59
   second           ::= <float>

year ::= <digit><digit><digit><digit> month ::= 01..12 day ::= 01..31 hour ::= 00..23 minute ::= 00..59 second ::= <float>

   The start-time and stop-time are specified in UTC.

The start-time and stop-time are specified in UTC.

Lambert                      Informational                     [Page 14]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 14] RFC 1857 Operational Statistics October 1995

   A maximum of 60.0 is specified for 'seconds' so as to allow for leap
   seconds, as is done (for example) by ntp. If a time-zone changes
   during a data file--e.g.  because daylight savings time has
   ended--this should be recorded by ending the current data section,
   writing a device section with the new time-zone and starting a new
   data section.

A maximum of 60.0 is specified for 'seconds' so as to allow for leap seconds, as is done (for example) by ntp. If a time-zone changes during a data file--e.g. because daylight savings time has ended--this should be recorded by ending the current data section, writing a device section with the new time-zone and starting a new data section.

6.1.2.  The Device Section

6.1.2. The Device Section

   device-section  ::= BEGIN_DEVICE <FS> <device-field> <FS> END_DEVICE
   device-field   ::= <network-name><FS><router-name><FS><link-name<FS>
                          <bw-value><FS><proto-type><FS><proto-addr><FS>
                          <time-zone> <optional-tag-table>
   optional-tag-table  ::= <FS> <tag-table> | <empty>

device-section ::= BEGIN_DEVICE <FS> <device-field> <FS> END_DEVICE device-field ::= <network-name><FS><router-name><FS><link-name<FS> <bw-value><FS><proto-type><FS><proto-addr><FS> <time-zone> <optional-tag-table> optional-tag-table ::= <FS> <tag-table> | <empty>

   network-name    ::= <ASCII-string>
   router-name     ::= <ASCII-string>
   link-name       ::= <ASCII-string>
   bw-value        ::= <float>
   proto-type      ::= IP | DECNET | X.25 | CLNS | IPX | AppleTalk
   proto-addr      ::= <ASCII-string>
   time-zone       ::= [+|-] [00..13] [00..59]

network-name ::= <ASCII-string> router-name ::= <ASCII-string> link-name ::= <ASCII-string> bw-value ::= <float> proto-type ::= IP | DECNET | X.25 | CLNS | IPX | AppleTalk proto-addr ::= <ASCII-string> time-zone ::= [+|-] [00..13] [00..59]

   tag-table       ::= <LEFT> <tag-desc> [ <FS> <tag-desc> ] <RIGHT>
   tag-desc        ::= <tag> <FS> <tag-class> <FS> <variable-field-list>

tag-table ::= <LEFT> <tag-desc> [ <FS> <tag-desc> ] <RIGHT> tag-desc ::= <tag> <FS> <tag-class> <FS> <variable-field-list>

   tag             ::= <ASCII-string>
   tag-class       ::= total | peak

tag ::= <ASCII-string> tag-class ::= total | peak

   variable-field-list    ::= <LEFT> <variable-field>
                                 [ <FS> <variable-field> ] <RIGHT>
   variable-field         ::= <variable-name><FS><initial-polling-period>
                                 <FS> <aggregation-period>

variable-field-list ::= <LEFT> <variable-field> [ <FS> <variable-field> ] <RIGHT> variable-field ::= <variable-name><FS><initial-polling-period> <FS> <aggregation-period>

   variable-name          ::= <ASCII-string>
   initial-polling-period ::= <integer>
   aggregation-period     ::= <integer>

variable-name ::= <ASCII-string> initial-polling-period ::= <integer> aggregation-period ::= <integer>

   The network-name is a human readable string indicating to which
   network the logged data belong.

The network-name is a human readable string indicating to which network the logged data belong.

   The router-name is given as an ASCII string, allowing for styles
   other than IP domain names (which are names of interfaces, not
   routers).

The router-name is given as an ASCII string, allowing for styles other than IP domain names (which are names of interfaces, not routers).

   The link-name is a human readable string indicating the connectivity
   of the link where from the logged data is gathered.

The link-name is a human readable string indicating the connectivity of the link where from the logged data is gathered.

Lambert                      Informational                     [Page 15]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 15] RFC 1857 Operational Statistics October 1995

   The units for bandwidth (bw-value) are bits per second, and are given
   as a floating-point number, e.g. 1536000 or 1.536e6.  A zero value
   indicates that the actual bandwidth is unknown; one instance of this
   would be a Frame Relay link with Committed Information Rate different
   from Burst Rate.

The units for bandwidth (bw-value) are bits per second, and are given as a floating-point number, e.g. 1536000 or 1.536e6. A zero value indicates that the actual bandwidth is unknown; one instance of this would be a Frame Relay link with Committed Information Rate different from Burst Rate.

   The proto-type field describes to which network architecture the
   interface being logged is connected.  Valid types are IP, DECNET,
   X.25, CLNS, IPX and AppleTalk.

The proto-type field describes to which network architecture the interface being logged is connected. Valid types are IP, DECNET, X.25, CLNS, IPX and AppleTalk.

   The network address (proto-addr) is the unique numeric address of the
   interface being logged. The actual form of this address is dependent
   on the protocol type as indicated in the proto-type field. For
   Internet connected interfaces the dotted-quad notation should be
   used.

The network address (proto-addr) is the unique numeric address of the interface being logged. The actual form of this address is dependent on the protocol type as indicated in the proto-type field. For Internet connected interfaces the dotted-quad notation should be used.

   The time-zone indicates the time difference that should be added to
   the time-stamp in the data-section to give the local time for the
   logged interface.  Note that the range for time-zone is sufficient to
   allow for all possibilities, not just those which fall on 30-minute
   multiples.

The time-zone indicates the time difference that should be added to the time-stamp in the data-section to give the local time for the logged interface. Note that the range for time-zone is sufficient to allow for all possibilities, not just those which fall on 30-minute multiples.

   The tag-table lists all variables being polled. Variable names are
   the fully qualified Internet MIB names. The table may contain
   multiple tags. Each tag must be associated with only one polling and
   aggregation period. If variables are being polled or aggregated at
   different periods, a separate tag in the table must be used for each
   period.

The tag-table lists all variables being polled. Variable names are the fully qualified Internet MIB names. The table may contain multiple tags. Each tag must be associated with only one polling and aggregation period. If variables are being polled or aggregated at different periods, a separate tag in the table must be used for each period.

   As variables may be polled with different polling periods within the
   same set of logged data, there is a need to explicitly associate a
   polling period with each variable. After processing, the actual
   period covered may have changed compared to the initial polling
   period and this should be noted in the aggregation period field.  The
   initial polling period and aggregation period are given in seconds.

As variables may be polled with different polling periods within the same set of logged data, there is a need to explicitly associate a polling period with each variable. After processing, the actual period covered may have changed compared to the initial polling period and this should be noted in the aggregation period field. The initial polling period and aggregation period are given in seconds.

   Original data values, and data values which have been aggregated by
   adding them together, will have a tag-class of 'total.'  Data values
   which have been aggregated by finding the maximum over an aggregation
   time interval will have a tag-class of 'peak.'

Original data values, and data values which have been aggregated by adding them together, will have a tag-class of 'total.' Data values which have been aggregated by finding the maximum over an aggregation time interval will have a tag-class of 'peak.'

   The tag-table and variable-field-lists are enclosed in brackets,
   making the extent of each obvious.  Without the brackets a parser
   would have difficulty distinguishing between a variable name
   (continuing the variable-field list for this tag) or a tag (starting
   the next tag of the tag table).  To make the distinction clearer to a
   human reader one should use different kinds of brackets for each, for
   example {} for the tag-table list and [] for the variable-field

The tag-table and variable-field-lists are enclosed in brackets, making the extent of each obvious. Without the brackets a parser would have difficulty distinguishing between a variable name (continuing the variable-field list for this tag) or a tag (starting the next tag of the tag table). To make the distinction clearer to a human reader one should use different kinds of brackets for each, for example {} for the tag-table list and [] for the variable-field

Lambert                      Informational                     [Page 16]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 16] RFC 1857 Operational Statistics October 1995

   lists.

lists.

6.1.3.  The Data Section

6.1.3. The Data Section

   data-section     ::= BEGIN_DATA <FS> <data-field>
                           [ <FS> <data-field> ] <FS> END_DATA
   data-field       ::= <time-string> <FS> <tag> <FS>
                           <poll-delta> <FS> <delta-val-list>

data-section ::= BEGIN_DATA <FS> <data-field> [ <FS> <data-field> ] <FS> END_DATA data-field ::= <time-string> <FS> <tag> <FS> <poll-delta> <FS> <delta-val-list>

   delta-val-list   ::= LEFT <delta-val> [ <FS> <delta-val> ] RIGHT

delta-val-list ::= LEFT <delta-val> [ <FS> <delta-val> ] RIGHT

   poll-delta       ::= <integer>
   delta-val        ::= <integer>

poll-delta ::= <integer> delta-val ::= <integer>

   FS            ::= , | ; | :
   LEFT          ::= ( | [ | {
   RIGHT         ::= ) | ] | }

FS ::= , | ; | : LEFT ::= ( | [ | { RIGHT ::= ) | ] | }

   A data-field contains values for each variable in the specified tag.
   A new data field should be written for each separate poll; there
   should be a one-to-one mapping betwen variables and values.  Each
   data-field begins with the timestamp for this poll followed by the
   tag defining the polled variables followed by a polling delta value
   giving the period of time in seconds since the previous poll. The
   variable values are stored as delta values for counters and as
   absolute values for non-counter values such as OperStatus. The
   timestamp is in UTC and the time-zone field in the device section is
   used to compute the local time for the device being logged.

A data-field contains values for each variable in the specified tag. A new data field should be written for each separate poll; there should be a one-to-one mapping betwen variables and values. Each data-field begins with the timestamp for this poll followed by the tag defining the polled variables followed by a polling delta value giving the period of time in seconds since the previous poll. The variable values are stored as delta values for counters and as absolute values for non-counter values such as OperStatus. The timestamp is in UTC and the time-zone field in the device section is used to compute the local time for the device being logged.

   Comma, semicolon or colon may be used as a field separator.  Normally
   one would use commas within a line, semicolon at the end of a line
   and a colon after keywords such as BEGIN_LABEL.

Comma, semicolon or colon may be used as a field separator. Normally one would use commas within a line, semicolon at the end of a line and a colon after keywords such as BEGIN_LABEL.

   Parentheses (), brackets [] or braces {} may be used as LEFT and
   RIGHT brackets around tag-name, tag-table and delta-val lists.  These
   should be used in corresponding pairs, although combinations such as
   (], [} etc. are syntactically valid.

Parentheses (), brackets [] or braces {} may be used as LEFT and RIGHT brackets around tag-name, tag-table and delta-val lists. These should be used in corresponding pairs, although combinations such as (], [} etc. are syntactically valid.

6.2.  Storage Requirement Estimations

6.2. Storage Requirement Estimations

   The header sections are not counted in this example.  Assuming that
   the maximum polling intensity is used for all 12 recommended
   variables, that the size in ASCII of each variable is eight bytes and
   that there are no timestamps which are fractional seconds, the
   following calculations will give an estimate of storage requirements
   for one year of storing and aggregating statistical data.

The header sections are not counted in this example. Assuming that the maximum polling intensity is used for all 12 recommended variables, that the size in ASCII of each variable is eight bytes and that there are no timestamps which are fractional seconds, the following calculations will give an estimate of storage requirements for one year of storing and aggregating statistical data.

Lambert                      Informational                     [Page 17]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 17] RFC 1857 Operational Statistics October 1995

   Assuming that data is saved according to the scheme

Assuming that data is saved according to the scheme

           1 minute non-aggregated           saved 1 day,
           15 minute aggregation period      saved 1 week,
           1 hour aggregation period         saved 1 month and
           1 day aggregation period          saved 1 year,

1 minute non-aggregated saved 1 day, 15 minute aggregation period saved 1 week, 1 hour aggregation period saved 1 month and 1 day aggregation period saved 1 year,

   this will give:

this will give:

   Size of one entry for each aggregation period:

Size of one entry for each aggregation period:

                                    Aggregation periods

Aggregation periods

                         1 min       15 min      1 hour     1 day

1 min 15 min 1 hour 1 day

       Timestamp           14          14          14         14
       Tag                  5           5           5          5
       Poll-Delta           2           3           4          5
       Total values        96          96          96         96
       Peak values          0          96         192        288
       Field separators    14          28          42         56

Timestamp 14 14 14 14 Tag 5 5 5 5 Poll-Delta 2 3 4 5 Total values 96 96 96 96 Peak values 0 96 192 288 Field separators 14 28 42 56

       Total entry size   131         242         353        464

Total entry size 131 242 353 464

   For each day 60*24 = 1440 entries with a total size of 1440*131 = 189
   kB.

For each day 60*24 = 1440 entries with a total size of 1440*131 = 189 kB.

   For each week 4*24*7 = 672 entries are stored with a total size of
   672*242 = 163 kB.

For each week 4*24*7 = 672 entries are stored with a total size of 672*242 = 163 kB.

   For each month 24*30 = 720 entries are stored with a total size of
   720*353 = 254 kB.

For each month 24*30 = 720 entries are stored with a total size of 720*353 = 254 kB.

   For each year 365 entries are stored with a total size of 365*464 =
   169 kB.

For each year 365 entries are stored with a total size of 365*464 = 169 kB.

   Grand total estimated storage for during one year = 775 kB.

Grand total estimated storage for during one year = 775 kB.

7.  Report Formats

7. Report Formats

   This section suggests some report formats and defines the metrics to
   be used in such reports.

This section suggests some report formats and defines the metrics to be used in such reports.

7.1.  Report Types and Contents

7.1. Report Types and Contents

   There are longer-term needs for monthly and yearly reports showing
   long-term tendencies in the network. There are short-term weekly
   reports giving information about medium-term changes in network

There are longer-term needs for monthly and yearly reports showing long-term tendencies in the network. There are short-term weekly reports giving information about medium-term changes in network

Lambert                      Informational                     [Page 18]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 18] RFC 1857 Operational Statistics October 1995

   behavior which could    serve as input to the medium-term engineering
   approach.  Finally, there are daily reports giving the instantaneous
   overviews needed in the daily operations of a network.

behavior which could serve as input to the medium-term engineering approach. Finally, there are daily reports giving the instantaneous overviews needed in the daily operations of a network.

   These reports should give information on:

These reports should give information on:

         Offered Load              Total traffic at external interfaces
         Offered Load              Segmented by "Customer"
         Offered Load              Segmented protocol/application.

Offered Load Total traffic at external interfaces Offered Load Segmented by "Customer" Offered Load Segmented protocol/application.

         Resource Utilization      Link/Router

Resource Utilization Link/Router

7.2.  Content of the Reports

7.2. Content of the Reports

7.2.1.  Offered Load by Link

7.2.1. Offered Load by Link

       Metric categories: input  octets  per external interface
                          output octets  per external interface
                          input  packets per external interface
                          output packets per external interface

Metric categories: input octets per external interface output octets per external interface input packets per external interface output packets per external interface

   The intent is to visualize the overall trend of network traffic on
   each connected external interface. This could be done as a bar-chart
   giving the totals for each of the four metric categories.  Based on
   the time period selected this could be done on a hourly, daily,
   monthly or yearly basis.

The intent is to visualize the overall trend of network traffic on each connected external interface. This could be done as a bar-chart giving the totals for each of the four metric categories. Based on the time period selected this could be done on a hourly, daily, monthly or yearly basis.

7.2.2.  Offered Load by Customer

7.2.2. Offered Load by Customer

       Metric categories: input  octets  per customer
                          output octets  per customer
                          input  packets per customer
                          output packets per customer

Metric categories: input octets per customer output octets per customer input packets per customer output packets per customer

   The recommendation here is to sort the offered load (in decreasing
   order) by customer. Plot the function F(n), where F(n) is percentage
   of total traffic offered to the top n customers or the function f(n)
   where f is the percentage of traffic offered by the nth ranked
   customers.

The recommendation here is to sort the offered load (in decreasing order) by customer. Plot the function F(n), where F(n) is percentage of total traffic offered to the top n customers or the function f(n) where f is the percentage of traffic offered by the nth ranked customers.

   The definition of what is meant by a "customer" has to be done
   locally at the site where the statistics are being gathered.

The definition of what is meant by a "customer" has to be done locally at the site where the statistics are being gathered.

   A cumulative plot could be useful as an overview of how traffic is
   distributed among users since it enables one to quickly pick off what
   fraction of the traffic comes from what number of "users."

A cumulative plot could be useful as an overview of how traffic is distributed among users since it enables one to quickly pick off what fraction of the traffic comes from what number of "users."

Lambert                      Informational                     [Page 19]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 19] RFC 1857 Operational Statistics October 1995

   A method of displaying both average and peak behaviors in the same
   bar chart is to compute both the average value over some period and
   the peak value during the same period. The average and peak values
   are then displayed in the same bar.

A method of displaying both average and peak behaviors in the same bar chart is to compute both the average value over some period and the peak value during the same period. The average and peak values are then displayed in the same bar.

7.2.3.  Resource Utilization Reporting

7.2.3. Resource Utilization Reporting

7.2.3.1.  Utilization as Maximum Peak Behavior

7.2.3.1. Utilization as Maximum Peak Behavior

   Link utilization is used to capture information on network loading.
   The polling interval must be small enough to be significant with
   respect to variations in human activity, since this is the activity
   that drives variations in network loading. On the other hand, there
   is no need to make it smaller than an interval over which excessive
   delay would notably impact productivity. For this reason, 30 minutes
   is a good estimate of the time at which people remain in one activity
   and over which prolonged high delay will affect their productivity.
   To track 30 minute variations, there is a need to sample twice as
   frequently, i.e., every 15 minutes. Use of the polling period of 10
   minutes recommended above should be sufficient to capture variations
   in utilization.

Link utilization is used to capture information on network loading. The polling interval must be small enough to be significant with respect to variations in human activity, since this is the activity that drives variations in network loading. On the other hand, there is no need to make it smaller than an interval over which excessive delay would notably impact productivity. For this reason, 30 minutes is a good estimate of the time at which people remain in one activity and over which prolonged high delay will affect their productivity. To track 30 minute variations, there is a need to sample twice as frequently, i.e., every 15 minutes. Use of the polling period of 10 minutes recommended above should be sufficient to capture variations in utilization.

   A possible format for reporting utilizations seen as peak behaviors
   is to use a method of combining averages and peak measurements onto
   the same diagram. Compare for example peak-meters on audio-equipment.
   If, for example, a diagram contains the daily totals for some period,
   then the peaks would be the most busy hour during each day. If the
   diagram were totals on an hourly basis then the peak would be the
   maximum ten-minute period in each hour.

A possible format for reporting utilizations seen as peak behaviors is to use a method of combining averages and peak measurements onto the same diagram. Compare for example peak-meters on audio-equipment. If, for example, a diagram contains the daily totals for some period, then the peaks would be the most busy hour during each day. If the diagram were totals on an hourly basis then the peak would be the maximum ten-minute period in each hour.

   By combining the average and the maximum values for a certain time
   period, it should be possible to detect line utilization and
   bottlenecks due to temporary high loads.

By combining the average and the maximum values for a certain time period, it should be possible to detect line utilization and bottlenecks due to temporary high loads.

7.2.3.2.  Utilization Visualized as a Frequency Distribution of Peaks

7.2.3.2. Utilization Visualized as a Frequency Distribution of Peaks

   Another way of visualizing line utilization is to put the ten-minute
   samples in a histogram showing the relative frequency among the
   samples versus the load.

Another way of visualizing line utilization is to put the ten-minute samples in a histogram showing the relative frequency among the samples versus the load.

8.  Considerations for Future Development

8. Considerations for Future Development

   This memo is the first effort at formalizing a common basis for
   operational statistics. One major guideline in this work has been to
   keep the model simple to facilitate the easy integration of this
   model by vendors and NOCs into their operational tools.

This memo is the first effort at formalizing a common basis for operational statistics. One major guideline in this work has been to keep the model simple to facilitate the easy integration of this model by vendors and NOCs into their operational tools.

Lambert                      Informational                     [Page 20]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 20] RFC 1857 Operational Statistics October 1995

   There are, however, some ideas that could progress further to expand
   the scope and usability of the model.

There are, however, some ideas that could progress further to expand the scope and usability of the model.

8.1.  A Client/Server Based Statistical Exchange System

8.1. A Client/Server Based Statistical Exchange System

   A possible path for development could be the definition of a
   client/server based architecture for providing Internet access to
   operational statistics. Such an architecture envisions that each NOC
   install a server which provides locally collected information in a
   variety of forms for clients.

A possible path for development could be the definition of a client/server based architecture for providing Internet access to operational statistics. Such an architecture envisions that each NOC install a server which provides locally collected information in a variety of forms for clients.

   Using a query language, the client should be able to define the
   network object, the interface, the metrics and the time period to be
   provided.  Using a TCP-based protocol, the server will transmit the
   requested data.  Once these data are received by the client, they
   could be processed and presented by a variety of tools. One
   possibility is to have an X-Window based tool that displays defined
   diagrams from data, supporting such diagrams being fed into the X-
   Window tool directly from the statistical server. Another
   complementary method would be to generate PostScript output to print
   the diagrams. In all cases it should be possible to store the
   retrieved data locally for later processing.

Using a query language, the client should be able to define the network object, the interface, the metrics and the time period to be provided. Using a TCP-based protocol, the server will transmit the requested data. Once these data are received by the client, they could be processed and presented by a variety of tools. One possibility is to have an X-Window based tool that displays defined diagrams from data, supporting such diagrams being fed into the X- Window tool directly from the statistical server. Another complementary method would be to generate PostScript output to print the diagrams. In all cases it should be possible to store the retrieved data locally for later processing.

   The client/server approach is discussed further by Henry Clark in
   RFC 1856.

The client/server approach is discussed further by Henry Clark in RFC 1856.

8.2.  Inclusion of Variables not in the Internet Standard MIB

8.2. Inclusion of Variables not in the Internet Standard MIB

   As has been pointed out above in the categorization of metrics, there
   are metrics which certainly could have been recommended if they were
   available in the Internet Standard MIB. To facilitate the inclusion
   of such metrics in the set of recommended metrics, it will be
   necessary to specify a subtree in the Internet Standard MIB
   containing variables judged necessary in the scope of performing
   operational statistics.

As has been pointed out above in the categorization of metrics, there are metrics which certainly could have been recommended if they were available in the Internet Standard MIB. To facilitate the inclusion of such metrics in the set of recommended metrics, it will be necessary to specify a subtree in the Internet Standard MIB containing variables judged necessary in the scope of performing operational statistics.

8.3.  Detailed Resource Utilization Statistics

8.3. Detailed Resource Utilization Statistics

   One area of interest not covered in the above description of metrics
   and presentation formats is to present statistics on detailed views
   of the traffic flows. Such views could include statistics on a per
   application basis and on a per protocol basis. Today such metrics are
   not part of the Internet Standard MIB. Tools like the NSF NNStat are
   being used to gather information of this kind. A possible way to
   achieve such data could be to define an NNStat MIB or to include such
   variables in the above suggested operational statistics MIB subtree.

One area of interest not covered in the above description of metrics and presentation formats is to present statistics on detailed views of the traffic flows. Such views could include statistics on a per application basis and on a per protocol basis. Today such metrics are not part of the Internet Standard MIB. Tools like the NSF NNStat are being used to gather information of this kind. A possible way to achieve such data could be to define an NNStat MIB or to include such variables in the above suggested operational statistics MIB subtree.

Lambert                      Informational                     [Page 21]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 21] RFC 1857 Operational Statistics October 1995

APPENDIX A

APPENDIX A

Some formulas for statistical aggregation

Some formulas for statistical aggregation

   The following naming conventions are used:

The following naming conventions are used:

   For poll values poll(n)_j

For poll values poll(n)_j

           n = Polling or aggregation period
           j = Entry number

n = Polling or aggregation period j = Entry number

   poll(900)_j is thus the 15 minute total value.

poll(900)_j is thus the 15 minute total value.

   For peak values peak(n,m)_j

For peak values peak(n,m)_j

           n = Period over which the peak is calculated
           m = The peak period length
           j = Entry number

n = Period over which the peak is calculated m = The peak period length j = Entry number

   peak(3600,900)_j is thus the maximum 15 minute period calculated over
   1 hour.

peak(3600,900)_j is thus the maximum 15 minute period calculated over 1 hour.

   Assume a polling over 24 hour period giving 1440 logged entries.

Assume a polling over 24 hour period giving 1440 logged entries.

       =========================

=========================

       Without any aggregation we have

Without any aggregation we have

           poll(60)_1
           ......
           poll(60)_1440

poll(60)_1 ...... poll(60)_1440

       ========================

========================

       15 minute aggregation will give 96 entries of total values

15 minute aggregation will give 96 entries of total values

           poll(900)_1
           ....
           poll(900)_96

poll(900)_1 .... poll(900)_96

                         j=(n+14)
           poll(900)_k = SUM  poll(60)_j  n=1,16,31,...1426
                         j=n              k=1,2,....,96

j=(n+14) poll(900)_k = SUM poll(60)_j n=1,16,31,...1426 j=n k=1,2,....,96

          There will also be 96 one-minute peak values.

There will also be 96 one-minute peak values.

Lambert                      Informational                     [Page 22]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 22] RFC 1857 Operational Statistics October 1995

                           j=(n+14)
          peak(900,60)_k = MAX poll(60)_j  n=1,16,31,....,1426
                           j=n                k=1,2,....,96

j=(n+14) peak(900,60)_k = MAX poll(60)_j n=1,16,31,....,1426 j=n k=1,2,....,96

       =======================

=======================

   The next aggregation step is from 15 minutes to 1 hour.  This gives
   24 totals.

The next aggregation step is from 15 minutes to 1 hour. This gives 24 totals.

                              j=(n+3)
          poll(3600)_k = SUM  poll(900)_j  n=1,5,9,.....,93
                              j=n          k=1,2,....,24

j=(n+3) poll(3600)_k = SUM poll(900)_j n=1,5,9,.....,93 j=n k=1,2,....,24

   and 24 one-minute peaks calculated over each hour.

and 24 one-minute peaks calculated over each hour.

                             j=(n+3)
          peak (3600,60)_k = MAX  peak(900,60)_j  n=1,5,9,.....,93
                             j=n                  k=1,2,....24

j=(n+3) peak (3600,60)_k = MAX peak(900,60)_j n=1,5,9,.....,93 j=n k=1,2,....24

   and finally 24 15-minute peaks calculated over each hour:

and finally 24 15-minute peaks calculated over each hour:

                            j=(n+3)
          peak (3600,900) = MAX poll(900)_j  n=1,5,9,.....,93
                            j=n

j=(n+3) peak (3600,900) = MAX poll(900)_j n=1,5,9,.....,93 j=n

       ===================

===================

   The next aggregation step is from 1 hour to 24 hours.  For each day
   with 1440 entries as above this will give

The next aggregation step is from 1 hour to 24 hours. For each day with 1440 entries as above this will give

                           j=(n+23)
           poll(86400)_k = SUM  poll(3600)_j  n=1,25,51,.......
                           j=n                k=1,2............

j=(n+23) poll(86400)_k = SUM poll(3600)_j n=1,25,51,....... j=n k=1,2............

                                j=(n+23)
           peak(86400,60)_k   = MAX peak(3600,60)_j  n=1,25,51,....
                                j=n                  k=1,2.........

j=(n+23) peak(86400,60)_k = MAX peak(3600,60)_j n=1,25,51,.... j=n k=1,2.........

   which gives the busiest 1 minute period over 24 hours.

which gives the busiest 1 minute period over 24 hours.

                                j=(n+23)
           peak(86400,900)_k  = MAX peak(3600,900)_j  n=1,25,51,....
                                j=n                   k=1,2,........

j=(n+23) peak(86400,900)_k = MAX peak(3600,900)_j n=1,25,51,.... j=n k=1,2,........

   which gives the busiest 15 minute period over 24 hours.

which gives the busiest 15 minute period over 24 hours.

                                j=(n+23)

j=(n+23)

Lambert                      Informational                     [Page 23]

RFC 1857                 Operational Statistics             October 1995

Lambert Informational [Page 23] RFC 1857 Operational Statistics October 1995

           peak(86400,3600)_k = MAX poll(3600)_j  n=1,25,51,....
                                j=n               k=1,2,........

peak(86400,3600)_k = MAX poll(3600)_j n=1,25,51,.... j=n k=1,2,........

   which gives the busiest 1 hour period over 24 hours.

which gives the busiest 1 hour period over 24 hours.

       ===================

===================

   There will probably be a difference between the three peak values in
   the final 24 hour aggregation. A smaller peak period will give higher
   values than a longer one, i.e., if adjusted to be numerically
   comparable.

There will probably be a difference between the three peak values in the final 24 hour aggregation. A smaller peak period will give higher values than a longer one, i.e., if adjusted to be numerically comparable.

       poll(86400)/3600 < peak(86400,3600) < peak(86400,900)*4
              < peak(86400,60)*60

poll(86400)/3600 < peak(86400,3600) < peak(86400,900)*4 < peak(86400,60)*60

APPENDIX B

APPENDIX B

   An example

An example

   Assuming below data storage:

Assuming below data storage:

   BEGIN_DEVICE:
      ...
   {
      UNI-1,total: [ifInOctet,  60, 60,ifOutOctet,      60, 60];
      BRD-1,total: [ifInNUcastPkts,300,300,ifOutNUcastPkts,300,300]
   }
      ...

_装置を始めてください: ... UNI-1、合計: [ifInOctet、60 60 ifOutOctet、60、60]; BRD-1、合計: [ifInNUcastPkts、30万300、ifOutNUcastPkts、30万300]、…

   which gives

どれ、付与

   BEGIN_DATA:
      19920730000000,UNI-1,60:(val1-1,val2-1);
      19920730000060,UNI-1,60:(val1-2,val2-2);
      19920730000120,UNI-1,60:(val1-3,val2-3);
      19920730000180,UNI-1,60:(val1-4,val2-4);
      19920730000240,UNI-1,60:(val1-5,val2-5);
      19920730000300,UNI-1,60:(val1-6,val2-6);
      19920730000300,BRD-1,300:(val1-7,val2-7);
      19920730000360,UNI-1,60:(val1-8,val2-8);
      ...

_データを始めてください: 19920730000000 UNI-1、60: (val1-1、val2-1)。 19920730000060 UNI-1、60: (val1-2、val2-2)。 19920730000120 UNI-1、60: (val1-3、val2-3)。 19920730000180 UNI-1、60: (val1-4、val2-4)。 19920730000240 UNI-1、60: (val1-5、val2-5)。 19920730000300 UNI-1、60: (val1-6、val2-6)。 19920730000300 BRD-1,300: (val1-7、val2-7)。 19920730000360 UNI-1、60: (val1-8、val2-8)。 ...

   Aggregation to 15 minutes gives

数分が与える15への集合

   BEGIN_DEVICE:
       ...

_装置を始めてください: ...

Lambert                      Informational                     [Page 24]

RFC 1857                 Operational Statistics             October 1995

操作上の[24ページ]RFC1857統計1995年10月の情報のランバート

   {
       UNI-1,total:     [ifInOctet,      60,900,ifOutOctet,      60,900];
       BRD-1,total:     [ifInNUcastPkts,300,900,ifOutNUcastPkts,300,900];
       UNI-2,peak:      [ifInOctet,      60,900,ifOutOctet,      60,900];
       BRD-2,peak:      [ifInNUcastPkts,300,900,ifOutNUcastPkts,300,900]
   }
       ...

UNI-1、合計: [; ifInOctet、6万900、ifOutOctet、6万900、]BRD-1、合計:、[ifInNUcastPkts、30万900 ifOutNUcastPkts、30万900]; UNI-2、ピーク: [; ifInOctet、6万900、ifOutOctet、6万900、]BRD-2、ピーク:、[ifInNUcastPkts、30万900、ifOutNUcastPkts、30万900]、…

   where UNI-1 is the 15 minute total
         BRD-1 is the 15 minute total
         UNI-2 is the 1 minute peak     over 15 minute (peak = peak(1))
         BRD-2 is the 5 minute peak     over 15 minute (peak = peak(1))

UNI-1がどこの15の微小な総BRD-1であるかが総UNI-2が15分以上の1分のピークである15分である、(ピーク=ピーク(1))BRD-2は15分以上の5分のピークです。(=ピーク(1))に最大限にしてください。

   which gives

どれ、付与

   BEGIN_DATA:
      19920730000900,UNI-1,900:(tot-val1,tot-val2);
      19920730000900,BRD-1,900:(tot-val1,tot-val2);
      19920730000900,UNI-2,900:(peak(1)-val1,peak(1)-val2);
      19920730000900,BRD-2,900:(peak(1)-val1,peak(1)-val2);
      19920730001800,UNI-1,900:(tot-val1,tot-val2);
      19920730001800,BRD-1,900:(tot-val1,tot-val2);
      19920730001800,UNI-2,900:(peak(1)-val1,peak(1)-val2);
      19920730001800,BRD-2,900:(peak(1)-val1,peak(1)-val2);
      ...

_データを始めてください: 19920730000900 UNI-1,900: (幼児-val1、幼児-val2)。 19920730000900 BRD-1,900: (幼児-val1、幼児-val2)。 19920730000900 UNI-2,900: (ピーク(1)-val1、ピーク(1)-val2)。 19920730000900 BRD-2,900: (ピーク(1)-val1、ピーク(1)-val2)。 19920730001800 UNI-1,900: (幼児-val1、幼児-val2)。 19920730001800 BRD-1,900: (幼児-val1、幼児-val2)。 19920730001800 UNI-2,900: (ピーク(1)-val1、ピーク(1)-val2)。 19920730001800 BRD-2,900: (ピーク(1)-val1、ピーク(1)-val2)。 ...

   Next aggregation step to 1 hour generates:

1時間への次の集合ステップは以下を発生させます。

   BEGIN_DEVICE:
       ...
   {
      UNI-1,total: [ifInOctet,  60,3600,ifOutOctet,      60,3600];
      BRD-1,total: [ifInNUcastPkts,300,3600,ifOutNUcastPkts,300,3600];
      UNI-2,peak:  [ifInOctet,  60,3600,ifOutOctet,      60,3600];
      BRD-2,peak:  [ifInNUcastPkts,300, 900,ifOutNUcastPkts,300, 900];
      UNI-3,peak:  [ifInOctet,     900,3600,ifOutOctet, 900,3600];
      BRD-3,peak:  [ifInNUcastPkts,900,3600,ifOutNUcastPkts,900,3600]
   }

_装置を始めてください: ... UNI-1、以下を合計してください、[ifInOctet、3600 60、3600]; 合計: BRD-1、[ifInNUcastPkts、300、3600、ifOutNUcastPkts300、3600]; (ifOutOctet、UNI-2)が最大限にする60: [60、3600]; ifInOctet、60、3600、ifOutOctet、BRD-2、以下に最大限にしてください[ifInNUcastPkts、300、900、ifOutNUcastPkts300、900]; UNI-3、ピークに達してください:、[900、3600]; ifInOctet、900、3600、ifOutOctet、BRD-3、以下に最大限にしてください[ifInNUcastPkts、900、3600、ifOutNUcastPkts900、3600]。

   where
   UNI-1 is the one hour total
   BRD-1 is the one hour total
   UNI-2 is the  1 minute peak over 1 hour (peak of peak = peak(2))
   BRD-2 is the  5 minute peak over 1 hour (peak of peak = peak(2))
   UNI-3 is the 15 minute peak over 1 hour (peak = peak(1))
   BRD-3 is the 15 minute peak over 1 hour (peak = peak(1))

BRD-1がUNI-1が1時間の合計であることの総UNI-2が1時間以上の1分のピークである1時間である、(ピーク=ピーク(2))BRD-2のピークが1時間以上の5分のピークである、(ピーク=ピーク(2))UNI-3のピークが1時間以上の15分のピークである、(ピーク=ピーク(1))BRD-3は1時間以上の15分のピークです。(=ピーク(1))に最大限にしてください。

Lambert                      Informational                     [Page 25]

RFC 1857                 Operational Statistics             October 1995

操作上の[25ページ]RFC1857統計1995年10月の情報のランバート

   which gives

どれ、付与

   BEGIN_DATA:
      19920730003600,UNI-1,3600:(tot-val1,tot-val2);
      19920730003600,BRD-1,3600:(tot-val1,tot-val2);
      19920730003600,UNI-2,3600:(peak(2)-val1,peak(2)-val2);
      19920730003600,BRD-2,3600:(peak(2)-val1,peak(2)-val2);
      19920730003600,UNI-3,3600:(peak(1)-val1,peak(1)-val2);
      19920730003600,BRD-3,3600:(peak(1)-val1,peak(1)-val2);
      19920730007200,UNI-1,3600:(tot-val1,tot-val2);
      19920730007200,BRD-1,3600:(tot-val1,tot-val2);
      19920730007200,UNI-2,3600:(peak(2)-val1,peak(2)-val2);
      19920730007200,BRD-2,3600:(peak(2)-val1,peak(2)-val2);
      19920730007200,UNI-3,3600:(peak(1)-val1,peak(1)-val2);
      19920730007200,BRD-3,3600:(peak(1)-val1,peak(1)-val2);
      ...

_データを始めてください: 19920730003600 UNI-1、3600: (幼児-val1、幼児-val2)。 19920730003600 BRD-1、3600: (幼児-val1、幼児-val2)。 19920730003600 UNI-2、3600: (ピーク(2)-val1、ピーク(2)-val2)。 19920730003600 BRD-2、3600: (ピーク(2)-val1、ピーク(2)-val2)。 19920730003600 UNI-3、3600: (ピーク(1)-val1、ピーク(1)-val2)。 19920730003600 BRD-3、3600: (ピーク(1)-val1、ピーク(1)-val2)。 19920730007200 UNI-1、3600: (幼児-val1、幼児-val2)。 19920730007200 BRD-1、3600: (幼児-val1、幼児-val2)。 19920730007200 UNI-2、3600: (ピーク(2)-val1、ピーク(2)-val2)。 19920730007200 BRD-2、3600: (ピーク(2)-val1、ピーク(2)-val2)。 19920730007200 UNI-3、3600: (ピーク(1)-val1、ピーク(1)-val2)。 19920730007200 BRD-3、3600: (ピーク(1)-val1、ピーク(1)-val2)。 ...

   Finally aggregation step to 1 day generates:

最終的に1日への集合ステップは以下を発生させます。

   BEGIN_DEVICE:
      ...
   {
   UNI-1,total: [ifInOctet,      60,86400,ifOutOctet, 60,86400];
   BRD-1,total: [ifInNUcastPkts, 300,86400,ifOutNUcastPkts, 300,86400];
   UNI-2,peak:  [ifInOctet,      60,86400,ifOutOctet, 60,86400];
   BRD-2,peak:  [ifInNUcastPkts, 300,  900,ifOutNUcastPkts, 300, 900];
   UNI-3,peak:  [ifInOctet,      900,86400,ifOutOctet,  900,86400];
   BRD-3,peak:  [ifInNUcastPkts, 900,86400,ifOutNUcastPkts, 900,86400];
   UNI-4,peak:  [ifInOctet,      3600,86400,ifOutOctet, 3600,86400];
   BRD-4,peak:  [ifInNUcastPkts,3600,86400,ifOutNUcastPkts,3600,86400]
   }
      ...

_装置を始めてください: ... 合計..合計..ピークに達する..ピークに達する..ピーク..最大限にする..ピークに達する..最大限にする

   where
   UNI-1 is the 24 hour total
   BRD-1 is the 24 hour total
   UNI-2 is the  1 minute peak over 24 hour
       (peak of peak of peak = peak(3))
   UNI-3 is the 15 minute peak over 24 hour (peak of peak = peak(2))
   UNI-4 is the  1 hour peak over 24 hour (peak = peak(1))
   BRD-2 is the  5 minute peak over 24 hour
       (peak of peak of peak = peak(3))
   BRD-3 is the 15 minute peak over 24 hour (peak of peak = peak(2))
   BRD-4 is the  1 hour peak over 24 hour (peak = peak(1))

BRD-1がUNI-1が24時間の合計であることの総UNI-2が24時間以上の1分のピークである24時間である、(ピーク=ピーク(3))UNI-3のピークのピークが24時間以上の15分のピークである、(ピーク=ピーク(2))UNI-4のピークが24時間以上の1時間のピークである、(ピーク=ピーク(1))BRD-2が24時間以上の5分のピークである、(ピーク=ピーク(3))BRD-3のピークのピークが24時間以上の15分のピークである、(ピーク=ピーク(2))BRD-4のピークは24時間以上の1時間のピークです。(=ピーク(1))に最大限にしてください。

   which gives

どれ、付与

Lambert                      Informational                     [Page 26]

RFC 1857                 Operational Statistics             October 1995

操作上の[26ページ]RFC1857統計1995年10月の情報のランバート

   BEGIN_DATA:
      19920730086400,UNI-1,86400:(tot-val1,tot-val2);
      19920730086400,BRD-1,86400:(tot-val1,tot-val2);
      19920730086400,UNI-2,86400:(peak(3)-val1,peak(3)-val2);
      19920730086400,BRD-2,86400:(peak(3)-val1,peak(3)-val2);
      19920730086400,UNI-3,86400:(peak(2)-val1,peak(2)-val2);
      19920730086400,BRD-3,86400:(peak(2)-val1,peak(2)-val2);
      19920730086400,UNI-4,86400:(peak(1)-val1,peak(1)-val2);
      19920730086400,BRD-4,86400:(peak(1)-val1,peak(1)-val2);
      19920730172800,UNI-1,86400:(tot-val1,tot-val2);
      19920730172800,BRD-1,86400:(tot-val1,tot-val2);
      19920730172800,UNI-2,86400:(peak(3)-val1,peak(3)-val2);
      19920730172800,BRD-2,86400:(peak(3)-val1,peak(3)-val2);
      19920730172800,UNI-3,86400:(peak(2)-val1,peak(2)-val2);
      19920730172800,UNI-3,86400:(peak(2)-val1,peak(2)-val2);
      19920730172800,UNI-4,86400:(peak(1)-val1,peak(1)-val2);
      19920730172800,BRD-4,86400:(peak(1)-val1,peak(1)-val2);
      ...

_データを始めてください: 19920730086400 UNI-1、86400: (幼児-val1、幼児-val2)。 19920730086400 BRD-1、86400: (幼児-val1、幼児-val2)。 19920730086400 UNI-2、86400: (ピーク(3)-val1、ピーク(3)-val2)。 19920730086400 BRD-2、86400: (ピーク(3)-val1、ピーク(3)-val2)。 19920730086400 UNI-3、86400: (ピーク(2)-val1、ピーク(2)-val2)。 19920730086400 BRD-3、86400: (ピーク(2)-val1、ピーク(2)-val2)。 19920730086400 UNI-4、86400: (ピーク(1)-val1、ピーク(1)-val2)。 19920730086400 BRD-4、86400: (ピーク(1)-val1、ピーク(1)-val2)。 19920730172800 UNI-1、86400: (幼児-val1、幼児-val2)。 19920730172800 BRD-1、86400: (幼児-val1、幼児-val2)。 19920730172800 UNI-2、86400: (ピーク(3)-val1、ピーク(3)-val2)。 19920730172800 BRD-2、86400: (ピーク(3)-val1、ピーク(3)-val2)。 19920730172800 UNI-3、86400: (ピーク(2)-val1、ピーク(2)-val2)。 19920730172800 UNI-3、86400: (ピーク(2)-val1、ピーク(2)-val2)。 19920730172800 UNI-4、86400: (ピーク(1)-val1、ピーク(1)-val2)。 19920730172800 BRD-4、86400: (ピーク(1)-val1、ピーク(1)-val2)。 ...

Security Considerations

セキュリティ問題

   Security issues are discussed in Section 2.4.

セクション2.4で安全保障問題について議論します。

Author's Address

作者のアドレス

   Michael H. Lambert
   Pittsburgh Supercomputing Center
   4400 Fifth Avenue
   Pittsburgh, PA  15213
   USA

マイケル・H.Lambertピッツバーグスーパーコンピューティングセンター4400五番街PA15213ピッツバーグ(米国)

   Phone: +1 412 268-4960
   Fax:  +1 412 268-8200
   EMail: lambert@psc.edu

以下に電話をしてください。 +1 412 268-4960Fax: +1 412 268-8200 メールしてください: lambert@psc.edu

Lambert                      Informational                     [Page 27]

ランバートInformationalです。[27ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

ifconfig ネットワーク・インタフェースの参照・設定・起動・停止

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る