RFC2078 日本語訳
2078 Generic Security Service Application Program Interface, Version2. J. Linn. January 1997. (Format: TXT=185990 bytes) (Obsoletes RFC1508) (Obsoleted by RFC2743) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
RFC一覧
英語原文
Network Working Group J. Linn Request for Comments: 2078 OpenVision Technologies Category: Standards Track January 1997 Obsoletes: 1508
コメントを求めるワーキンググループJ.リンの要求をネットワークでつないでください: 2078年のOpenVision技術カテゴリ: 標準化過程1997年1月は以下を時代遅れにします。 1508
Generic Security Service Application Program Interface, Version 2
ジェネリックセキュリティー・サービス適用業務プログラム・インタフェース、バージョン2
Status of this Memo
このMemoの状態
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。
Abstract
要約
The Generic Security Service Application Program Interface (GSS-API), as defined in RFC-1508, provides security services to callers in a generic fashion, supportable with a range of underlying mechanisms and technologies and hence allowing source-level portability of applications to different environments. This specification defines GSS-API services and primitives at a level independent of underlying mechanism and programming language environment, and is to be complemented by other, related specifications:
RFC-1508で定義されるGeneric Security Service Application Program Interface(GSS-API)は訪問者へのセキュリティー・サービスをジェネリックファッションに提供します、メカニズムと技術の基礎となって、したがって、アプリケーションのソース平らな移植性を異なった環境に許容する範囲で、我慢できます。 この仕様は、発症機序とプログラミング言語環境の如何にかかわらずレベルでGSS-APIサービスと基関数を定義して、他の、そして、関連する仕様で補足となることです:
documents defining specific parameter bindings for particular language environments
特定の言語環境のための特定のパラメタ結合を定義するドキュメント
documents defining token formats, protocols, and procedures to be implemented in order to realize GSS-API services atop particular security mechanisms
特定のセキュリティー対策の上でGSS-APIサービスがわかるために実装されるトークン書式、プロトコル、および手順を定義するドキュメント
This memo revises RFC-1508, making specific, incremental changes in response to implementation experience and liaison requests. It is intended, therefore, that this memo or a successor version thereto will become the basis for subsequent progression of the GSS-API specification on the standards track.
実装経験と連絡要求に対応して特定の、そして、増加の変更を行って、このメモはRFC-1508を改訂します。 したがって、このメモかそれに加えて後継者バージョンが標準化過程に関するGSS-API仕様のその後の進行の基礎になることを意図します。
Table of Contents
目次
1: GSS-API Characteristics and Concepts.......................... 3 1.1: GSS-API Constructs.......................................... 6 1.1.1: Credentials.............................................. 6 1.1.1.1: Credential Constructs and Concepts...................... 6 1.1.1.2: Credential Management................................... 7 1.1.1.3: Default Credential Resolution........................... 8
1: GSS-APIの特性と概念… 3 1.1: GSS-API構造物… 6 1.1.1: 資格証明書… 6 1.1.1.1: 資格証明構造物と概念… 6 1.1.1.2: 資格証明管理… 7 1.1.1.3: デフォルト資格証明書解決… 8
Linn Standards Track [Page 1] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[1ページ]。
1.1.2: Tokens.................................................... 9 1.1.3: Security Contexts........................................ 10 1.1.4: Mechanism Types.......................................... 11 1.1.5: Naming................................................... 12 1.1.6: Channel Bindings......................................... 14 1.2: GSS-API Features and Issues................................ 15 1.2.1: Status Reporting......................................... 15 1.2.2: Per-Message Security Service Availability................. 17 1.2.3: Per-Message Replay Detection and Sequencing............... 18 1.2.4: Quality of Protection.................................... 20 1.2.5: Anonymity Support......................................... 21 1.2.6: Initialization............................................ 22 1.2.7: Per-Message Protection During Context Establishment....... 22 1.2.8: Implementation Robustness................................. 23 2: Interface Descriptions....................................... 23 2.1: Credential management calls................................ 25 2.1.1: GSS_Acquire_cred call.................................... 26 2.1.2: GSS_Release_cred call.................................... 28 2.1.3: GSS_Inquire_cred call.................................... 29 2.1.4: GSS_Add_cred call........................................ 31 2.1.5: GSS_Inquire_cred_by_mech call............................ 33 2.2: Context-level calls........................................ 34 2.2.1: GSS_Init_sec_context call................................ 34 2.2.2: GSS_Accept_sec_context call.............................. 40 2.2.3: GSS_Delete_sec_context call.............................. 44 2.2.4: GSS_Process_context_token call........................... 46 2.2.5: GSS_Context_time call.................................... 47 2.2.6: GSS_Inquire_context call................................. 47 2.2.7: GSS_Wrap_size_limit call................................. 49 2.2.8: GSS_Export_sec_context call.............................. 50 2.2.9: GSS_Import_sec_context call.............................. 52 2.3: Per-message calls.......................................... 53 2.3.1: GSS_GetMIC call.......................................... 54 2.3.2: GSS_VerifyMIC call....................................... 55 2.3.3: GSS_Wrap call............................................ 56 2.3.4: GSS_Unwrap call.......................................... 58 2.4: Support calls.............................................. 59 2.4.1: GSS_Display_status call.................................. 60 2.4.2: GSS_Indicate_mechs call.................................. 60 2.4.3: GSS_Compare_name call.................................... 61 2.4.4: GSS_Display_name call.................................... 62 2.4.5: GSS_Import_name call..................................... 63 2.4.6: GSS_Release_name call.................................... 64 2.4.7: GSS_Release_buffer call.................................. 65 2.4.8: GSS_Release_OID_set call................................. 65 2.4.9: GSS_Create_empty_OID_set call............................ 66 2.4.10: GSS_Add_OID_set_member call.............................. 67 2.4.11: GSS_Test_OID_set_member call............................. 67
1.1.2: トークン… 9 1.1.3: セキュリティ文脈… 10 1.1.4: メカニズムはタイプされます… 11 1.1.5: 命名します。 12 1.1.6: チャンネル結合… 14 1.2: GSS-APIの特徴と問題… 15 1.2.1: 状態報告… 15 1.2.2: 1メッセージあたりのセキュリティー・サービスの有用性… 17 1.2.3: メッセージに従って、検出と配列を再演してください… 18 1.2.4: 保護の品質… 20 1.2.5: 匿名サポート… 21 1.2.6: 初期設定… 22 1.2.7: 文脈設立の間の1メッセージあたりの保護… 22 1.2.8: 実装丈夫さ… 23 2: 記述を連結してください… 23 2.1: 資格証明管理は電話をします… 25 2.1.1: GSS_Acquire_信用呼び出し… 26 2.1.2: GSS_Release_信用呼び出し… 28 2.1.3: GSS_Inquire_信用呼び出し… 29 2.1.4: GSS_Add_信用呼び出し… 31 2.1.5: _mech呼び出しによるGSS_Inquire_信用_… 33 2.2: 文脈レベルは呼びます… 34 2.2.1: GSS_Init_秒_文脈呼び出し… 34 2.2.2: GSS_Accept_秒_文脈呼び出し… 40 2.2.3: GSS_Delete_秒_文脈呼び出し… 44 2.2.4: GSS_Process_文脈_トークン呼び出し… 46 2.2.5: GSS_Context_時間呼び出し… 47 2.2.6: GSS_Inquire_文脈呼び出し… 47 2.2.7: GSS_Wrap_サイズ_限界呼び出し… 49 2.2.8: GSS_Export_秒_文脈呼び出し… 50 2.2.9: GSS_Import_秒_文脈呼び出し… 52 2.3: メッセージは呼びます… 53 2.3.1: GSS_GetMICは呼びます… 54 2.3.2: GSS_VerifyMICは呼びます… 55 2.3.3: GSS_Wrapは呼びます… 56 2.3.4: GSS_Unwrapは呼びます… 58 2.4: サポートは呼びます… 59 2.4.1: GSS_Display_状態呼び出し… 60 2.4.2: GSS_Indicate_mechsは呼びます… 60 2.4.3: GSS_Compare_名前呼び出し… 61 2.4.4: GSS_Display_名前呼び出し… 62 2.4.5: GSS_Import_名前呼び出し… 63 2.4.6: GSS_Release_名前呼び出し… 64 2.4.7: GSS_Release_バッファ呼び出し… 65 2.4.8: GSS_Release_OID_は呼び出しを設定しました… 65 2.4.9: _の空の_OID GSS_Create_は呼び出しを設定しました… 66 2.4.10: GSS_Add_OID_は_メンバー呼び出しを設定しました… 67 2.4.11: GSS_Test_OID_は_メンバー呼び出しを設定しました… 67
Linn Standards Track [Page 2] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[2ページ]。
2.4.12: GSS_Release_OID call..................................... 68 2.4.13: GSS_OID_to_str call...................................... 68 2.4.14: GSS_Str_to_OID call...................................... 69 2.4.15: GSS_Inquire_names_for_mech call.......................... 69 2.4.16: GSS_Inquire_mechs_for_name call.......................... 70 2.4.17: GSS_Canonicalize_name call............................... 71 2.4.18: GSS_Export_name call..................................... 72 2.4.19: GSS_Duplicate_name call.................................. 73 3: Data Structure Definitions for GSS-V2 Usage................... 73 3.1: Mechanism-Independent Token Format.......................... 74 3.2: Mechanism-Independent Exported Name Object Format........... 77 4: Name Type Definitions......................................... 77 4.1: Host-Based Service Name Form................................ 77 4.2: User Name Form.............................................. 78 4.3: Machine UID Form............................................ 78 4.4: String UID Form............................................. 79 5: Mechanism-Specific Example Scenarios......................... 79 5.1: Kerberos V5, single-TGT..................................... 79 5.2: Kerberos V5, double-TGT..................................... 80 5.3: X.509 Authentication Framework............................. 81 6: Security Considerations...................................... 82 7: Related Activities........................................... 82 Appendix A: Mechanism Design Constraints......................... 83 Appendix B: Compatibility with GSS-V1............................ 83
2.4.12: GSS_Release_OIDは呼びます… 68 2.4.13: _str呼び出しへのGSS_OID_… 68 2.4.14: OIDが呼ぶ_へのGSS_Str_… 69 2.4.15: GSS_Inquire_は_mechのための_を呼び出しと命名します… 69 2.4.16: _名前のためのmechs_が呼ぶGSS_Inquire_… 70 2.4.17: GSS_Canonicalize_名前呼び出し… 71 2.4.18: GSS_Export_名前呼び出し… 72 2.4.19: GSS_Duplicate_名前呼び出し… 73 3: GSS-V2用法のためのデータ構造定義… 73 3.1: メカニズムから独立しているトークン形式… 74 3.2: メカニズム無党派は名前オブジェクト形式をエクスポートしました… 77 4: 型定義を命名してください… 77 4.1: ホストベースのサービス名フォーム… 77 4.2: ユーザ名前フォーム… 78 4.3: マシンUIDは形成します… 78 4.4: ストリングUIDは形成します… 79 5: メカニズム特有の例のシナリオ… 79 5.1: ケルベロスV5、独身のTGT… 79 5.2: ケルベロスV5、二重TGT… 80 5.3: X.509認証フレームワーク… 81 6: セキュリティ問題… 82 7: 活動を関係づけます… 82 付録A: メカニズム・デザイン規制… 83 付録B: GSS-V1との互換性… 83
1: GSS-API Characteristics and Concepts
1: GSS-APIの特性と概念
GSS-API operates in the following paradigm. A typical GSS-API caller is itself a communications protocol, calling on GSS-API in order to protect its communications with authentication, integrity, and/or confidentiality security services. A GSS-API caller accepts tokens provided to it by its local GSS-API implementation and transfers the tokens to a peer on a remote system; that peer passes the received tokens to its local GSS-API implementation for processing. The security services available through GSS-API in this fashion are implementable (and have been implemented) over a range of underlying mechanisms based on secret-key and public-key cryptographic technologies.
GSS-APIは以下のパラダイムで作動します。 典型的なGSS-API訪問者はそれ自体でコミュニケーションプロトコルです、認証、保全、そして/または、秘密性セキュリティー・サービスとのコミュニケーションを保護するためにGSS-APIを訪問して。 GSS-API訪問者は、地方のGSS-API実行でそれに提供されたトークンを受け入れて、リモートシステムの上でトークンを同輩に移します。 その同輩は処理のための地方のGSS-API実行に容認されたトークンを通過します。 GSS-APIを通して利用可能なセキュリティー・サービスは秘密鍵に基づくさまざまな発症機序と公開鍵暗号化技術の上でこんなやり方で実装可能です(実装されてください、そうした)。
The GSS-API separates the operations of initializing a security context between peers, achieving peer entity authentication (This security service definition, and other definitions used in this document, corresponds to that provided in International Standard ISO 7498-2-1988(E), Security Architecture.) (GSS_Init_sec_context() and GSS_Accept_sec_context() calls), from the operations of providing per-message data origin authentication and data integrity protection (GSS_GetMIC() and GSS_VerifyMIC() calls) for messages subsequently transferred in conjunction with that context. When establishing a
GSS-APIはセキュリティ文脈を初期化する操作を同輩の間に切り離します、同輩実体認証を達成して(このセキュリティー・サービス定義、および本書では使用される他の定義は国際規格ISO7498-2-1988(E)(Security Architecture)に提供されたそれに対応しています) (GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()呼び出し), 提供の操作から、メッセージのための1メッセージあたりのデータ発生源認証とデータ保全保護(GSS_GetMIC()とGSS_VerifyMIC()呼び出し)は次に、その文脈に関連して移されました。 aを設立します。
Linn Standards Track [Page 3] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[3ページ]。
security context, the GSS-API enables a context initiator to optionally permit its credentials to be delegated, meaning that the context acceptor may initiate further security contexts on behalf of the initiating caller. Per-message GSS_Wrap() and GSS_Unwrap() calls provide the data origin authentication and data integrity services which GSS_GetMIC() and GSS_VerifyMIC() offer, and also support selection of confidentiality services as a caller option. Additional calls provide supportive functions to the GSS-API's users.
セキュリティ文脈、GSS-APIは、文脈創始者が、資格証明書が代表として派遣されることを任意に許可するのを可能にします、文脈アクセプタが開始している訪問者を代表してさらなるセキュリティ文脈を開始するかもしれないことを意味して。 1メッセージあたりのGSS_Wrap()とGSS_Unwrap()呼び出しは、訪問者オプションとしてGSS_GetMIC()とGSS_VerifyMIC()が提供するデータ発生源認証とデータ保全サービスを提供して、また、秘密性サービスのサポート品揃えを提供します。 追加呼び出しはGSS-APIのユーザに支持している機能を提供します。
The following paragraphs provide an example illustrating the dataflows involved in use of the GSS-API by a client and server in a mechanism-independent fashion, establishing a security context and transferring a protected message. The example assumes that credential acquisition has already been completed. The example assumes that the underlying authentication technology is capable of authenticating a client to a server using elements carried within a single token, and of authenticating the server to the client (mutual authentication) with a single returned token; this assumption holds for presently- documented CAT mechanisms but is not necessarily true for other cryptographic technologies and associated protocols.
以下のパラグラフはメカニズムから独立しているファッションでクライアントとサーバでGSS-APIの使用にかかわるデータフローを例証する例を提供します、セキュリティ文脈を確立して、保護されたメッセージを移して。 例は、資格証明買収が既に完了したと仮定します。 例は、ただ一つのトークンの中で運ばれた要素を使用することでサーバにクライアントを認証して、基本的な認証技術がただ一つの返されたトークンをもっているクライアント(互いの認証)にサーバを認証できると仮定します。 この仮定は、現在記録されたCATメカニズムに当てはまりますが、他の暗号化技術と関連プロトコルには、必ず本当であるというわけではありません。
The client calls GSS_Init_sec_context() to establish a security context to the server identified by targ_name, and elects to set the mutual_req_flag so that mutual authentication is performed in the course of context establishment. GSS_Init_sec_context() returns an output_token to be passed to the server, and indicates GSS_S_CONTINUE_NEEDED status pending completion of the mutual authentication sequence. Had mutual_req_flag not been set, the initial call to GSS_Init_sec_context() would have returned GSS_S_COMPLETE status. The client sends the output_token to the server.
クライアントが、GSS_Init_をtarg_名前によって特定されたサーバにセキュリティ文脈を確立する秒_文脈()と呼んで、互いの_req_旗を設定するのを選ぶので、互いの認証は文脈設立の間に実行されます。 GSS_Init_秒_文脈()は、サーバに通過されるために出力_トークンを返して、GSS_S_CONTINUE_が互いの認証系列の完成まで状態を必要としたのを示します。 互いの_req_旗が設定されなかったなら、GSS_Init_秒_文脈()への初期の呼び出しは_S_COMPLETE状態をGSSに返したでしょうに。 クライアントは出力_トークンをサーバに送ります。
The server passes the received token as the input_token parameter to GSS_Accept_sec_context(). GSS_Accept_sec_context indicates GSS_S_COMPLETE status, provides the client's authenticated identity in the src_name result, and provides an output_token to be passed to the client. The server sends the output_token to the client.
サーバは入力_トークンパラメタとしてGSS_Accept_秒_文脈()に容認されたトークンを通過します。 GSS_Accept_秒_文脈は、GSS_S_COMPLETE状態を示して、結果というsrc_名前にクライアントの認証されたアイデンティティを提供して、クライアントに渡されるために出力_トークンを提供します。 サーバは出力_トークンをクライアントに送ります。
The client passes the received token as the input_token parameter to a successor call to GSS_Init_sec_context(), which processes data included in the token in order to achieve mutual authentication from the client's viewpoint. This call to GSS_Init_sec_context() returns GSS_S_COMPLETE status, indicating successful mutual authentication and the completion of context establishment for this example.
クライアントは入力_トークンパラメタとしてGSS_Init_秒_文脈()への後継者呼び出しに容認されたトークンを通過します。(トークンにデータを含んでいて、文脈は、クライアントの観点から互いの認証を達成するために処理されます)。 この例のための文脈設立のうまくいっている互いの認証と完成を示して、GSS_Init_秒_文脈()へのこの呼び出しは_S_COMPLETE状態をGSSに返します。
The client generates a data message and passes it to GSS_Wrap(). GSS_Wrap() performs data origin authentication, data integrity, and (optionally) confidentiality processing on the message and
クライアントは、データメッセージを生成して、GSS_Wrap()にそれを通過します。 そしてGSS_Wrap()がデータ発生源認証、データ保全、および(任意に)秘密性処理をメッセージに実行する。
Linn Standards Track [Page 4] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[4ページ]。
encapsulates the result into output_message, indicating GSS_S_COMPLETE status. The client sends the output_message to the server.
GSS_S_COMPLETE状態を示して、出力_メッセージに結果をカプセル化します。 クライアントは出力_メッセージをサーバに送ります。
The server passes the received message to GSS_Unwrap(). GSS_Unwrap() inverts the encapsulation performed by GSS_Wrap(), deciphers the message if the optional confidentiality feature was applied, and validates the data origin authentication and data integrity checking quantities. GSS_Unwrap() indicates successful validation by returning GSS_S_COMPLETE status along with the resultant output_message.
サーバはGSS_Unwrap()に受信されたメッセージを通過します。 GSS_Unwrap()はGSS_Wrap()によって実行されたカプセル化を逆にして、任意の秘密性の特徴が適用されたならメッセージを解読して、量をチェックするデータ発生源認証とデータ保全を有効にします。 GSS_Unwrap()は結果の出力_メッセージに伴う戻っているGSS_S_COMPLETE状態のそばでうまくいっている合法化を示します。
For purposes of this example, we assume that the server knows by out-of-band means that this context will have no further use after one protected message is transferred from client to server. Given this premise, the server now calls GSS_Delete_sec_context() to flush context-level information. Optionally, the server-side application may provide a token buffer to GSS_Delete_sec_context(), to receive a context_token to be transferred to the client in order to request that client-side context-level information be deleted.
この例の目的のために、私たちは、クライアントからサーバまで1つの保護されたメッセージを移した後にサーバがバンドの外によるいいえがこの文脈でさらに使用する手段を知っていると思います。この前提を考えて、サーバは、現在、GSS_Delete_を豊富な文脈レベル情報に秒_文脈()と呼びます。 任意に、サーバサイドアプリケーションは、クライアントサイド文脈レベル情報が削除されるよう要求するためにクライアントに移すために文脈_トークンを受けるためにGSS_Delete_秒_文脈()にトークンバッファを提供するかもしれません。
If a context_token is transferred, the client passes the context_token to GSS_Process_context_token(), which returns GSS_S_COMPLETE status after deleting context-level information at the client system.
文脈_トークンがわたるなら、クライアントはGSS_Process_文脈_トークン()に文脈_トークンを通過します。(クライアントシステムで文脈レベル情報を削除した後に、それは、_S_COMPLETE状態をGSSに返します)。
The GSS-API design assumes and addresses several basic goals, including:
GSS-APIデザインは、いくつかの基本的な目標、包含を仮定して、扱います:
Mechanism independence: The GSS-API defines an interface to cryptographically implemented strong authentication and other security services at a generic level which is independent of particular underlying mechanisms. For example, GSS-API-provided services can be implemented by secret-key technologies (e.g., Kerberos) or public-key approaches (e.g., X.509).
メカニズム独立: GSS-APIは特定の発症機序から独立しているジェネリックレベルで暗号で実装している強い認証と他のセキュリティー・サービスとインタフェースを定義します。例えば、秘密鍵技術(例えば、ケルベロス)か公開鍵アプローチ(例えば、X.509)でGSS APIが提供されたサービスは実装することができます。
Protocol environment independence: The GSS-API is independent of the communications protocol suites with which it is employed, permitting use in a broad range of protocol environments. In appropriate environments, an intermediate implementation "veneer" which is oriented to a particular communication protocol (e.g., Remote Procedure Call (RPC)) may be interposed between applications which call that protocol and the GSS-API, thereby invoking GSS-API facilities in conjunction with that protocol's communications invocations.
環境独立について議定書の中で述べてください: GSS-APIはそれが採用しているコミュニケーションプロトコル群から独立しています、広範囲なプロトコル環境における使用を可能にして。 適切な環境で、特定の通信プロトコル(例えば、Remote Procedure Call(RPC))に適応する中間的実装「ベニヤ」はそのプロトコルを呼ぶアプリケーションとGSS-APIの間で挿入されるかもしれません、その結果、そのプロトコルのコミュニケーション実施に関連してGSS-API施設を呼び出します。
Protocol association independence: The GSS-API's security context construct is independent of communications protocol association
協会独立について議定書の中で述べてください: GSS-APIのセキュリティ文脈構造物は通信規約協会から独立しています。
Linn Standards Track [Page 5] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[5ページ]。
constructs. This characteristic allows a single GSS-API implementation to be utilized by a variety of invoking protocol modules on behalf of those modules' calling applications. GSS-API services can also be invoked directly by applications, wholly independent of protocol associations.
構造物。 それらのモジュールが、アプリケーションと呼ぶことを代表してこの特性はさまざまな呼び出しで利用されるべきただ一つのGSS-API実行プロトコルモジュールを許容します。 また、完全にプロトコル協会の如何にかかわらず直接アプリケーションでGSS-APIサービスを呼び出すことができます。
Suitability to a range of implementation placements: GSS-API clients are not constrained to reside within any Trusted Computing Base (TCB) perimeter defined on a system where the GSS-API is implemented; security services are specified in a manner suitable to both intra-TCB and extra-TCB callers.
さまざまな実装プレースメントへの適合: GSS-APIクライアントがシステムで上GSS-APIが実装される定義されたどんなTrusted Computing基地(TCB)の周辺の中にも住んでいるのが抑制されません。 セキュリティー・サービスはイントラ-TCBと付加的なTCB訪問者の両方に適当な方法で指定されます。
1.1: GSS-API Constructs
1.1: GSS-API構造物
This section describes the basic elements comprising the GSS-API.
このセクションはGSS-APIを包括する基本要素について説明します。
1.1.1: Credentials
1.1.1: 資格証明書
1.1.1.1: Credential Constructs and Concepts
1.1.1.1: 資格証明構造物と概念
Credentials provide the prerequisites which permit GSS-API peers to establish security contexts with each other. A caller may designate that the credential elements which are to be applied for context initiation or acceptance be selected by default. Alternately, those GSS-API callers which need to make explicit selection of particular credentials structures may make references to those credentials through GSS-API-provided credential handles ("cred_handles"). In all cases, callers' credential references are indirect, mediated by GSS- API implementations and not requiring callers to access the selected credential elements.
資格証明書はGSS-API同輩が互いと共にセキュリティ文脈を確立することを許可する前提条件を提供します。 訪問者は指定するかもしれません。文脈開始か承認のために適用されることである資格証明書要素はデフォルトで選択されます。 交互に、特定の資格証明書構造の明白な品揃えをする必要があるそれらのGSS-API訪問者はGSS APIが提供された資格証明ハンドル(「_が扱う信用」)を通して資格証明書をそれらを参照するかもしれません。 すべての場合では、訪問者の資格証明参照は間接的です、GSS API実行で調停されて、訪問者が選択された資格証明要素にアクセスするのが必要でないことで。
A single credential structure may be used to initiate outbound contexts and to accept inbound contexts. Callers needing to operate in only one of these modes may designate this fact when credentials are acquired for use, allowing underlying mechanisms to optimize their processing and storage requirements. The credential elements defined by a particular mechanism may contain multiple cryptographic keys, e.g., to enable authentication and message encryption to be performed with different algorithms.
ただ一つの資格証明構造は、外国行きの文脈を開始して、本国行きの文脈を受け入れるのに使用されるかもしれません。 使用のために資格証明書を取得するとき、これらのモードが1だけで作動する必要がある訪問者はこの事実を指定するかもしれません、発症機序が彼らの処理とストレージ要件を最適化するのを許容して。 特定のメカニズムによって定義された資格証明要素は、例えば認証とメッセージ暗号化が異なったアルゴリズムで実行されるのを可能にするために複数の暗号化キーを含むかもしれません。
A GSS-API credential structure may contain multiple credential elements, each containing mechanism-specific information for a particular underlying mechanism (mech_type), but the set of elements within a given credential structure represent a common entity. A credential structure's contents will vary depending on the set of mech_types supported by a particular GSS-API implementation. Each credential element identifies the data needed by its mechanism in order to establish contexts on behalf of a particular principal, and
GSS-APIの資格証明構造は複数の資格証明要素を含むかもしれなくて、それぞれ特定の発症機序のためのメカニズム特殊情報を含んでいて、しかし、(mech_タイプ)、与えられた資格証明構造の中の要素のセットは一般的な実体を表します。 特定のGSS-API実行でサポートされたmech_タイプのセットによって、資格証明構造のコンテンツは異なるでしょう。 そしてそれぞれの資格証明要素が特定の元本を代表して文脈を確立するためにメカニズムによって必要とされたデータを特定する。
Linn Standards Track [Page 6] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[6ページ]。
may contain separate credential references for use in context initiation and context acceptance. Multiple credential elements within a given credential having overlapping combinations of mechanism, usage mode, and validity period are not permitted.
文脈開始と文脈承認における使用の別々の資格証明参照を含むかもしれません。 メカニズムの組み合わせを重ね合わせる、用法モード、および有効期間を持っている与えられた資格証明書の中の複数の資格証明要素は受入れられません。
Commonly, a single mech_type will be used for all security contexts established by a particular initiator to a particular target. A major motivation for supporting credential sets representing multiple mech_types is to allow initiators on systems which are equipped to handle multiple types to initiate contexts to targets on other systems which can accommodate only a subset of the set supported at the initiator's system.
一般的に、単独のmech_タイプは特定の創始者によって特定の目標に確立されたすべてのセキュリティ文脈に使用されるでしょう。 複数のmech_タイプの代理をする資格証明セットを支えることに関する主要な動機は備えているシステムの上の創始者が創始者のシステムで支えられたセットの部分集合しか対応できない他のシステムで目標に文脈を開始するために複数のタイプを扱うのを許容することです。
1.1.1.2: Credential Management
1.1.1.2: 資格証明管理
It is the responsibility of underlying system-specific mechanisms and OS functions below the GSS-API to ensure that the ability to acquire and use credentials associated with a given identity is constrained to appropriate processes within a system. This responsibility should be taken seriously by implementors, as the ability for an entity to utilize a principal's credentials is equivalent to the entity's ability to successfully assert that principal's identity.
与えられたアイデンティティに関連している資格証明書を取得して、使用する能力がシステムの中でプロセスを当てるのが抑制されるのを保証するのは、GSS-APIの下の基本的なシステム特有のメカニズムとOS機能の責任です。 この責任は作成者によって真剣に受け止められるべきです、実体が主体の資格証明書を利用する能力が首尾よくその主体のアイデンティティについて断言する実体の能力に同等であるので。
Once a set of GSS-API credentials is established, the transferability of that credentials set to other processes or analogous constructs within a system is a local matter, not defined by the GSS-API. An example local policy would be one in which any credentials received as a result of login to a given user account, or of delegation of rights to that account, are accessible by, or transferable to, processes running under that account.
1セットのGSS-API資格証明書がいったん確立されると、システムの中の他のプロセスか類似の構造物へのその資格証明書セットの転々流通性はGSS-APIによって定義されるのではなく、地域にかかわる事柄です。 例のローカルの方針は与えられたユーザアカウントへのログイン、またはそのアカウントへの権利の委譲の結果として受け取られたどんな資格証明書もアクセスしやすいか、または移転可能です、それで実行されるプロセスが説明されるということであるものでしょう。
The credential establishment process (particularly when performed on behalf of users rather than server processes) is likely to require access to passwords or other quantities which should be protected locally and exposed for the shortest time possible. As a result, it will often be appropriate for preliminary credential establishment to be performed through local means at user login time, with the result(s) cached for subsequent reference. These preliminary credentials would be set aside (in a system-specific fashion) for subsequent use, either:
資格証明..設立..プロセス..特に..実行..ユーザ..むしろ..サーバ..プロセス..ありそう..必要..アクセス..パスワード..量..保護..局所的..暴露する..短い..時間..可能 その結果、予備の資格証明設立がユーザログイン時間にローカルの手段で実行されるのは、しばしば適切でしょう、結果がその後の参照のためにキャッシュされている状態で。 これらの予備の資格証明書はその後の使用のためにかたわらに置かれるでしょう(システム特有のファッションで):
to be accessed by an invocation of the GSS-API GSS_Acquire_cred() call, returning an explicit handle to reference that credential
_GSS-API GSSの実施によってアクセスされるために、そんなに資格証明の参照に明白なハンドルを返して、Acquire_信用()は呼びます。
to comprise default credential elements to be installed, and to be used when default credential behavior is requested on behalf of a process
デフォルト資格証明書の振舞いであるときに、デフォルトを包括するために、インストールされた、使用されるべき資格証明要素はプロセスを代表して要求されます。
Linn Standards Track [Page 7] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[7ページ]。
1.1.1.3: Default Credential Resolution
1.1.1.3: デフォルト資格証明書解決
The gss_init_sec_context and gss_accept_sec_context routines allow the value GSS_C_NO_CREDENTIAL to be specified as their credential handle parameter. This special credential-handle indicates a desire by the application to act as a default principal. While individual GSS-API implementations are free to determine such default behavior as appropriate to the mechanism, the following default behavior by these routines is recommended for portability:
__文脈とgss_が受け入れるgss_イニット_秒のときに、秒_文脈ルーチンは、_値GSS_Cのいいえ_CREDENTIALが彼らの資格証明ハンドルパラメタとして指定されるのを許容します。 この特別な資格証明ハンドルは、デフォルト元本として務めるためにアプリケーションで願望を示します。 個々のGSS-API実行が無料で適宜そのようなデフォルトの振舞いをメカニズムに決定できる間、これらのルーチンによる以下のデフォルトの振舞いは移植性のために推薦されます:
GSS_Init_sec_context:
GSS_イニット_秒_文脈:
(i) If there is only a single principal capable of initiating security contexts that the application is authorized to act on behalf of, then that principal shall be used, otherwise
そこである場合にだけ、(i)はアプリケーションが主体が使用されるものとすることについてその時、そうでないことを代表して行動するのが認可されるセキュリティ文脈を開始できるただ一つの元本です。
(ii) If the platform maintains a concept of a default network- identity, and if the application is authorized to act on behalf of that identity for the purpose of initiating security contexts, then the principal corresponding to that identity shall be used, otherwise
(ii) プラットホームがデフォルトの概念を維持するなら、アイデンティティをネットワークでつないでください。そうすれば、アプリケーションがセキュリティ文脈を開始する目的のためのそのアイデンティティを代表して行動するのが認可されるなら、そのアイデンティティに対応する主体は使用されるものとします、そうではありません。
(iii) If the platform maintains a concept of a default local identity, and provides a means to map local identities into network-identities, and if the application is authorized to act on behalf of the network-identity image of the default local identity for the purpose of initiating security contexts, then the principal corresponding to that identity shall be used, otherwise
(iii) プラットホームがデフォルトの地方のアイデンティティの概念を維持して、地方のアイデンティティを写像する手段をネットワークアイデンティティに前提として、セキュリティ文脈を開始する目的のためのデフォルトの地方のアイデンティティについてアプリケーションがネットワークアイデンティティイメージを代表して行動するのが認可されるなら、そのアイデンティティに対応する主体は使用されるものとします、そうではありません。
(iv) A user-configurable default identity should be used.
(iv) ユーザ構成可能なデフォルトのアイデンティティは使用されるべきです。
GSS_Accept_sec_context:
GSS_は_秒_文脈を受け入れます:
(i) If there is only a single authorized principal identity capable of accepting security contexts, then that principal shall be used, otherwise
(i) セキュリティ文脈を受け入れることができるただ一つの認可された主要なアイデンティティしかなければ、その主体は使用されるものとします、そうではありません。
(ii) If the mechanism can determine the identity of the target principal by examining the context-establishment token, and if the accepting application is authorized to act as that principal for the purpose of accepting security contexts, then that principal identity shall be used, otherwise
(ii) メカニズムが文脈設立トークンを調べることによって目標主体のアイデンティティを決定できて、受諾アプリケーションがセキュリティ文脈を受け入れる目的のためにそんなに主要であるとして機能するのが認可されるなら、その主要なアイデンティティは使用されるものとします、そうではありません。
(iii) If the mechanism supports context acceptance by any principal, and mutual authentication was not requested, any principal that the application is authorized to accept security contexts under may be used, otherwise
(iii) メカニズムが、どんな主体でも文脈が承認であるとサポートして、互いの認証が要求されなかったなら、アプリケーションがセキュリティ文脈を受け入れるのが認可されるどんな主体も使用されるかもしれません、そうではありません。
Linn Standards Track [Page 8] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[8ページ]。
(iv) A user-configurable default identity shall be used.
(iv) ユーザ構成可能なデフォルトのアイデンティティは使用されるものとします。
The purpose of the above rules is to allow security contexts to be established by both initiator and acceptor using the default behavior wherever possible. Applications requesting default behavior are likely to be more portable across mechanisms and platforms than ones that use GSS_Acquire_cred to request a specific identity.
上の規則の目的はセキュリティ文脈が創始者とアクセプタの両方によって確立されるのをどこでも、可能であるところでデフォルトの振舞いを使用することで許容することです。 デフォルトの振舞いを要求するアプリケーションはメカニズムとプラットホームの向こう側に、特定のアイデンティティを要求するのにGSS_Acquire_信用を使用するものより携帯用である傾向があります。
1.1.2: Tokens
1.1.2: トークン
Tokens are data elements transferred between GSS-API callers, and are divided into two classes. Context-level tokens are exchanged in order to establish and manage a security context between peers. Per-message tokens relate to an established context and are exchanged to provide protective security services (i.e., data origin authentication, integrity, and optional confidentiality) for corresponding data messages.
トークンは、GSS-API訪問者の間に移されたデータ要素であり、2つのクラスに分割されます。 同輩の間のセキュリティ文脈を確立して、管理するために文脈レベルトークンを交換します。 1メッセージあたりのトークンに対応するデータメッセージと確立した関係に関連して、保護的なセキュリティー・サービスを提供するために交換します(すなわち、データ発生源認証、保全、および任意の秘密性)。
The first context-level token obtained from GSS_Init_sec_context() is required to indicate at its very beginning a globally-interpretable mechanism identifier, i.e., an Object Identifier (OID) of the security mechanism. The remaining part of this token as well as the whole content of all other tokens are specific to the particular underlying mechanism used to support the GSS-API. Section 3 of this document provides, for designers of GSS-API support mechanisms, the description of the header of the first context-level token which is then followed by mechanism-specific information.
GSS_Init_秒_文脈()から得られた最初の文脈レベルトークンが、まさしくその始めにグローバルに解明できるメカニズム識別子すなわち、セキュリティー対策のObject Identifier(OID)を示すのに必要です。 他のすべてのトークンの全体の内容と同様にこのトークンの残存部分はGSS-APIをサポートするのに使用される特定の発症機序に特定です。 このドキュメントのセクション3は提供されます、GSS-APIサポートメカニズムのデザイナーのために、次にメカニズム特殊情報があとに続く最初の文脈レベルトークンのヘッダーの記述。
Tokens' contents are opaque from the viewpoint of GSS-API callers. They are generated within the GSS-API implementation at an end system, provided to a GSS-API caller to be transferred to the peer GSS-API caller at a remote end system, and processed by the GSS-API implementation at that remote end system. Tokens may be output by GSS-API calls (and should be transferred to GSS-API peers) whether or not the calls' status indicators indicate successful completion. Token transfer may take place in an in-band manner, integrated into the same protocol stream used by the GSS-API callers for other data transfers, or in an out-of-band manner across a logically separate channel.
Tokens' contents are opaque from the viewpoint of GSS-API callers. They are generated within the GSS-API implementation at an end system, provided to a GSS-API caller to be transferred to the peer GSS-API caller at a remote end system, and processed by the GSS-API implementation at that remote end system. Tokens may be output by GSS-API calls (and should be transferred to GSS-API peers) whether or not the calls' status indicators indicate successful completion. Token transfer may take place in an in-band manner, integrated into the same protocol stream used by the GSS-API callers for other data transfers, or in an out-of-band manner across a logically separate channel.
Different GSS-API tokens are used for different purposes (e.g., context initiation, context acceptance, protected message data on an established context), and it is the responsibility of a GSS-API caller receiving tokens to distinguish their types, associate them with corresponding security contexts, and pass them to appropriate GSS-API processing routines. Depending on the caller protocol environment, this distinction may be accomplished in several ways.
Different GSS-API tokens are used for different purposes (e.g., context initiation, context acceptance, protected message data on an established context), and it is the responsibility of a GSS-API caller receiving tokens to distinguish their types, associate them with corresponding security contexts, and pass them to appropriate GSS-API processing routines. Depending on the caller protocol environment, this distinction may be accomplished in several ways.
Linn Standards Track [Page 9] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 9] RFC 2078 GSS-API January 1997
The following examples illustrate means through which tokens' types may be distinguished:
The following examples illustrate means through which tokens' types may be distinguished:
- implicit tagging based on state information (e.g., all tokens on a new association are considered to be context establishment tokens until context establishment is completed, at which point all tokens are considered to be wrapped data objects for that context),
- implicit tagging based on state information (e.g., all tokens on a new association are considered to be context establishment tokens until context establishment is completed, at which point all tokens are considered to be wrapped data objects for that context),
- explicit tagging at the caller protocol level,
- explicit tagging at the caller protocol level,
- a hybrid of these approaches.
- a hybrid of these approaches.
Commonly, the encapsulated data within a token includes internal mechanism-specific tagging information, enabling mechanism-level processing modules to distinguish tokens used within the mechanism for different purposes. Such internal mechanism-level tagging is recommended to mechanism designers, and enables mechanisms to determine whether a caller has passed a particular token for processing by an inappropriate GSS-API routine.
Commonly, the encapsulated data within a token includes internal mechanism-specific tagging information, enabling mechanism-level processing modules to distinguish tokens used within the mechanism for different purposes. Such internal mechanism-level tagging is recommended to mechanism designers, and enables mechanisms to determine whether a caller has passed a particular token for processing by an inappropriate GSS-API routine.
Development of GSS-API support primitives based on a particular underlying cryptographic technique and protocol (i.e., conformant to a specific GSS-API mechanism definition) does not necessarily imply that GSS-API callers using that GSS-API mechanism will be able to interoperate with peers invoking the same technique and protocol outside the GSS-API paradigm, or with peers implementing a different GSS-API mechanism based on the same underlying technology. The format of GSS-API tokens defined in conjunction with a particular mechanism, and the techniques used to integrate those tokens into callers' protocols, may not be interoperable with the tokens used by non-GSS-API callers of the same underlying technique.
Development of GSS-API support primitives based on a particular underlying cryptographic technique and protocol (i.e., conformant to a specific GSS-API mechanism definition) does not necessarily imply that GSS-API callers using that GSS-API mechanism will be able to interoperate with peers invoking the same technique and protocol outside the GSS-API paradigm, or with peers implementing a different GSS-API mechanism based on the same underlying technology. The format of GSS-API tokens defined in conjunction with a particular mechanism, and the techniques used to integrate those tokens into callers' protocols, may not be interoperable with the tokens used by non-GSS-API callers of the same underlying technique.
1.1.3: Security Contexts
1.1.3: Security Contexts
Security contexts are established between peers, using credentials established locally in conjunction with each peer or received by peers via delegation. Multiple contexts may exist simultaneously between a pair of peers, using the same or different sets of credentials. Coexistence of multiple contexts using different credentials allows graceful rollover when credentials expire. Distinction among multiple contexts based on the same credentials serves applications by distinguishing different message streams in a security sense.
Security contexts are established between peers, using credentials established locally in conjunction with each peer or received by peers via delegation. Multiple contexts may exist simultaneously between a pair of peers, using the same or different sets of credentials. Coexistence of multiple contexts using different credentials allows graceful rollover when credentials expire. Distinction among multiple contexts based on the same credentials serves applications by distinguishing different message streams in a security sense.
The GSS-API is independent of underlying protocols and addressing structure, and depends on its callers to transport GSS-API-provided data elements. As a result of these factors, it is a caller
The GSS-API is independent of underlying protocols and addressing structure, and depends on its callers to transport GSS-API-provided data elements. As a result of these factors, it is a caller
Linn Standards Track [Page 10] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 10] RFC 2078 GSS-API January 1997
responsibility to parse communicated messages, separating GSS-API- related data elements from caller-provided data. The GSS-API is independent of connection vs. connectionless orientation of the underlying communications service.
responsibility to parse communicated messages, separating GSS-API- related data elements from caller-provided data. The GSS-API is independent of connection vs. connectionless orientation of the underlying communications service.
No correlation between security context and communications protocol association is dictated. (The optional channel binding facility, discussed in Section 1.1.6 of this document, represents an intentional exception to this rule, supporting additional protection features within GSS-API supporting mechanisms.) This separation allows the GSS-API to be used in a wide range of communications environments, and also simplifies the calling sequences of the individual calls. In many cases (depending on underlying security protocol, associated mechanism, and availability of cached information), the state information required for context setup can be sent concurrently with initial signed user data, without interposing additional message exchanges.
No correlation between security context and communications protocol association is dictated. (The optional channel binding facility, discussed in Section 1.1.6 of this document, represents an intentional exception to this rule, supporting additional protection features within GSS-API supporting mechanisms.) This separation allows the GSS-API to be used in a wide range of communications environments, and also simplifies the calling sequences of the individual calls. In many cases (depending on underlying security protocol, associated mechanism, and availability of cached information), the state information required for context setup can be sent concurrently with initial signed user data, without interposing additional message exchanges.
1.1.4: Mechanism Types
1.1.4: Mechanism Types
In order to successfully establish a security context with a target peer, it is necessary to identify an appropriate underlying mechanism type (mech_type) which both initiator and target peers support. The definition of a mechanism embodies not only the use of a particular cryptographic technology (or a hybrid or choice among alternative cryptographic technologies), but also definition of the syntax and semantics of data element exchanges which that mechanism will employ in order to support security services.
In order to successfully establish a security context with a target peer, it is necessary to identify an appropriate underlying mechanism type (mech_type) which both initiator and target peers support. The definition of a mechanism embodies not only the use of a particular cryptographic technology (or a hybrid or choice among alternative cryptographic technologies), but also definition of the syntax and semantics of data element exchanges which that mechanism will employ in order to support security services.
It is recommended that callers initiating contexts specify the "default" mech_type value, allowing system-specific functions within or invoked by the GSS-API implementation to select the appropriate mech_type, but callers may direct that a particular mech_type be employed when necessary.
It is recommended that callers initiating contexts specify the "default" mech_type value, allowing system-specific functions within or invoked by the GSS-API implementation to select the appropriate mech_type, but callers may direct that a particular mech_type be employed when necessary.
The means for identifying a shared mech_type to establish a security context with a peer will vary in different environments and circumstances; examples include (but are not limited to):
The means for identifying a shared mech_type to establish a security context with a peer will vary in different environments and circumstances; examples include (but are not limited to):
use of a fixed mech_type, defined by configuration, within an environment
use of a fixed mech_type, defined by configuration, within an environment
syntactic convention on a target-specific basis, through examination of a target's name
syntactic convention on a target-specific basis, through examination of a target's name
lookup of a target's name in a naming service or other database in order to identify mech_types supported by that target
lookup of a target's name in a naming service or other database in order to identify mech_types supported by that target
Linn Standards Track [Page 11] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 11] RFC 2078 GSS-API January 1997
explicit negotiation between GSS-API callers in advance of security context setup
explicit negotiation between GSS-API callers in advance of security context setup
When transferred between GSS-API peers, mech_type specifiers (per Section 3, represented as Object Identifiers (OIDs)) serve to qualify the interpretation of associated tokens. (The structure and encoding of Object Identifiers is defined in ISO/IEC 8824, "Specification of Abstract Syntax Notation One (ASN.1)" and in ISO/IEC 8825, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)".) Use of hierarchically structured OIDs serves to preclude ambiguous interpretation of mech_type specifiers. The OID representing the DASS MechType, for example, is 1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism, once advanced to the level of Proposed Standard, will be 1.2.840.113554.1.2.2.
When transferred between GSS-API peers, mech_type specifiers (per Section 3, represented as Object Identifiers (OIDs)) serve to qualify the interpretation of associated tokens. (The structure and encoding of Object Identifiers is defined in ISO/IEC 8824, "Specification of Abstract Syntax Notation One (ASN.1)" and in ISO/IEC 8825, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)".) Use of hierarchically structured OIDs serves to preclude ambiguous interpretation of mech_type specifiers. The OID representing the DASS MechType, for example, is 1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism, once advanced to the level of Proposed Standard, will be 1.2.840.113554.1.2.2.
1.1.5: Naming
1.1.5: Naming
The GSS-API avoids prescribing naming structures, treating the names which are transferred across the interface in order to initiate and accept security contexts as opaque objects. This approach supports the GSS-API's goal of implementability atop a range of underlying security mechanisms, recognizing the fact that different mechanisms process and authenticate names which are presented in different forms. Generalized services offering translation functions among arbitrary sets of naming environments are outside the scope of the GSS-API; availability and use of local conversion functions to translate among the naming formats supported within a given end system is anticipated.
The GSS-API avoids prescribing naming structures, treating the names which are transferred across the interface in order to initiate and accept security contexts as opaque objects. This approach supports the GSS-API's goal of implementability atop a range of underlying security mechanisms, recognizing the fact that different mechanisms process and authenticate names which are presented in different forms. Generalized services offering translation functions among arbitrary sets of naming environments are outside the scope of the GSS-API; availability and use of local conversion functions to translate among the naming formats supported within a given end system is anticipated.
Different classes of name representations are used in conjunction with different GSS-API parameters:
Different classes of name representations are used in conjunction with different GSS-API parameters:
- Internal form (denoted in this document by INTERNAL NAME), opaque to callers and defined by individual GSS-API implementations. GSS-API implementations supporting multiple namespace types must maintain internal tags to disambiguate the interpretation of particular names. A Mechanism Name (MN) is a special case of INTERNAL NAME, guaranteed to contain elements corresponding to one and only one mechanism; calls which are guaranteed to emit MNs or which require MNs as input are so identified within this specification.
- Internal form (denoted in this document by INTERNAL NAME), opaque to callers and defined by individual GSS-API implementations. GSS-API implementations supporting multiple namespace types must maintain internal tags to disambiguate the interpretation of particular names. A Mechanism Name (MN) is a special case of INTERNAL NAME, guaranteed to contain elements corresponding to one and only one mechanism; calls which are guaranteed to emit MNs or which require MNs as input are so identified within this specification.
- Contiguous string ("flat") form (denoted in this document by OCTET STRING); accompanied by OID tags identifying the namespace to which they correspond. Depending on tag value, flat names may or may not be printable strings for direct acceptance from and presentation to users. Tagging of flat names allows GSS-API callers and underlying GSS-API mechanisms to disambiguate name
- Contiguous string ("flat") form (denoted in this document by OCTET STRING); accompanied by OID tags identifying the namespace to which they correspond. Depending on tag value, flat names may or may not be printable strings for direct acceptance from and presentation to users. Tagging of flat names allows GSS-API callers and underlying GSS-API mechanisms to disambiguate name
Linn Standards Track [Page 12] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 12] RFC 2078 GSS-API January 1997
types and to determine whether an associated name's type is one which they are capable of processing, avoiding aliasing problems which could result from misinterpreting a name of one type as a name of another type.
types and to determine whether an associated name's type is one which they are capable of processing, avoiding aliasing problems which could result from misinterpreting a name of one type as a name of another type.
- The GSS-API Exported Name Object, a special case of flat name designated by a reserved OID value, carries a canonicalized form of a name suitable for binary comparisons.
- The GSS-API Exported Name Object, a special case of flat name designated by a reserved OID value, carries a canonicalized form of a name suitable for binary comparisons.
In addition to providing means for names to be tagged with types, this specification defines primitives to support a level of naming environment independence for certain calling applications. To provide basic services oriented towards the requirements of callers which need not themselves interpret the internal syntax and semantics of names, GSS-API calls for name comparison (GSS_Compare_name()), human-readable display (GSS_Display_name()), input conversion (GSS_Import_name()), internal name deallocation (GSS_Release_name()), and internal name duplication (GSS_Duplicate_name()) functions are defined. (It is anticipated that these proposed GSS-API calls will be implemented in many end systems based on system-specific name manipulation primitives already extant within those end systems; inclusion within the GSS-API is intended to offer GSS-API callers a portable means to perform specific operations, supportive of authorization and audit requirements, on authenticated names.)
In addition to providing means for names to be tagged with types, this specification defines primitives to support a level of naming environment independence for certain calling applications. To provide basic services oriented towards the requirements of callers which need not themselves interpret the internal syntax and semantics of names, GSS-API calls for name comparison (GSS_Compare_name()), human-readable display (GSS_Display_name()), input conversion (GSS_Import_name()), internal name deallocation (GSS_Release_name()), and internal name duplication (GSS_Duplicate_name()) functions are defined. (It is anticipated that these proposed GSS-API calls will be implemented in many end systems based on system-specific name manipulation primitives already extant within those end systems; inclusion within the GSS-API is intended to offer GSS-API callers a portable means to perform specific operations, supportive of authorization and audit requirements, on authenticated names.)
GSS_Import_name() implementations can, where appropriate, support more than one printable syntax corresponding to a given namespace (e.g., alternative printable representations for X.500 Distinguished Names), allowing flexibility for their callers to select among alternative representations. GSS_Display_name() implementations output a printable syntax selected as appropriate to their operational environments; this selection is a local matter. Callers desiring portability across alternative printable syntaxes should refrain from implementing comparisons based on printable name forms and should instead use the GSS_Compare_name() call to determine whether or not one internal-format name matches another.
GSS_Import_name() implementations can, where appropriate, support more than one printable syntax corresponding to a given namespace (e.g., alternative printable representations for X.500 Distinguished Names), allowing flexibility for their callers to select among alternative representations. GSS_Display_name() implementations output a printable syntax selected as appropriate to their operational environments; this selection is a local matter. Callers desiring portability across alternative printable syntaxes should refrain from implementing comparisons based on printable name forms and should instead use the GSS_Compare_name() call to determine whether or not one internal-format name matches another.
The GSS_Canonicalize_name() and GSS_Export_name() calls enable callers to acquire and process Exported Name Objects, canonicalized and translated in accordance with the procedures of a particular GSS-API mechanism. Exported Name Objects can, in turn, be input to GSS_Import_name(), yielding equivalent MNs. These facilities are designed specifically to enable efficient storage and comparison of names (e.g., for use in access control lists).
The GSS_Canonicalize_name() and GSS_Export_name() calls enable callers to acquire and process Exported Name Objects, canonicalized and translated in accordance with the procedures of a particular GSS-API mechanism. Exported Name Objects can, in turn, be input to GSS_Import_name(), yielding equivalent MNs. These facilities are designed specifically to enable efficient storage and comparison of names (e.g., for use in access control lists).
Linn Standards Track [Page 13] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 13] RFC 2078 GSS-API January 1997
The following diagram illustrates the intended dataflow among name- related GSS-API processing routines.
The following diagram illustrates the intended dataflow among name- related GSS-API processing routines.
GSS-API library defaults | | V text, for text --------------> internal_name (IN) -----------> display only import_name() / display_name() / / / accept_sec_context() / | / | / | / canonicalize_name() | / | / | / | / | / | | V V <--------------------- single mechanism import_name() exported name: flat internal_name (MN) binary "blob" usable ----------------------> for access control export_name()
GSS-API library defaults | | V text, for text --------------> internal_name (IN) -----------> display only import_name() / display_name() / / / accept_sec_context() / | / | / | / canonicalize_name() | / | / | / | / | / | | V V <--------------------- single mechanism import_name() exported name: flat internal_name (MN) binary "blob" usable ----------------------> for access control export_name()
1.1.6: Channel Bindings
1.1.6: Channel Bindings
The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") information. Channel bindings are used to strengthen the quality with which peer entity authentication is provided during context establishment, by limiting the scope within which an intercepted context establishment token can be reused by an attacker. Specifically, they enable GSS-API callers to bind the establishment of a security context to relevant characteristics (e.g., addresses, transformed representations of encryption keys) of the underlying communications channel, of protection mechanisms applied to that communications channel, and to application-specific data.
The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") information. Channel bindings are used to strengthen the quality with which peer entity authentication is provided during context establishment, by limiting the scope within which an intercepted context establishment token can be reused by an attacker. Specifically, they enable GSS-API callers to bind the establishment of a security context to relevant characteristics (e.g., addresses, transformed representations of encryption keys) of the underlying communications channel, of protection mechanisms applied to that communications channel, and to application-specific data.
The caller initiating a security context must determine the appropriate channel binding values to provide as input to the GSS_Init_sec_context() call, and consistent values must be provided to GSS_Accept_sec_context() by the context's target, in order for both peers' GSS-API mechanisms to validate that received tokens possess correct channel-related characteristics. Use or non-use of
The caller initiating a security context must determine the appropriate channel binding values to provide as input to the GSS_Init_sec_context() call, and consistent values must be provided to GSS_Accept_sec_context() by the context's target, in order for both peers' GSS-API mechanisms to validate that received tokens possess correct channel-related characteristics. Use or non-use of
Linn Standards Track [Page 14] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 14] RFC 2078 GSS-API January 1997
the GSS-API channel binding facility is a caller option. GSS-API mechanisms can operate in an environment where NULL channel bindings are presented; mechanism implementors are encouraged, but not required, to make use of caller-provided channel binding data within their mechanisms. Callers should not assume that underlying mechanisms provide confidentiality protection for channel binding information.
the GSS-API channel binding facility is a caller option. GSS-API mechanisms can operate in an environment where NULL channel bindings are presented; mechanism implementors are encouraged, but not required, to make use of caller-provided channel binding data within their mechanisms. Callers should not assume that underlying mechanisms provide confidentiality protection for channel binding information.
When non-NULL channel bindings are provided by callers, certain mechanisms can offer enhanced security value by interpreting the bindings' content (rather than simply representing those bindings, or integrity check values computed on them, within tokens) and will therefore depend on presentation of specific data in a defined format. To this end, agreements among mechanism implementors are defining conventional interpretations for the contents of channel binding arguments, including address specifiers (with content dependent on communications protocol environment) for context initiators and acceptors. (These conventions are being incorporated in GSS-API mechanism specifications and into the GSS-API C language bindings specification.) In order for GSS-API callers to be portable across multiple mechanisms and achieve the full security functionality which each mechanism can provide, it is strongly recommended that GSS-API callers provide channel bindings consistent with these conventions and those of the networking environment in which they operate.
When non-NULL channel bindings are provided by callers, certain mechanisms can offer enhanced security value by interpreting the bindings' content (rather than simply representing those bindings, or integrity check values computed on them, within tokens) and will therefore depend on presentation of specific data in a defined format. To this end, agreements among mechanism implementors are defining conventional interpretations for the contents of channel binding arguments, including address specifiers (with content dependent on communications protocol environment) for context initiators and acceptors. (These conventions are being incorporated in GSS-API mechanism specifications and into the GSS-API C language bindings specification.) In order for GSS-API callers to be portable across multiple mechanisms and achieve the full security functionality which each mechanism can provide, it is strongly recommended that GSS-API callers provide channel bindings consistent with these conventions and those of the networking environment in which they operate.
1.2: GSS-API Features and Issues
1.2: GSS-API Features and Issues
This section describes aspects of GSS-API operations, of the security services which the GSS-API provides, and provides commentary on design issues.
This section describes aspects of GSS-API operations, of the security services which the GSS-API provides, and provides commentary on design issues.
1.2.1: Status Reporting
1.2.1: Status Reporting
Each GSS-API call provides two status return values. Major_status values provide a mechanism-independent indication of call status (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1 summarizes the defined major_status return codes in tabular fashion.
Each GSS-API call provides two status return values. Major_status values provide a mechanism-independent indication of call status (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1 summarizes the defined major_status return codes in tabular fashion.
Linn Standards Track [Page 15] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 15] RFC 2078 GSS-API January 1997
Table 1: GSS-API Major Status Codes
Table 1: GSS-API Major Status Codes
FATAL ERROR CODES
FATAL ERROR CODES
GSS_S_BAD_BINDINGS channel binding mismatch GSS_S_BAD_MECH unsupported mechanism requested GSS_S_BAD_NAME invalid name provided GSS_S_BAD_NAMETYPE name of unsupported type provided GSS_S_BAD_STATUS invalid input status selector GSS_S_BAD_SIG token had invalid integrity check GSS_S_CONTEXT_EXPIRED specified security context expired GSS_S_CREDENTIALS_EXPIRED expired credentials detected GSS_S_DEFECTIVE_CREDENTIAL defective credential detected GSS_S_DEFECTIVE_TOKEN defective token detected GSS_S_FAILURE failure, unspecified at GSS-API level GSS_S_NO_CONTEXT no valid security context specified GSS_S_NO_CRED no valid credentials provided GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements
GSS_S_BAD_BINDINGS channel binding mismatch GSS_S_BAD_MECH unsupported mechanism requested GSS_S_BAD_NAME invalid name provided GSS_S_BAD_NAMETYPE name of unsupported type provided GSS_S_BAD_STATUS invalid input status selector GSS_S_BAD_SIG token had invalid integrity check GSS_S_CONTEXT_EXPIRED specified security context expired GSS_S_CREDENTIALS_EXPIRED expired credentials detected GSS_S_DEFECTIVE_CREDENTIAL defective credential detected GSS_S_DEFECTIVE_TOKEN defective token detected GSS_S_FAILURE failure, unspecified at GSS-API level GSS_S_NO_CONTEXT no valid security context specified GSS_S_NO_CRED no valid credentials provided GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements
INFORMATORY STATUS CODES
INFORMATORY STATUS CODES
GSS_S_COMPLETE normal completion GSS_S_CONTINUE_NEEDED continuation call to routine required GSS_S_DUPLICATE_TOKEN duplicate per-message token detected GSS_S_OLD_TOKEN timed-out per-message token detected GSS_S_UNSEQ_TOKEN reordered (early) per-message token detected GSS_S_GAP_TOKEN skipped predecessor token(s) detected
GSS_S_COMPLETE normal completion GSS_S_CONTINUE_NEEDED continuation call to routine required GSS_S_DUPLICATE_TOKEN duplicate per-message token detected GSS_S_OLD_TOKEN timed-out per-message token detected GSS_S_UNSEQ_TOKEN reordered (early) per-message token detected GSS_S_GAP_TOKEN skipped predecessor token(s) detected
Minor_status provides more detailed status information which may include status codes specific to the underlying security mechanism. Minor_status values are not specified in this document.
Minor_status provides more detailed status information which may include status codes specific to the underlying security mechanism. Minor_status values are not specified in this document.
GSS_S_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms' employment of different numbers of messages within their authentication sequences need not be reflected in separate code paths within calling applications. Instead, such cases are accommodated
GSS_S_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms' employment of different numbers of messages within their authentication sequences need not be reflected in separate code paths within calling applications. Instead, such cases are accommodated
Linn Standards Track [Page 16] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 16] RFC 2078 GSS-API January 1997
with sequences of continuation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same mechanism is used to encapsulate mutual authentication within the GSS-API's context initiation calls.
with sequences of continuation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same mechanism is used to encapsulate mutual authentication within the GSS-API's context initiation calls.
For mech_types which require interactions with third-party servers in order to establish a security context, GSS-API context establishment calls may block pending completion of such third-party interactions.
For mech_types which require interactions with third-party servers in order to establish a security context, GSS-API context establishment calls may block pending completion of such third-party interactions.
On the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote peers, and reflection of such status information is a caller responsibility outside the GSS-API.
On the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote peers, and reflection of such status information is a caller responsibility outside the GSS-API.
1.2.2: Per-Message Security Service Availability
1.2.2: Per-Message Security Service Availability
When a context is established, two flags are returned to indicate the set of per-message protection security services which will be available on the context:
When a context is established, two flags are returned to indicate the set of per-message protection security services which will be available on the context:
the integ_avail flag indicates whether per-message integrity and data origin authentication services are available
the integ_avail flag indicates whether per-message integrity and data origin authentication services are available
the conf_avail flag indicates whether per-message confidentiality services are available, and will never be returned TRUE unless the integ_avail flag is also returned TRUE
the conf_avail flag indicates whether per-message confidentiality services are available, and will never be returned TRUE unless the integ_avail flag is also returned TRUE
GSS-API callers desiring per-message security services should check the values of these flags at context establishment time, and must be aware that a returned FALSE value for integ_avail means that invocation of GSS_GetMIC() or GSS_Wrap() primitives on the associated context will apply no cryptographic protection to user data messages.
GSS-API callers desiring per-message security services should check the values of these flags at context establishment time, and must be aware that a returned FALSE value for integ_avail means that invocation of GSS_GetMIC() or GSS_Wrap() primitives on the associated context will apply no cryptographic protection to user data messages.
The GSS-API per-message integrity and data origin authentication services provide assurance to a receiving caller that protection was applied to a message by the caller's peer on the security context, corresponding to the entity named at context initiation. The GSS-API per-message confidentiality service provides assurance to a sending caller that the message's content is protected from access by entities other than the context's named peer.
The GSS-API per-message integrity and data origin authentication services provide assurance to a receiving caller that protection was applied to a message by the caller's peer on the security context, corresponding to the entity named at context initiation. The GSS-API per-message confidentiality service provides assurance to a sending caller that the message's content is protected from access by entities other than the context's named peer.
Linn Standards Track [Page 17] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 17] RFC 2078 GSS-API January 1997
The GSS-API per-message protection service primitives, as the category name implies, are oriented to operation at the granularity of protocol data units. They perform cryptographic operations on the data units, transfer cryptographic control information in tokens, and, in the case of GSS_Wrap(), encapsulate the protected data unit. As such, these primitives are not oriented to efficient data protection for stream-paradigm protocols (e.g., Telnet) if cryptography must be applied on an octet-by-octet basis.
The GSS-API per-message protection service primitives, as the category name implies, are oriented to operation at the granularity of protocol data units. They perform cryptographic operations on the data units, transfer cryptographic control information in tokens, and, in the case of GSS_Wrap(), encapsulate the protected data unit. As such, these primitives are not oriented to efficient data protection for stream-paradigm protocols (e.g., Telnet) if cryptography must be applied on an octet-by-octet basis.
1.2.3: Per-Message Replay Detection and Sequencing
1.2.3: Per-Message Replay Detection and Sequencing
Certain underlying mech_types offer support for replay detection and/or sequencing of messages transferred on the contexts they support. These optionally-selectable protection features are distinct from replay detection and sequencing features applied to the context establishment operation itself; the presence or absence of context- level replay or sequencing features is wholly a function of the underlying mech_type's capabilities, and is not selected or omitted as a caller option.
Certain underlying mech_types offer support for replay detection and/or sequencing of messages transferred on the contexts they support. These optionally-selectable protection features are distinct from replay detection and sequencing features applied to the context establishment operation itself; the presence or absence of context- level replay or sequencing features is wholly a function of the underlying mech_type's capabilities, and is not selected or omitted as a caller option.
The caller initiating a context provides flags (replay_det_req_flag and sequence_req_flag) to specify whether the use of per-message replay detection and sequencing features is desired on the context being established. The GSS-API implementation at the initiator system can determine whether these features are supported (and whether they are optionally selectable) as a function of mech_type, without need for bilateral negotiation with the target. When enabled, these features provide recipients with indicators as a result of GSS-API processing of incoming messages, identifying whether those messages were detected as duplicates or out-of-sequence. Detection of such events does not prevent a suspect message from being provided to a recipient; the appropriate course of action on a suspect message is a matter of caller policy.
The caller initiating a context provides flags (replay_det_req_flag and sequence_req_flag) to specify whether the use of per-message replay detection and sequencing features is desired on the context being established. The GSS-API implementation at the initiator system can determine whether these features are supported (and whether they are optionally selectable) as a function of mech_type, without need for bilateral negotiation with the target. When enabled, these features provide recipients with indicators as a result of GSS-API processing of incoming messages, identifying whether those messages were detected as duplicates or out-of-sequence. Detection of such events does not prevent a suspect message from being provided to a recipient; the appropriate course of action on a suspect message is a matter of caller policy.
The semantics of the replay detection and sequencing services applied to received messages, as visible across the interface which the GSS- API provides to its clients, are as follows:
The semantics of the replay detection and sequencing services applied to received messages, as visible across the interface which the GSS- API provides to its clients, are as follows:
When replay_det_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows:
When replay_det_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows:
1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, and that the message was not a replay of a previously-processed message within that window.
1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, and that the message was not a replay of a previously-processed message within that window.
Linn Standards Track [Page 18] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 18] RFC 2078 GSS-API January 1997
2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message.
2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message.
3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message is too old to be checked for duplication.
3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message is too old to be checked for duplication.
When sequence_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows:
When sequence_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows:
1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, that the message was not a replay of a previously-processed message within that window, and that no predecessor sequenced messages are missing relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue.
1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, that the message was not a replay of a previously-processed message within that window, and that no predecessor sequenced messages are missing relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue.
2. GSS_S_DUPLICATE_TOKEN indicates that the integrity check value on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message.
2. GSS_S_DUPLICATE_TOKEN indicates that the integrity check value on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message.
3. GSS_S_OLD_TOKEN indicates that the integrity check value on the received message was correct, but that the token is too old to be checked for duplication.
3. GSS_S_OLD_TOKEN indicates that the integrity check value on the received message was correct, but that the token is too old to be checked for duplication.
4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that it is earlier in a sequenced stream than a message already processed on the context. [Note: Mechanisms can be architected to provide a stricter form of sequencing service, delivering particular messages to recipients only after all predecessor messages in an ordered stream have been delivered. This type of support is incompatible with the GSS-API paradigm in which recipients receive all messages, whether in order or not, and provide them (one at a time, without intra-GSS- API message buffering) to GSS-API routines for validation. GSS- API facilities provide supportive functions, aiding clients to achieve strict message stream integrity in an efficient manner in conjunction with sequencing provisions in communications protocols, but the GSS-API does not offer this level of message stream integrity service by itself.]
4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that it is earlier in a sequenced stream than a message already processed on the context. [Note: Mechanisms can be architected to provide a stricter form of sequencing service, delivering particular messages to recipients only after all predecessor messages in an ordered stream have been delivered. This type of support is incompatible with the GSS-API paradigm in which recipients receive all messages, whether in order or not, and provide them (one at a time, without intra-GSS- API message buffering) to GSS-API routines for validation. GSS- API facilities provide supportive functions, aiding clients to achieve strict message stream integrity in an efficient manner in conjunction with sequencing provisions in communications protocols, but the GSS-API does not offer this level of message stream integrity service by itself.]
Linn Standards Track [Page 19] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 19] RFC 2078 GSS-API January 1997
5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that one or more predecessor sequenced messages have not been successfully processed relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue.
5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that one or more predecessor sequenced messages have not been successfully processed relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue.
As the message stream integrity features (especially sequencing) may interfere with certain applications' intended communications paradigms, and since support for such features is likely to be resource intensive, it is highly recommended that mech_types supporting these features allow them to be activated selectively on initiator request when a context is established. A context initiator and target are provided with corresponding indicators (replay_det_state and sequence_state), signifying whether these features are active on a given context.
As the message stream integrity features (especially sequencing) may interfere with certain applications' intended communications paradigms, and since support for such features is likely to be resource intensive, it is highly recommended that mech_types supporting these features allow them to be activated selectively on initiator request when a context is established. A context initiator and target are provided with corresponding indicators (replay_det_state and sequence_state), signifying whether these features are active on a given context.
An example mech_type supporting per-message replay detection could (when replay_det_state is TRUE) implement the feature as follows: The underlying mechanism would insert timestamps in data elements output by GSS_GetMIC() and GSS_Wrap(), and would maintain (within a time- limited window) a cache (qualified by originator-recipient pair) identifying received data elements processed by GSS_VerifyMIC() and GSS_Unwrap(). When this feature is active, exception status returns (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when GSS_VerifyMIC() or GSS_Unwrap() is presented with a message which is either a detected duplicate of a prior message or which is too old to validate against a cache of recently received messages.
An example mech_type supporting per-message replay detection could (when replay_det_state is TRUE) implement the feature as follows: The underlying mechanism would insert timestamps in data elements output by GSS_GetMIC() and GSS_Wrap(), and would maintain (within a time- limited window) a cache (qualified by originator-recipient pair) identifying received data elements processed by GSS_VerifyMIC() and GSS_Unwrap(). When this feature is active, exception status returns (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when GSS_VerifyMIC() or GSS_Unwrap() is presented with a message which is either a detected duplicate of a prior message or which is too old to validate against a cache of recently received messages.
1.2.4: Quality of Protection
1.2.4: Quality of Protection
Some mech_types provide their users with fine granularity control over the means used to provide per-message protection, allowing callers to trade off security processing overhead dynamically against the protection requirements of particular messages. A per-message quality-of-protection parameter (analogous to quality-of-service, or QOS) selects among different QOP options supported by that mechanism. On context establishment for a multi-QOP mech_type, context-level data provides the prerequisite data for a range of protection qualities.
Some mech_types provide their users with fine granularity control over the means used to provide per-message protection, allowing callers to trade off security processing overhead dynamically against the protection requirements of particular messages. A per-message quality-of-protection parameter (analogous to quality-of-service, or QOS) selects among different QOP options supported by that mechanism. On context establishment for a multi-QOP mech_type, context-level data provides the prerequisite data for a range of protection qualities.
It is expected that the majority of callers will not wish to exert explicit mechanism-specific QOP control and will therefore request selection of a default QOP. Definitions of, and choices among, non- default QOP values are mechanism-specific, and no ordered sequences of QOP values can be assumed equivalent across different mechanisms. Meaningful use of non-default QOP values demands that callers be familiar with the QOP definitions of an underlying mechanism or mechanisms, and is therefore a non-portable construct. The
It is expected that the majority of callers will not wish to exert explicit mechanism-specific QOP control and will therefore request selection of a default QOP. Definitions of, and choices among, non- default QOP values are mechanism-specific, and no ordered sequences of QOP values can be assumed equivalent across different mechanisms. Meaningful use of non-default QOP values demands that callers be familiar with the QOP definitions of an underlying mechanism or mechanisms, and is therefore a non-portable construct. The
Linn Standards Track [Page 20] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 20] RFC 2078 GSS-API January 1997
GSS_S_BAD_QOP major_status value is defined in order to indicate that a provided QOP value is unsupported for a security context, most likely because that value is unrecognized by the underlying mechanism.
GSS_S_BAD_QOP major_status value is defined in order to indicate that a provided QOP value is unsupported for a security context, most likely because that value is unrecognized by the underlying mechanism.
1.2.5: Anonymity Support
1.2.5: Anonymity Support
In certain situations or environments, an application may wish to authenticate a peer and/or protect communications using GSS-API per- message services without revealing its own identity. For example, consider an application which provides read access to a research database, and which permits queries by arbitrary requestors. A client of such a service might wish to authenticate the service, to establish trust in the information received from it, but might not wish to disclose its identity to the service for privacy reasons.
In certain situations or environments, an application may wish to authenticate a peer and/or protect communications using GSS-API per- message services without revealing its own identity. For example, consider an application which provides read access to a research database, and which permits queries by arbitrary requestors. A client of such a service might wish to authenticate the service, to establish trust in the information received from it, but might not wish to disclose its identity to the service for privacy reasons.
In ordinary GSS-API usage, a context initiator's identity is made available to the context acceptor as part of the context establishment process. To provide for anonymity support, a facility (input anon_req_flag to GSS_Init_sec_context()) is provided through which context initiators may request that their identity not be provided to the context acceptor. Mechanisms are not required to honor this request, but a caller will be informed (via returned anon_state indicator from GSS_Init_sec_context()) whether or not the request is honored. Note that authentication as the anonymous principal does not necessarily imply that credentials are not required in order to establish a context.
In ordinary GSS-API usage, a context initiator's identity is made available to the context acceptor as part of the context establishment process. To provide for anonymity support, a facility (input anon_req_flag to GSS_Init_sec_context()) is provided through which context initiators may request that their identity not be provided to the context acceptor. Mechanisms are not required to honor this request, but a caller will be informed (via returned anon_state indicator from GSS_Init_sec_context()) whether or not the request is honored. Note that authentication as the anonymous principal does not necessarily imply that credentials are not required in order to establish a context.
The following Object Identifier value is provided as a means to identify anonymous names, and can be compared against in order to determine, in a mechanism-independent fashion, whether a name refers to an anonymous principal:
The following Object Identifier value is provided as a means to identify anonymous names, and can be compared against in order to determine, in a mechanism-independent fashion, whether a name refers to an anonymous principal:
{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes), 3(gss-anonymous-name)}
{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes), 3(gss-anonymous-name)}
The recommended symbolic name corresponding to this definition is GSS_C_NT_ANONYMOUS.
The recommended symbolic name corresponding to this definition is GSS_C_NT_ANONYMOUS.
Four possible combinations of anon_state and mutual_state are possible, with the following results:
Four possible combinations of anon_state and mutual_state are possible, with the following results:
anon_state == FALSE, mutual_state == FALSE: initiator authenticated to target.
anon_state == FALSE, mutual_state == FALSE: initiator authenticated to target.
anon_state == FALSE, mutual_state == TRUE: initiator authenticated to target, target authenticated to initiator.
anon_state == FALSE, mutual_state == TRUE: initiator authenticated to target, target authenticated to initiator.
Linn Standards Track [Page 21] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 21] RFC 2078 GSS-API January 1997
anon_state == TRUE, mutual_state == FALSE: initiator authenticated as anonymous principal to target.
anon_state == TRUE, mutual_state == FALSE: initiator authenticated as anonymous principal to target.
anon_state == TRUE, mutual_state == TRUE: initiator authenticated as anonymous principal to target, target authenticated to initiator.
anon_state == TRUE, mutual_state == TRUE: initiator authenticated as anonymous principal to target, target authenticated to initiator.
1.2.6: Initialization
1.2.6: Initialization
No initialization calls (i.e., calls which must be invoked prior to invocation of other facilities in the interface) are defined in GSS- API. As an implication of this fact, GSS-API implementations must themselves be self-initializing.
No initialization calls (i.e., calls which must be invoked prior to invocation of other facilities in the interface) are defined in GSS- API. As an implication of this fact, GSS-API implementations must themselves be self-initializing.
1.2.7: Per-Message Protection During Context Establishment
1.2.7: Per-Message Protection During Context Establishment
A facility is defined in GSS-V2 to enable protection and buffering of data messages for later transfer while a security context's establishment is in GSS_S_CONTINUE_NEEDED status, to be used in cases where the caller side already possesses the necessary session key to enable this processing. Specifically, a new state Boolean, called prot_ready_state, is added to the set of information returned by GSS_Init_sec_context(), GSS_Accept_sec_context(), and GSS_Inquire_context().
A facility is defined in GSS-V2 to enable protection and buffering of data messages for later transfer while a security context's establishment is in GSS_S_CONTINUE_NEEDED status, to be used in cases where the caller side already possesses the necessary session key to enable this processing. Specifically, a new state Boolean, called prot_ready_state, is added to the set of information returned by GSS_Init_sec_context(), GSS_Accept_sec_context(), and GSS_Inquire_context().
For context establishment calls, this state Boolean is valid and interpretable when the associated major_status is either GSS_S_CONTINUE_NEEDED, or GSS_S_COMPLETE. Callers of GSS-API (both initiators and acceptors) can assume that per-message protection (via GSS_Wrap(), GSS_Unwrap(), GSS_GetMIC() and GSS_VerifyMIC()) is available and ready for use if either: prot_ready_state == TRUE, or major_status == GSS_S_COMPLETE, though mutual authentication (if requested) cannot be guaranteed until GSS_S_COMPLETE is returned.
For context establishment calls, this state Boolean is valid and interpretable when the associated major_status is either GSS_S_CONTINUE_NEEDED, or GSS_S_COMPLETE. Callers of GSS-API (both initiators and acceptors) can assume that per-message protection (via GSS_Wrap(), GSS_Unwrap(), GSS_GetMIC() and GSS_VerifyMIC()) is available and ready for use if either: prot_ready_state == TRUE, or major_status == GSS_S_COMPLETE, though mutual authentication (if requested) cannot be guaranteed until GSS_S_COMPLETE is returned.
This achieves full, transparent backward compatibility for GSS-API V1 callers, who need not even know of the existence of prot_ready_state, and who will get the expected behavior from GSS_S_COMPLETE, but who will not be able to use per-message protection before GSS_S_COMPLETE is returned.
This achieves full, transparent backward compatibility for GSS-API V1 callers, who need not even know of the existence of prot_ready_state, and who will get the expected behavior from GSS_S_COMPLETE, but who will not be able to use per-message protection before GSS_S_COMPLETE is returned.
It is not a requirement that GSS-V2 mechanisms ever return TRUE prot_ready_state before completion of context establishment (indeed, some mechanisms will not evolve usable message protection keys, especially at the context acceptor, before context establishment is complete). It is expected but not required that GSS-V2 mechanisms will return TRUE prot_ready_state upon completion of context establishment if they support per-message protection at all (however GSS-V2 applications should not assume that TRUE prot_ready_state will
It is not a requirement that GSS-V2 mechanisms ever return TRUE prot_ready_state before completion of context establishment (indeed, some mechanisms will not evolve usable message protection keys, especially at the context acceptor, before context establishment is complete). It is expected but not required that GSS-V2 mechanisms will return TRUE prot_ready_state upon completion of context establishment if they support per-message protection at all (however GSS-V2 applications should not assume that TRUE prot_ready_state will
Linn Standards Track [Page 22] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 22] RFC 2078 GSS-API January 1997
always be returned together with the GSS_S_COMPLETE major_status, since GSS-V2 implementations may continue to support GSS-V1 mechanism code, which will never return TRUE prot_ready_state).
always be returned together with the GSS_S_COMPLETE major_status, since GSS-V2 implementations may continue to support GSS-V1 mechanism code, which will never return TRUE prot_ready_state).
When prot_ready_state is returned TRUE, mechanisms shall also set those context service indicator flags (deleg_state, mutual_state, replay_det_state, sequence_state, anon_state, trans_state, conf_avail, integ_avail) which represent facilities confirmed, at that time, to be available on the context being established. In situations where prot_ready_state is returned before GSS_S_COMPLETE, it is possible that additional facilities may be confirmed and subsequently indicated when GSS_S_COMPLETE is returned.
When prot_ready_state is returned TRUE, mechanisms shall also set those context service indicator flags (deleg_state, mutual_state, replay_det_state, sequence_state, anon_state, trans_state, conf_avail, integ_avail) which represent facilities confirmed, at that time, to be available on the context being established. In situations where prot_ready_state is returned before GSS_S_COMPLETE, it is possible that additional facilities may be confirmed and subsequently indicated when GSS_S_COMPLETE is returned.
1.2.8: Implementation Robustness
1.2.8: Implementation Robustness
This section recommends aspects of GSS-API implementation behavior in the interests of overall robustness.
This section recommends aspects of GSS-API implementation behavior in the interests of overall robustness.
If a token is presented for processing on a GSS-API security context and that token is determined to be invalid for that context, the context's state should not be disrupted for purposes of processing subsequent valid tokens.
If a token is presented for processing on a GSS-API security context and that token is determined to be invalid for that context, the context's state should not be disrupted for purposes of processing subsequent valid tokens.
Certain local conditions at a GSS-API implementation (e.g., unavailability of memory) may preclude, temporarily or permanently, the successful processing of tokens on a GSS-API security context, typically generating GSS_S_FAILURE major_status returns along with locally-significant minor_status. For robust operation under such conditions, the following recommendations are made:
Certain local conditions at a GSS-API implementation (e.g., unavailability of memory) may preclude, temporarily or permanently, the successful processing of tokens on a GSS-API security context, typically generating GSS_S_FAILURE major_status returns along with locally-significant minor_status. For robust operation under such conditions, the following recommendations are made:
Failing calls should free any memory they allocate, so that callers may retry without causing further loss of resources.
Failing calls should free any memory they allocate, so that callers may retry without causing further loss of resources.
Failure of an individual call on an established context should not preclude subsequent calls from succeeding on the same context.
Failure of an individual call on an established context should not preclude subsequent calls from succeeding on the same context.
Whenever possible, it should be possible for GSS_Delete_sec_context() calls to be successfully processed even if other calls cannot succeed, thereby enabling context-related resources to be released.
Whenever possible, it should be possible for GSS_Delete_sec_context() calls to be successfully processed even if other calls cannot succeed, thereby enabling context-related resources to be released.
2: Interface Descriptions
2: Interface Descriptions
This section describes the GSS-API's service interface, dividing the set of calls offered into four groups. Credential management calls are related to the acquisition and release of credentials by principals. Context-level calls are related to the management of security contexts between principals. Per-message calls are related
This section describes the GSS-API's service interface, dividing the set of calls offered into four groups. Credential management calls are related to the acquisition and release of credentials by principals. Context-level calls are related to the management of security contexts between principals. Per-message calls are related
Linn Standards Track [Page 23] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 23] RFC 2078 GSS-API January 1997
to the protection of individual messages on established security contexts. Support calls provide ancillary functions useful to GSS-API callers. Table 2 groups and summarizes the calls in tabular fashion.
to the protection of individual messages on established security contexts. Support calls provide ancillary functions useful to GSS-API callers. Table 2 groups and summarizes the calls in tabular fashion.
Table 2: GSS-API Calls
Table 2: GSS-API Calls
CREDENTIAL MANAGEMENT
CREDENTIAL MANAGEMENT
GSS_Acquire_cred acquire credentials for use GSS_Release_cred release credentials after use GSS_Inquire_cred display information about credentials GSS_Add_cred construct credentials incrementally GSS_Inquire_cred_by_mech display per-mechanism credential information
GSS_Acquire_cred acquire credentials for use GSS_Release_cred release credentials after use GSS_Inquire_cred display information about credentials GSS_Add_cred construct credentials incrementally GSS_Inquire_cred_by_mech display per-mechanism credential information
CONTEXT-LEVEL CALLS
CONTEXT-LEVEL CALLS
GSS_Init_sec_context initiate outbound security context GSS_Accept_sec_context accept inbound security context GSS_Delete_sec_context flush context when no longer needed GSS_Process_context_token process received control token on context GSS_Context_time indicate validity time remaining on context GSS_Inquire_context display information about context GSS_Wrap_size_limit determine GSS_Wrap token size limit GSS_Export_sec_context transfer context to other process GSS_Import_sec_context import transferred context
GSS_Init_sec_context initiate outbound security context GSS_Accept_sec_context accept inbound security context GSS_Delete_sec_context flush context when no longer needed GSS_Process_context_token process received control token on context GSS_Context_time indicate validity time remaining on context GSS_Inquire_context display information about context GSS_Wrap_size_limit determine GSS_Wrap token size limit GSS_Export_sec_context transfer context to other process GSS_Import_sec_context import transferred context
PER-MESSAGE CALLS
PER-MESSAGE CALLS
GSS_GetMIC apply integrity check, receive as token separate from message GSS_VerifyMIC validate integrity check token along with message GSS_Wrap sign, optionally encrypt, encapsulate GSS_Unwrap decapsulate, decrypt if needed, validate integrity check
GSS_GetMIC apply integrity check, receive as token separate from message GSS_VerifyMIC validate integrity check token along with message GSS_Wrap sign, optionally encrypt, encapsulate GSS_Unwrap decapsulate, decrypt if needed, validate integrity check
Linn Standards Track [Page 24] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 24] RFC 2078 GSS-API January 1997
SUPPORT CALLS
SUPPORT CALLS
GSS_Display_status translate status codes to printable form GSS_Indicate_mechs indicate mech_types supported on local system GSS_Compare_name compare two names for equality GSS_Display_name translate name to printable form GSS_Import_name convert printable name to normalized form GSS_Release_name free storage of normalized-form name GSS_Release_buffer free storage of printable name GSS_Release_OID free storage of OID object GSS_Release_OID_set free storage of OID set object GSS_Create_empty_OID_set create empty OID set GSS_Add_OID_set_member add member to OID set GSS_Test_OID_set_member test if OID is member of OID set GSS_OID_to_str display OID as string GSS_Str_to_OID construct OID from string GSS_Inquire_names_for_mech indicate name types supported by mechanism GSS_Inquire_mechs_for_name indicates mechanisms supporting name type GSS_Canonicalize_name translate name to per-mechanism form GSS_Export_name externalize per-mechanism name GSS_Duplicate_name duplicate name object
GSS_Display_status translate status codes to printable form GSS_Indicate_mechs indicate mech_types supported on local system GSS_Compare_name compare two names for equality GSS_Display_name translate name to printable form GSS_Import_name convert printable name to normalized form GSS_Release_name free storage of normalized-form name GSS_Release_buffer free storage of printable name GSS_Release_OID free storage of OID object GSS_Release_OID_set free storage of OID set object GSS_Create_empty_OID_set create empty OID set GSS_Add_OID_set_member add member to OID set GSS_Test_OID_set_member test if OID is member of OID set GSS_OID_to_str display OID as string GSS_Str_to_OID construct OID from string GSS_Inquire_names_for_mech indicate name types supported by mechanism GSS_Inquire_mechs_for_name indicates mechanisms supporting name type GSS_Canonicalize_name translate name to per-mechanism form GSS_Export_name externalize per-mechanism name GSS_Duplicate_name duplicate name object
2.1: Credential management calls
2.1: Credential management calls
These GSS-API calls provide functions related to the management of credentials. Their characterization with regard to whether or not they may block pending exchanges with other network entities (e.g., directories or authentication servers) depends in part on OS-specific (extra-GSS-API) issues, so is not specified in this document.
These GSS-API calls provide functions related to the management of credentials. Their characterization with regard to whether or not they may block pending exchanges with other network entities (e.g., directories or authentication servers) depends in part on OS-specific (extra-GSS-API) issues, so is not specified in this document.
The GSS_Acquire_cred() call is defined within the GSS-API in support of application portability, with a particular orientation towards support of portable server applications. It is recognized that (for certain systems and mechanisms) credentials for interactive users may be managed differently from credentials for server processes; in such environments, it is the GSS-API implementation's responsibility to distinguish these cases and the procedures for making this distinction are a local matter. The GSS_Release_cred() call provides a means for callers to indicate to the GSS-API that use of a credentials structure is no longer required. The GSS_Inquire_cred() call allows callers to determine information about a credentials structure. The GSS_Add_cred() call enables callers to append
The GSS_Acquire_cred() call is defined within the GSS-API in support of application portability, with a particular orientation towards support of portable server applications. It is recognized that (for certain systems and mechanisms) credentials for interactive users may be managed differently from credentials for server processes; in such environments, it is the GSS-API implementation's responsibility to distinguish these cases and the procedures for making this distinction are a local matter. The GSS_Release_cred() call provides a means for callers to indicate to the GSS-API that use of a credentials structure is no longer required. The GSS_Inquire_cred() call allows callers to determine information about a credentials structure. The GSS_Add_cred() call enables callers to append
Linn Standards Track [Page 25] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 25] RFC 2078 GSS-API January 1997
elements to an existing credential structure, allowing iterative construction of a multi-mechanism credential. The GSS_Inquire_cred_by_mech() call enables callers to extract per- mechanism information describing a credentials structure.
elements to an existing credential structure, allowing iterative construction of a multi-mechanism credential. The GSS_Inquire_cred_by_mech() call enables callers to extract per- mechanism information describing a credentials structure.
2.1.1: GSS_Acquire_cred call
2.1.1: GSS_Acquire_cred call
Inputs:
Inputs:
o desired_name INTERNAL NAME, -NULL requests locally-determined default
o desired_name INTERNAL NAME, -NULL requests locally-determined default
o lifetime_req INTEGER,-in seconds; 0 requests default
o lifetime_req INTEGER,-in seconds; 0 requests default
o desired_mechs SET OF OBJECT IDENTIFIER,-empty set requests system-selected default
o desired_mechs SET OF OBJECT IDENTIFIER,-empty set requests system-selected default
o cred_usage INTEGER -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
o cred_usage INTEGER -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o output_cred_handle CREDENTIAL HANDLE,
o output_cred_handle CREDENTIAL HANDLE,
o actual_mechs SET OF OBJECT IDENTIFIER,
o actual_mechs SET OF OBJECT IDENTIFIER,
o lifetime_rec INTEGER -in seconds, or reserved value for INDEFINITE
o lifetime_rec INTEGER -in seconds, or reserved value for INDEFINITE
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that requested credentials were successfully established, for the duration indicated in lifetime_rec, suitable for the usage requested in cred_usage, for the set of mech_types indicated in actual_mechs, and that those credentials can be referenced for subsequent use with the handle returned in output_cred_handle.
o GSS_S_COMPLETE indicates that requested credentials were successfully established, for the duration indicated in lifetime_rec, suitable for the usage requested in cred_usage, for the set of mech_types indicated in actual_mechs, and that those credentials can be referenced for subsequent use with the handle returned in output_cred_handle.
o GSS_S_BAD_MECH indicates that a mech_type unsupported by the GSS-API implementation type was requested, causing the credential establishment operation to fail.
o GSS_S_BAD_MECH indicates that a mech_type unsupported by the GSS-API implementation type was requested, causing the credential establishment operation to fail.
Linn Standards Track [Page 26] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 26] RFC 2078 GSS-API January 1997
o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type unsupported by the applicable underlying GSS-API mechanism(s), so no credentials could be established for the accompanying desired_name.
o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type unsupported by the applicable underlying GSS-API mechanism(s), so no credentials could be established for the accompanying desired_name.
o GSS_S_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-incorporated type specifier information, so no credentials could be established for the accompanying desired_name.
o GSS_S_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-incorporated type specifier information, so no credentials could be established for the accompanying desired_name.
o GSS_S_FAILURE indicates that credential establishment failed for reasons unspecified at the GSS-API level, including lack of authorization to establish and use credentials associated with the identity named in the input desired_name argument.
o GSS_S_FAILURE indicates that credential establishment failed for reasons unspecified at the GSS-API level, including lack of authorization to establish and use credentials associated with the identity named in the input desired_name argument.
GSS_Acquire_cred() is used to acquire credentials so that a principal can (as a function of the input cred_usage parameter) initiate and/or accept security contexts under the identity represented by the desired_name input argument. On successful completion, the returned output_cred_handle result provides a handle for subsequent references to the acquired credentials. Typically, single-user client processes requesting that default credential behavior be applied for context establishment purposes will have no need to invoke this call.
GSS_Acquire_cred() is used to acquire credentials so that a principal can (as a function of the input cred_usage parameter) initiate and/or accept security contexts under the identity represented by the desired_name input argument. On successful completion, the returned output_cred_handle result provides a handle for subsequent references to the acquired credentials. Typically, single-user client processes requesting that default credential behavior be applied for context establishment purposes will have no need to invoke this call.
A caller may provide the value NULL for desired_name, signifying a request for credentials corresponding to a principal identity selected by default for the caller. The procedures used by GSS-API implementations to select the appropriate principal identity in response to such a request are local matters. It is possible that multiple pre-established credentials may exist for the same principal identity (for example, as a result of multiple user login sessions) when GSS_Acquire_cred() is called; the means used in such cases to select a specific credential are local matters. The input lifetime_req argument to GSS_Acquire_cred() may provide useful information for local GSS-API implementations to employ in making this disambiguation in a manner which will best satisfy a caller's intent.
A caller may provide the value NULL for desired_name, signifying a request for credentials corresponding to a principal identity selected by default for the caller. The procedures used by GSS-API implementations to select the appropriate principal identity in response to such a request are local matters. It is possible that multiple pre-established credentials may exist for the same principal identity (for example, as a result of multiple user login sessions) when GSS_Acquire_cred() is called; the means used in such cases to select a specific credential are local matters. The input lifetime_req argument to GSS_Acquire_cred() may provide useful information for local GSS-API implementations to employ in making this disambiguation in a manner which will best satisfy a caller's intent.
The lifetime_rec result indicates the length of time for which the acquired credentials will be valid, as an offset from the present. A mechanism may return a reserved value indicating INDEFINITE if no constraints on credential lifetime are imposed. A caller of GSS_Acquire_cred() can request a length of time for which acquired credentials are to be valid (lifetime_req argument), beginning at the present, or can request credentials with a default validity interval. (Requests for postdated credentials are not supported within the GSS-API.) Certain mechanisms and implementations may bind in
The lifetime_rec result indicates the length of time for which the acquired credentials will be valid, as an offset from the present. A mechanism may return a reserved value indicating INDEFINITE if no constraints on credential lifetime are imposed. A caller of GSS_Acquire_cred() can request a length of time for which acquired credentials are to be valid (lifetime_req argument), beginning at the present, or can request credentials with a default validity interval. (Requests for postdated credentials are not supported within the GSS-API.) Certain mechanisms and implementations may bind in
Linn Standards Track [Page 27] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 27] RFC 2078 GSS-API January 1997
credential validity period specifiers at a point preliminary to invocation of the GSS_Acquire_cred() call (e.g., in conjunction with user login procedures). As a result, callers requesting non-default values for lifetime_req must recognize that such requests cannot always be honored and must be prepared to accommodate the use of returned credentials with different lifetimes as indicated in lifetime_rec.
credential validity period specifiers at a point preliminary to invocation of the GSS_Acquire_cred() call (e.g., in conjunction with user login procedures). As a result, callers requesting non-default values for lifetime_req must recognize that such requests cannot always be honored and must be prepared to accommodate the use of returned credentials with different lifetimes as indicated in lifetime_rec.
The caller of GSS_Acquire_cred() can explicitly specify a set of mech_types which are to be accommodated in the returned credentials (desired_mechs argument), or can request credentials for a system- defined default set of mech_types. Selection of the system-specified default set is recommended in the interests of application portability. The actual_mechs return value may be interrogated by the caller to determine the set of mechanisms with which the returned credentials may be used.
The caller of GSS_Acquire_cred() can explicitly specify a set of mech_types which are to be accommodated in the returned credentials (desired_mechs argument), or can request credentials for a system- defined default set of mech_types. Selection of the system-specified default set is recommended in the interests of application portability. The actual_mechs return value may be interrogated by the caller to determine the set of mechanisms with which the returned credentials may be used.
2.1.2: GSS_Release_cred call
2.1.2: GSS_Release_cred call
Input:
Input:
o cred_handle CREDENTIAL HANDLE - NULL specifies that the credential elements used when default credential behavior is requested be released.
o cred_handle CREDENTIAL HANDLE - NULL specifies that the credential elements used when default credential behavior is requested be released.
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER
o minor_status INTEGER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle were released for purposes of subsequent access by the caller. The effect on other processes which may be authorized shared access to such credentials is a local matter.
o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle were released for purposes of subsequent access by the caller. The effect on other processes which may be authorized shared access to such credentials is a local matter.
o GSS_S_NO_CRED indicates that no release operation was performed, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.
o GSS_S_NO_CRED indicates that no release operation was performed, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.
o GSS_S_FAILURE indicates that the release operation failed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the release operation failed for reasons unspecified at the GSS-API level.
Linn Standards Track [Page 28] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 28] RFC 2078 GSS-API January 1997
Provides a means for a caller to explicitly request that credentials be released when their use is no longer required. Note that system- specific credential management functions are also likely to exist, for example to assure that credentials shared among processes are properly deleted when all affected processes terminate, even if no explicit release requests are issued by those processes. Given the fact that multiple callers are not precluded from gaining authorized access to the same credentials, invocation of GSS_Release_cred() cannot be assumed to delete a particular set of credentials on a system-wide basis.
Provides a means for a caller to explicitly request that credentials be released when their use is no longer required. Note that system- specific credential management functions are also likely to exist, for example to assure that credentials shared among processes are properly deleted when all affected processes terminate, even if no explicit release requests are issued by those processes. Given the fact that multiple callers are not precluded from gaining authorized access to the same credentials, invocation of GSS_Release_cred() cannot be assumed to delete a particular set of credentials on a system-wide basis.
2.1.3: GSS_Inquire_cred call
2.1.3: GSS_Inquire_cred call
Input:
Input:
o cred_handle CREDENTIAL HANDLE -NULL specifies that the credential elements used when default credential behavior is requested are to be queried
o 信用_ハンドルCREDENTIAL HANDLE -NULLは、デフォルト信任状の振舞いが要求されているとき使用される信任している要素が質問されることであると指定します。
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o cred_name INTERNAL NAME,
o 信用_名前INTERNAL NAME
o lifetime_rec INTEGER -in seconds, or reserved value for INDEFINITE
o -中のrec INTEGERが後援する生涯_、またはINDEFINITEにおいて、予約された値
o cred_usage INTEGER, -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
o 信用_用法INTEGER、-0=INITIATE AND-ACCEPT、1=INITIATEだけ、2=ACCEPTだけ
o mech_set SET OF OBJECT IDENTIFIER
o mech_セットSET OF OBJECT IDENTIFIER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle argument were valid, and that the output cred_name, lifetime_rec, and cred_usage values represent, respectively, the credentials' associated principal name, remaining lifetime, suitable usage modes, and supported mechanism types.
o GSS_S_COMPLETEは、入力信用_ハンドル議論で参照をつけられる信任状が有効であり、出力信用_名、生涯_rec、および信用_用法値がそれぞれ信任状の関連主要な名前、残っている生涯、適当な用法モード、および支持されたメカニズムタイプの代理をするのを示します。
o GSS_S_NO_CRED indicates that no information could be returned about the referenced credentials, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.
o GSS_S_いいえ_CREDは、参照をつけられた信任状に関して情報を全く返すことができなかったのを示します、入力信用_ハンドルが無効であったか、または訪問者が参照をつけられた信任状にアクセスする認可を欠いているので。
Linn Standards Track [Page 29] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[29ページ]。
o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced credentials are invalid.
o GSS_S_DEFECTIVE_CREDENTIALは、参照をつけられた信任状が無効であることを示します。
o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced credentials have expired.
o GSS_S_CREDENTIALS_EXPIREDは、参照をつけられた信任状が期限が切れたのを示します。
o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、操作がGSS-APIレベルで不特定の理由で失敗したのを示します。
The GSS_Inquire_cred() call is defined primarily for the use of those callers which request use of default credential behavior rather than acquiring credentials explicitly with GSS_Acquire_cred(). It enables callers to determine a credential structure's associated principal name, remaining validity period, usability for security context initiation and/or acceptance, and supported mechanisms.
GSS_Inquire_信用()呼び出しは主としてそれらの訪問者のGSS_Acquire_信用()で明らかに信任状を取得するよりむしろデフォルト信任状の振舞いの使用を要求する使用のために定義されます。 それは、訪問者が信任している構造の関連主要な名前を決定するのを可能にします、有効期間、セキュリティ文脈開始のためのユーザビリティ、そして/または、承認と、支持されたメカニズムのままで残っていて。
For a multi-mechanism credential, the returned "lifetime" specifier indicates the shortest lifetime of any of the mechanisms' elements in the credential (for either context initiation or acceptance purposes).
マルチメカニズム信任状のために、返された「生涯」特許説明書の作成書は信任状(文脈開始か承認目的のどちらかのための)でメカニズムの要素のどれかの最も短い生涯を示します。
GSS_Inquire_cred() should indicate INITIATE-AND-ACCEPT for "cred_usage" if both of the following conditions hold:
以下の条件の両方が成立するなら、GSS_Inquire_信用()は「信用_用法」のためにINITIATEとACCEPTを示すべきです:
(1) there exists in the credential an element which allows context initiation using some mechanism
(1) 信任状では、何らかのメカニズムを使用することで文脈開始を許容する要素は存在しています。
(2) there exists in the credential an element which allows context acceptance using some mechanism (allowably, but not necessarily, one of the same mechanism(s) qualifying for (1)).
(2) 何らかのメカニズムを使用することで文脈承認を許容する要素が信任状に存在している、(許可されて、しかし、必ず(1))への資格を得る同じメカニズムの1つであるというわけではない。
If condition (1) holds but not condition (2), GSS_Inquire_cred() should indicate INITIATE-ONLY for "cred_usage". If condition (2) holds but not condition (1), GSS_Inquire_cred() should indicate ACCEPT-ONLY for "cred_usage".
状態(2)ではなく、状態(1)船倉であるなら、GSS_Inquire_信用()は「信用_用法」のためにINITIATEだけを示すべきです。 状態(1)ではなく、状態(2)船倉であるなら、GSS_Inquire_信用()は「信用_用法」のためにACCEPTだけを示すべきです。
Callers requiring finer disambiguation among available combinations of lifetimes, usage modes, and mechanisms should call the GSS_Inquire_cred_by_mech() routine, passing that routine one of the mech OIDs returned by GSS_Inquire_cred().
生涯の利用可能な組み合わせ、用法モード、およびメカニズムの中で、よりよい曖昧さの解消を必要とする訪問者は、_mech()によるGSS_Inquire_信用_が日常的であると言うべきです、mech OIDsの通常の1つがGSS_Inquire_信用()で返した通過。
Linn Standards Track [Page 30] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[30ページ]。
2.1.4: GSS_Add_cred call
2.1.4: GSS_Add_信用呼び出し
Inputs:
入力:
o input_cred_handle CREDENTIAL HANDLE - handle to credential structure created with prior GSS_Acquire_cred() or GSS_Add_cred() call, or NULL to append elements to the set which are applied for the caller when default credential behavior is specified.
o _信用_ハンドルCREDENTIAL HANDLEを入力してください--先のGSS_Acquire_信用()で作成された信任している構造かGSSに_Add_信用()の呼び出し、またはNULLを扱って、セットへのデフォルトであるときに、訪問者のために適用されて、信任している振舞いが指定されるということである要素を追加してください。
o desired_name INTERNAL NAME - NULL requests locally-determined default
o 必要な_名前INTERNAL NAME--NULL要求は局所的にデフォルトを決定しました。
o initiator_time_req INTEGER - in seconds; 0 requests default
o _秒の創始者_時間req INTEGER。 0つの要求がデフォルトとします。
o acceptor_time_req INTEGER - in seconds; 0 requests default
o _秒のアクセプタ_時間req INTEGER。 0つの要求がデフォルトとします。
o desired_mech OBJECT IDENTIFIER
o 必要な_mech OBJECT IDENTIFIER
o cred_usage INTEGER - 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
o 信用_用法INTEGER--0=INITIATE AND ACCEPT、1=INITIATEだけ、2=ACCEPTだけ
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o output_cred_handle CREDENTIAL HANDLE, - NULL to request that credential elements be added "in place" to the credential structure identified by input_cred_handle, non-NULL pointer to request that a new credential structure and handle be created.
o _信用_ハンドルCREDENTIAL HANDLEを出力してください--信任している要素が「適所で」入力_信用_ハンドル、非NULLポインタによって特定された、新しい信任している構造とハンドルが作成されるよう要求した信任している構造に追加されるよう要求するNULL。
o actual_mechs SET OF OBJECT IDENTIFIER,
o 実際の_mechs SET OF OBJECT IDENTIFIER
o initiator_time_rec INTEGER - in seconds, or reserved value for INDEFINITE
o _秒、またはINDEFINITEにおいて、予約された値における創始者_時間rec INTEGER
o acceptor_time_rec INTEGER - in seconds, or reserved value for INDEFINITE
o _秒、またはINDEFINITEにおいて、予約された値におけるアクセプタ_時間rec INTEGER
o cred_usage INTEGER, -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
o 信用_用法INTEGER、-0=INITIATE AND-ACCEPT、1=INITIATEだけ、2=ACCEPTだけ
o mech_set SET OF OBJECT IDENTIFIER -- full set of mechanisms supported by resulting credential.
o mech_はSET OF OBJECT IDENTIFIERを設定しました--結果として起こる信任状によってサポートされたメカニズムのフルセット。
Linn Standards Track [Page 31] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[31ページ]。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the credentials referenced by the input_cred_handle argument were valid, and that the resulting credential from GSS_Add_cred() is valid for the durations indicated in initiator_time_rec and acceptor_time_rec, suitable for the usage requested in cred_usage, and for the mechanisms indicated in actual_mechs.
o GSS_S_COMPLETEは入力_信用_ハンドル議論で参照をつけられる信任状が有効であり、_創始者_時間recと_アクセプタ_時間recで示された持続時間に、GSS_Add_信用()からの結果として起こる信任状が有効であることを示します、信用_用法で要求された用法、および実際の_mechsで示されたメカニズムに適しています。
o GSS_S_DUPLICATE_ELEMENT indicates that the input desired_mech specified a mechanism for which the referenced credential already contained a credential element with overlapping cred_usage and validity time specifiers.
o GSS_S_DUPLICATE_ELEMENTは、入力の必要な_mechが信用_用法と正当性時間特許説明書の作成書を重ね合わせるのに、参照をつけられた信任状が既に信任している要素を含んだメカニズムを指定したのを示します。
o GSS_S_BAD_MECH indicates that the input desired_mech specified a mechanism unsupported by the GSS-API implementation, causing the GSS_Add_cred() operation to fail.
o GSS_Add_信用()操作が失敗することを引き起こして、GSS_S_BAD_MECHは、入力の必要な_mechがGSS-API実行によってサポートされないメカニズムを指定したのを示します。
o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type unsupported by the applicable underlying GSS-API mechanism(s), so the GSS_Add_cred() operation could not be performed for that name.
o GSS_S_BAD_NAMETYPEは、提供された必要な_名が「非-解明でき」であることを必要とすることができませんか、したがって、適切な基本的なGSS-APIメカニズムでサポートされないタイプでは、その名前のためにGSS_Add_信用()操作を実行できませんでした。
o GSS_S_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-incorporated type specifier information, so the GSS_Add_cred() operation could not be performed for that name.
o GSS_S_BAD_NAMEが、提供された必要な_名が内部的に法人組織の型指定子情報で矛盾しているのを必要とするので、その名前のためにGSS_Add_信用()操作を実行できませんでした。
o GSS_S_NO_CRED indicates that the input_cred_handle referenced invalid or inaccessible credentials.
o GSS_S_いいえ_CREDは、入力_信用_ハンドルが無効の、または、アクセスできない信任状に参照をつけたのを示します。
o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level, including lack of authorization to establish or use credentials representing the requested identity.
o GSS_S_FAILUREは、操作がGSS-APIレベルで不特定の理由で失敗したのを示します、要求されたアイデンティティを表す信任状を確立するか、または使用するために認可の不足を含んでいて。
GSS_Add_cred() enables callers to construct credentials iteratively by adding credential elements in successive operations, corresponding to different mechanisms. This offers particular value in multi- mechanism environments, as the major_status and minor_status values returned on each iteration are individually visible and can therefore be interpreted unambiguously on a per-mechanism basis.
GSS_Add_信用()は、訪問者が連続した操作で信任している要素を加えることによって信任状繰り返しを組み立てるのを可能にします、異なったメカニズムに対応しています。これはマルチメカニズム環境における特定の値を提供します、各繰り返しのときに返された主要な_状態と小さい方の_状態値は、個別に目に見えて、したがって、明白に1メカニズムあたり1個のベースで解釈できます。
The same input desired_name, or default reference, should be used on all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a particular credential.
同じくらいは必要な_名、またはデフォルト参照を入力して、すべてのGSS_Acquire_信用()と特定の信任状に対応するGSS_Add_信用()呼び出しのときに使用されるべきです。
Linn Standards Track [Page 32] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[32ページ]。
2.1.5: GSS_Inquire_cred_by_mech call
2.1.5: _mech呼び出しによるGSS_Inquire_信用_
Inputs:
入力:
o cred_handle CREDENTIAL HANDLE -- NULL specifies that the credential elements used when default credential behavior is requested are to be queried
o 信用_ハンドルCREDENTIAL HANDLE--NULLは、デフォルト信任状の振舞いが要求されているとき使用される信任している要素が質問されることであると指定します。
o mech_type OBJECT IDENTIFIER -- specific mechanism for which credentials are being queried
o mech_タイプOBJECT IDENTIFIER--信任状が質問されている特定のメカニズム
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o cred_name INTERNAL NAME, -- guaranteed to be MN
o 信用_名前INTERNAL NAME--ミネソタであることを保証します。
o lifetime_rec_initiate INTEGER -- in seconds, or reserved value for INDEFINITE
o 秒の生涯_rec_開始INTEGER、またはINDEFINITEにおいて、予約された値
o lifetime_rec_accept INTEGER -- in seconds, or reserved value for INDEFINITE
o 生涯_rec_は秒にINTEGERを受け入れたか、またはINDEFINITEのために値を予約しました。
o cred_usage INTEGER, -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY
o 信用_用法INTEGER、-0=INITIATE AND-ACCEPT、1=INITIATEだけ、2=ACCEPTだけ
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle argument were valid, that the mechanism indicated by the input mech_type was represented with elements within those credentials, and that the output cred_name, lifetime_rec_initiate, lifetime_rec_accept, and cred_usage values represent, respectively, the credentials' associated principal name, remaining lifetimes, and suitable usage modes.
o GSS_S_COMPLETEは、入力信用_ハンドル議論で参照をつけられる信任状が有効であり、メカニズムが、_それらの信任状の中に要素がある状態でタイプが代理をされたのを入力mechで示して、出力信用_名、生涯_rec_開始、生涯_rec_が受け入れて、信用_用法値がそれぞれ信任状の関連主要な名前を表すのを示します、生涯、および適当な用法モードのままで残っていて。
o GSS_S_NO_CRED indicates that no information could be returned about the referenced credentials, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.
o GSS_S_いいえ_CREDは、参照をつけられた信任状に関して情報を全く返すことができなかったのを示します、入力信用_ハンドルが無効であったか、または訪問者が参照をつけられた信任状にアクセスする認可を欠いているので。
o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced credentials are invalid.
o GSS_S_DEFECTIVE_CREDENTIALは、参照をつけられた信任状が無効であることを示します。
o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced credentials have expired.
o GSS_S_CREDENTIALS_EXPIREDは、参照をつけられた信任状が期限が切れたのを示します。
Linn Standards Track [Page 33] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[33ページ]。
o GSS_S_BAD_MECH indicates that the referenced credentials do not contain elements for the requested mechanism.
o GSS_S_BAD_MECHは、参照をつけられた信任状が要求されたメカニズムのための要素を含まないのを示します。
o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、操作がGSS-APIレベルで不特定の理由で失敗したのを示します。
The GSS_Inquire_cred_by_mech() call enables callers in multi- mechanism environments to acquire specific data about available combinations of lifetimes, usage modes, and mechanisms within a credential structure. The lifetime_rec_initiate result indicates the available lifetime for context initiation purposes; the lifetime_rec_accept result indicates the available lifetime for context acceptance purposes.
_mech()呼び出しによるGSS_Inquire_信用_は、マルチメカニズム環境における訪問者が信任している構造の中で生涯の利用可能な組み合わせ、用法モード、およびメカニズムに関する特定のデータを取得するのを可能にします。 生涯_rec_開始結果は文脈開始目的のために空いている生涯を示します。 生涯_rec_は結果を受け入れます。文脈承認目的のために空いている生涯を示します。
2.2: Context-level calls
2.2: 文脈レベルは呼びます。
This group of calls is devoted to the establishment and management of security contexts between peers. A context's initiator calls GSS_Init_sec_context(), resulting in generation of a token which the caller passes to the target. At the target, that token is passed to GSS_Accept_sec_context(). Depending on the underlying mech_type and specified options, additional token exchanges may be performed in the course of context establishment; such exchanges are accommodated by GSS_S_CONTINUE_NEEDED status returns from GSS_Init_sec_context() and GSS_Accept_sec_context().
呼び出しのこのグループは同輩の間のセキュリティ文脈の確立と管理にささげられます。 訪問者が目標に渡す象徴の世代でなって、文脈の創始者は、GSS_Init_を秒_文脈()と呼びます。 目標では、その象徴はGSS_Accept_秒_文脈()に渡されます。 基本的なmech_タイプと指定されたオプションに頼っていて、追加象徴交換は文脈設立の間に実行されるかもしれません。 そのような交換はCONTINUE_が必要としたGSS_S_によって設備されて、状態がGSS_Init_秒_文脈()とGSS_Accept_秒_文脈()から戻るということです。
Either party to an established context may invoke GSS_Delete_sec_context() to flush context information when a context is no longer required. GSS_Process_context_token() is used to process received tokens carrying context-level control information. GSS_Context_time() allows a caller to determine the length of time for which an established context will remain valid. GSS_Inquire_context() returns status information describing context characteristics. GSS_Wrap_size_limit() allows a caller to determine the size of a token which will be generated by a GSS_Wrap() operation. GSS_Export_sec_context() and GSS_Import_sec_context() enable transfer of active contexts between processes on an end system.
確立した関係への何れの当事者は、文脈がいつもう必要でないかという文脈情報を洗い流すためにGSS_Delete_秒_文脈()を呼び出すかもしれません。 GSS_Process_文脈_象徴()は、文脈レベルコントロール情報を運ぶ容認された象徴を処理するのに使用されます。 GSS_Context_時間()で、訪問者は確立した関係が有効なままで残っている時間の長さを測定できます。 GSS_Inquire_文脈()は文脈の特性について説明する状態情報を返します。 GSS_Wrap_サイズ_限界()で、訪問者はGSS_Wrap()操作で発生する象徴のサイズを決定できます。 GSS_Export_秒_文脈()とGSS_Import_秒_文脈()はエンドシステムの上の過程の間のアクティブな文脈の転送を可能にします。
2.2.1: GSS_Init_sec_context call
2.2.1: GSS_Init_秒_文脈呼び出し
Inputs:
入力:
o claimant_cred_handle CREDENTIAL HANDLE, -NULL specifies "use default"
o _主張者_信用ハンドルCREDENTIAL HANDLE、-NULLが指定する、「デフォルトを使用してください」
o input_context_handle CONTEXT HANDLE, -0 specifies "none assigned yet"
o 入力_文脈_ハンドルCONTEXT HANDLE、-0は「まだ割り当てられていなかったなにも」を指定します。
Linn Standards Track [Page 34] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[34ページ]。
o targ_name INTERNAL NAME,
o targ_名前INTERNAL NAME
o mech_type OBJECT IDENTIFIER, -NULL parameter specifies "use default"
o mech_タイプOBJECT IDENTIFIER、パラメタが指定する-NULLは「デフォルトを使用します」。
o deleg_req_flag BOOLEAN,
o deleg_req_旗のブールです。
o mutual_req_flag BOOLEAN,
o 互いの_req_旗のブールです。
o replay_det_req_flag BOOLEAN,
o ブールであることで_det_req_旗を再演してください。
o sequence_req_flag BOOLEAN,
o 系列_req_旗のブールです。
o anon_req_flag BOOLEAN,
o _やがて、req_はブールで弛みます。
o lifetime_req INTEGER,-0 specifies default lifetime
o 生涯_req INTEGER-0がデフォルトを指定する、生涯
o chan_bindings OCTET STRING,
o chan_結合OCTET STRING
o input_token OCTET STRING-NULL or token received from target
o 入力_象徴OCTET STRING-NULLか目標から受け取られた象徴
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o output_context_handle CONTEXT HANDLE,
o _文脈_ハンドルCONTEXT HANDLEを出力してください。
o mech_type OBJECT IDENTIFIER, -actual mechanism always indicated, never NULL
o mech_タイプOBJECT IDENTIFIER、いつも示された、実際のメカニズム、決してNULLでない
o output_token OCTET STRING, -NULL or token to pass to context target
o 文脈目標に渡す出力_象徴OCTET STRING、-NULLまたは象徴
o deleg_state BOOLEAN,
o deleg_州のブールです。
o mutual_state BOOLEAN,
o 互いの_州のブールです。
o replay_det_state BOOLEAN,
o ブールであることで_det_状態を再演してください。
o sequence_state BOOLEAN,
o 系列_州のブールです。
o anon_state BOOLEAN,
o やがて、_州のブールです。
o trans_state BOOLEAN,
o 移-_州のブールです。
o prot_ready_state BOOLEAN, -- see Section 1.2.7
o prot_はブールで_状態を準備します--セクション1.2.7を見てください。
Linn Standards Track [Page 35] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[35ページ]。
o conf_avail BOOLEAN,
o conf_利益ブールです。
o integ_avail BOOLEAN,
o integ_利益ブールです。
o lifetime_rec INTEGER - in seconds, or reserved value for INDEFINITE
o 秒の生涯_rec INTEGER、またはINDEFINITEにおいて、予約された値
This call may block pending network interactions for those mech_types in which an authentication server or other network entity must be consulted on behalf of a context initiator in order to generate an output_token suitable for presentation to a specified target.
この呼び出しはプレゼンテーションに適した出力_象徴を指定された目標に発生させるように文脈創始者を代表して認証サーバか他のネットワーク実体に相談しなければならないそれらのmech_タイプのために未定のネットワーク相互作用を妨げるかもしれません。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that context-level information was successfully initialized, and that the returned output_token will provide sufficient information for the target to perform per-message processing on the newly-established context.
o GSS_S_COMPLETEは、文脈レベル情報が首尾よく初期化されて、目標が新設された文脈にメッセージ処理を実行するように返された出力_象徴が十分な情報を提供するのを示します。
o GSS_S_CONTINUE_NEEDED indicates that control information in the returned output_token must be sent to the target, and that a reply must be received and passed as the input_token argument to a continuation call to GSS_Init_sec_context(), before per-message processing can be performed in conjunction with this context.
o CONTINUE_が必要としたGSS_S_は入力_象徴議論としてGSS_Init_秒_文脈()への継続呼び出しに回答を返された出力_象徴の制御情報を目標に送らなければならなくて、受け取って、通過しなければならないのを示します、この文脈に関連してメッセージ処理を実行できる前に。
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the input_token failed, preventing further processing from being performed based on that token.
o GSS_S_DEFECTIVE_TOKENは、一貫性チェックが処理がその象徴に基づいて実行されるのをさらに防いで、失敗された入力_象徴に働いたのを示します。
o GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential structure referenced by claimant_cred_handle failed, preventing further processing from being performed using that credential structure.
o GSS_S_DEFECTIVE_CREDENTIALは、主張者_信用_ハンドルによって参照をつけられる信任している構造に実行された一貫性チェックが失敗したのを示します、処理がその信任している構造を使用することで実行されるのをさらに防いで。
o GSS_S_BAD_SIG indicates that the received input_token contains an incorrect integrity check, so context setup cannot be accomplished.
o GSS_S_BAD_SIGが、容認された入力_象徴が不正確な保全チェックを含むのを示すので、文脈セットアップを実行できません。
o GSS_S_NO_CRED indicates that no context was established, either because the input cred_handle was invalid, because the referenced credentials are valid for context acceptor use only, or because the caller lacks authorization to access the referenced credentials.
o GSS_S_いいえ_CREDは、文脈が全く確立されなかったのを示します、文脈アクセプタ使用だけに、参照をつけられた信任状が有効であるので入力信用_ハンドルが無効であったか、または訪問者が参照をつけられた信任状にアクセスする認可を欠いているので。
o GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided through the input claimant_cred_handle argument are no longer valid, so context establishment cannot be completed.
o GSS_S_CREDENTIALS_EXPIREDが、入力主張者_信用_ハンドル議論で提供された信任状がもう有効でないことを示すので、文脈設立は終了できません。
Linn Standards Track [Page 36] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[36ページ]。
o GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-provided chan_bindings and those extracted from the input_token was detected, signifying a security-relevant event and preventing context establishment. (This result will be returned by GSS_Init_sec_context only for contexts where mutual_state is TRUE.)
o GSS_S_BAD_BINDINGSは、訪問者によって提供されたchan_結合と入力_象徴から抽出されたものの間のミスマッチが検出されたのを示します、セキュリティ関連している出来事を意味して、文脈設立を防いで。 (この結果は互いの_状態がTRUEである文脈だけのためにGSS_Init_秒_文脈によって返されるでしょう。)
o GSS_S_OLD_TOKEN indicates that the input_token is too old to be checked for integrity. This is a fatal error during context establishment.
o GSS_S_OLD_TOKENは、入力_象徴が保全がないかどうかチェックできないくらい古いのを示します。 文脈設立の間、これは致命的な誤りです。
o GSS_S_DUPLICATE_TOKEN indicates that the input token has a correct integrity check, but is a duplicate of a token already processed. This is a fatal error during context establishment.
o GSS_S_DUPLICATE_TOKENは、入力象徴には正しい保全チェックがありますが、象徴の写しが既に処理されるのを示します。 文脈設立の間、これは致命的な誤りです。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided; this major status will be returned only for successor calls following GSS_S_CONTINUE_ NEEDED status returns.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 この主要な状態は_S_CONTINUE_が状態リターンを必要としたという後継者呼び出しの次のGSSのためだけに返されるでしょう。
o GSS_S_BAD_NAMETYPE indicates that the provided targ_name is of a type uninterpretable or unsupported by the applicable underlying GSS-API mechanism(s), so context establishment cannot be completed.
o GSS_S_BAD_NAMETYPEが、適切な基本的なGSS-APIメカニズムで「非-解明でき」であるかサポートされないタイプには提供されたtarg_名前があるのを示すので、文脈設立は終了できません。
o GSS_S_BAD_NAME indicates that the provided targ_name is inconsistent in terms of internally-incorporated type specifier information, so context establishment cannot be accomplished.
o GSS_S_BAD_NAMEが、提供されたtarg_名前が内部的に法人組織の型指定子情報で矛盾しているのを示すので、文脈設立を実行できません。
o GSS_S_BAD_MECH indicates receipt of a context establishment token or of a caller request specifying a mechanism unsupported by the local system or with the caller's active credentials
o GSS_S_BAD_MECHはローカルシステムか訪問者のアクティブな信任状でサポートされないメカニズムを指定する文脈設立象徴か訪問者要求の領収書を示します。
o GSS_S_FAILURE indicates that context setup could not be accomplished for reasons unspecified at the GSS-API level, and that no interface-defined recovery action is available.
o GSS_S_FAILUREはGSS-APIレベルで不特定の理由で文脈セットアップを実行できないで、どんなインタフェースで定義された回復動作も利用可能でないことを示します。
This routine is used by a context initiator, and ordinarily emits one (or, for the case of a multi-step exchange, more than one) output_token suitable for use by the target within the selected mech_type's protocol. Using information in the credentials structure referenced by claimant_cred_handle, GSS_Init_sec_context() initializes the data structures required to establish a security context with target targ_name. The targ_name may be any valid INTERNAL NAME; it need not be an MN. The claimant_cred_handle must correspond to the same valid credentials structure on the initial call to GSS_Init_sec_context() and on any successor calls resulting from GSS_S_CONTINUE_NEEDED status returns; different protocol
このルーチンは、文脈創始者によって使用されて、通常、選択されたmech_タイプのプロトコルの中で目標で使用に適した1つ(または、多段階交換に関するケースのためのより多くのもの)の出力_象徴を放ちます。 主張者_信用_ハンドルによって参照をつけられる信任状構造で情報を使用して、GSS_Init_秒_文脈()は目標targ_名でセキュリティ文脈を確立するのに必要であるデータ構造を初期化します。 targ_名前はどんな有効なINTERNAL NAMEであるかもしれませんも。 それはミネソタである必要はありません。 主張者_信用_ハンドルはGSS_Init_秒_文脈()への初期の呼び出しの同じ正当な証明書構造に対応しなければなりません、そして、CONTINUE_が必要としたGSS_S_から生じるどんな後継者呼び出しのときにも、状態は戻ります。 異なったプロトコル
Linn Standards Track [Page 37] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[37ページ]。
sequences modeled by the GSS_S_CONTINUE_NEEDED facility will require access to credentials at different points in the context establishment sequence.
文脈設立系列でCONTINUE_が必要としたGSS_S_によってモデル化された系列は異なるところでポイントに信任状にアクセスします施設が、必要である。
The input_context_handle argument is 0, specifying "not yet assigned", on the first GSS_Init_sec_context() call relating to a given context. If successful (i.e., if accompanied by major_status GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and only if successful, the initial GSS_Init_sec_context() call returns a non-zero output_context_handle for use in future references to this context. Once a non-zero output_context_handle has been returned, GSS-API callers should call GSS_Delete_sec_context() to release context- related resources if errors occur in later phases of context establishment, or when an established context is no longer required.
与えられた文脈に関連する最初のGSS_Init_秒の_文脈()呼び出しのときに入力_文脈_ハンドル議論は0、「まだ割り当てられなかった」指定です。 うまくいくなら(すなわち、GSS__S COMPLETEか_GSS_S CONTINUE_が必要とした主要な_状態によって伴われるなら)、うまくいく場合にだけ、初期のGSS_Init_秒_文脈()呼び出しは非ゼロ出力_文脈_を返します。この文脈の後学における使用のために、扱います。 確立した関係はもう必要でないときに、いったん非ゼロ出力_文脈_ハンドルを返すと、誤りが文脈設立の後期で発生するなら、GSS-API訪問者は、GSS_Delete_をリリース文脈関連するリソースに秒_文脈()と呼ぶべきです。
When continuation attempts to GSS_Init_sec_context() are needed to perform context establishment, the previously-returned non-zero handle value is entered into the input_context_handle argument and will be echoed in the returned output_context_handle argument. On such continuation attempts (and only on continuation attempts) the input_token value is used, to provide the token returned from the context's target.
GSS_Init_秒_文脈()への継続試みが文脈設立を実行するのに必要であるときに、以前に返された非ゼロハンドル価値は、入力_文脈_ハンドル議論に入れられて、返された出力_文脈_ハンドル議論で反響されるでしょう。 そのような継続試み(そして継続試みだけに関して)のときに、入力_象徴値は、文脈の目標から返された象徴を提供するのに使用されます。
The chan_bindings argument is used by the caller to provide information binding the security context to security-related characteristics (e.g., addresses, cryptographic keys) of the underlying communications channel. See Section 1.1.6 of this document for more discussion of this argument's usage.
chan_結合議論は、基本的なコミュニケーションチャンネルのセキュリティ関連の特性(例えば、アドレス、暗号化キー)にセキュリティ文脈を縛る情報を提供するのに訪問者によって使用されます。 この議論の用法の、より多くの議論のためのこの.6通のセクション1.1ドキュメントを見てください。
The input_token argument contains a message received from the target, and is significant only on a call to GSS_Init_sec_context() which follows a previous return indicating GSS_S_CONTINUE_NEEDED major_status.
入力_象徴議論は、目標から受け取られたメッセージを含んでいて、単に呼び出しのときにGSS_S_CONTINUE_が主要な_状態を必要としたのを示す前のリターンに続くGSS_Init_秒_文脈()に重要です。
It is the caller's responsibility to establish a communications path to the target, and to transmit any returned output_token (independent of the accompanying returned major_status value) to the target over that path. The output_token can, however, be transmitted along with the first application-provided input message to be processed by GSS_GetMIC() or GSS_Wrap() in conjunction with a successfully- established context.
コミュニケーション経路を目標に確立して、どんな返された出力_象徴(付随の返された主要な_状態値の如何にかかわらず)もその経路の上の目標に伝えるのは、訪問者の責任です。 しかしながら、首尾よく設立された文脈に関連してGSS_GetMIC()かGSS_Wrap()によって処理されるべき最初のアプリケーションで提供された入力メッセージと共に出力_象徴を伝えることができます。
The initiator may request various context-level functions through input flags: the deleg_req_flag requests delegation of access rights, the mutual_req_flag requests mutual authentication, the replay_det_req_flag requests that replay detection features be applied to messages transferred on the established context, and the sequence_req_flag requests that sequencing be enforced. (See Section
創始者は入力旗で様々な文脈レベル機能を要求するかもしれません: アクセス権のdeleg_req_旗の要求代表団、互いの_req_旗は互いの認証、再生検出機能が確立した関係で移されたメッセージに適用されるという再生_det_req_旗の要求、および配列が実施されるという系列_req_旗の要求を要求します。 (セクションを見てください。
Linn Standards Track [Page 38] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[38ページ]。
1.2.3 for more information on replay detection and sequencing features.) The anon_req_flag requests that the initiator's identity not be transferred within tokens to be sent to the acceptor.
1.2.3、再生検出と配列の特徴に関する詳しい情報)。 _やがて、req_旗は、創始者のアイデンティティがアクセプタに送られる象徴の中で移されないよう要求します。
Not all of the optionally-requestable features will be available in all underlying mech_types. The corresponding return state values deleg_state, mutual_state, replay_det_state, and sequence_state indicate, as a function of mech_type processing capabilities and initiator-provided input flags, the set of features which will be active on the context. The returned trans_state value indicates whether the context is transferable to other processes through use of GSS_Export_sec_context(). These state indicators' values are undefined unless either the routine's major_status indicates GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED major_status; for the latter case, it is possible that additional features, not confirmed or indicated along with TRUE prot_ready_state, will be confirmed and indicated when GSS_S_COMPLETE is subsequently returned.
任意に要求可能な特徴のすべてがすべての基本的なmech_タイプで利用可能になるというわけではないでしょう。 deleg_州、互いの_州、再生_det_州、および系列_州がmech_の機能として示す対応するリターン州の値は処理能力と創始者によって提供された入力旗(文脈でアクティブになる特徴のセット)をタイプします。 返された移-_州の価値は、文脈がGSS_Export_秒_文脈()の使用で他の過程に移転可能であるかどうかを示します。 ルーチンの主要な_状態が_GSS_S COMPLETEを示すか、または持ち合わせの_状態が_GSS_S CONTINUE_と共に返されるTRUE prot_が主要な_状態を必要としなかったなら、これらの州のインディケータの値は未定義です。 次にGSS_S_COMPLETEを返すとき、後者のケースにおいて、TRUE protの_の持ち合わせの_状態と共に確認もされませんでしたし、示されもしなかった付加的な機能が確認されて、示されるのは、可能です。
The returned anon_state and prot_ready_state values are significant for both GSS_S_COMPLETE and GSS_S_CONTINUE_NEEDED major_status returns from GSS_Init_sec_context(). When anon_state is returned TRUE, this indicates that neither the current token nor its predecessors delivers or has delivered the initiator's identity. Callers wishing to perform context establishment only if anonymity support is provided should transfer a returned token from GSS_Init_sec_context() to the peer only if it is accompanied by a TRUE anon_state indicator. When prot_ready_state is returned TRUE in conjunction with GSS_S_CONTINUE_NEEDED major_status, this indicates that per-message protection operations may be applied on the context: see Section 1.2.7 for further discussion of this facility.
やがて_GSS_S COMPLETEと_GSS_S CONTINUE_の両方に、重要な_州とprotの_の持ち合わせの_州が、評価する戻しにされるのは状態がGSS_Init_秒_文脈()から返す主要な_を必要としました。 _やがてTRUEを状態に返すとき、これは、現在の象徴もその前任者も配送しないのを示すか、または創始者のアイデンティティを送りました。 やがてTRUEによって伴われて、_がインディケータを述べるということである場合にだけ、匿名サポートを提供する場合にだけ文脈設立を実行したがっている訪問者はGSS_Init_秒_文脈()から同輩まで返された象徴を移すべきです。 _持ち合わせの_が、TRUEが_GSS_S CONTINUE_に関連して返されると述べるprotが主要な_状態を必要としたとき、これは、1メッセージあたりの保護操作が文脈で適用されるかもしれないのを示します: この施設のさらなる議論に関してセクション1.2.7を見てください。
Failure to provide the precise set of features requested by the caller does not cause context establishment to fail; it is the caller's prerogative to delete the context if the feature set provided is unsuitable for the caller's use.
訪問者によって要求された正確なセットの特徴を提供しない場合、文脈設立が行き詰まることを引き起こしません。 訪問者の使用に、提供された特徴セットが不適当であるなら、文脈を削除するのは、訪問者の特権です。
The returned mech_type value indicates the specific mechanism employed on the context, is valid only along with major_status GSS_S_COMPLETE, and will never indicate the value for "default". Note that, for the case of certain mechanisms which themselves perform negotiation, the returned mech_type result may indicate selection of a mechanism identified by an OID different than that passed in the input mech_type argument.
返されたmech_タイプ値は、文脈で使われた特定のメカニズムを示して、_主要な_状態GSS_S COMPLETEだけと共に有効であり、「デフォルト」のために値は決して示さないでしょう。 返されたmech_タイプ結果が自分たちで交渉を実行するあるメカニズムに関するケースのためにそれが入力mech_タイプ議論で通ったより異なったOIDによって特定されたメカニズムの選択を示すかもしれないことに注意してください。
The conf_avail return value indicates whether the context supports per-message confidentiality services, and so informs the caller whether or not a request for encryption through the conf_req_flag
文脈が1メッセージあたりの秘密性サービスを支持するかどうかを示すので、conf_利益リターン価値は、conf_req_を通した暗号化を求める要求が弛むかどうかを訪問者に知らせます。
Linn Standards Track [Page 39] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[39ページ]。
input to GSS_Wrap() can be honored. In similar fashion, the integ_avail return value indicates whether per-message integrity services are available (through either GSS_GetMIC() or GSS_Wrap()) on the established context. These state indicators' values are undefined unless either the routine's major_status indicates GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED major_status.
GSS_Wrap()への入力を光栄に思うことができます。 同様に、integ_利益リターン価値は、1メッセージの保全あたりのサービスが利用可能であるかどうかを示します。(確立した関係のGSS_GetMIC()かGSS_Wrap())のどちらかを通して。 ルーチンの主要な_状態が_GSS_S COMPLETEを示すか、または持ち合わせの_状態が_GSS_S CONTINUE_と共に返されるTRUE prot_が主要な_状態を必要としなかったなら、これらの州のインディケータの値は未定義です。
The lifetime_req input specifies a desired upper bound for the lifetime of the context to be established, with a value of 0 used to request a default lifetime. The lifetime_rec return value indicates the length of time for which the context will be valid, expressed as an offset from the present; depending on mechanism capabilities, credential lifetimes, and local policy, it may not correspond to the value requested in lifetime_req. If no constraints on context lifetime are imposed, this may be indicated by returning a reserved value representing INDEFINITE lifetime_req. The value of lifetime_rec is undefined unless the routine's major_status indicates GSS_S_COMPLETE.
生涯_req入力は証明されるために文脈の生涯のための必要な上限を指定します、0の値が要求するのにおいて使用されていた状態でデフォルト、生涯 生涯_recリターン価値は有効で、言い表す文脈がオフセットとしてプレゼントからなる時間の長さを示します。 メカニズム能力、信任している生涯、およびローカルの方針によって、それは生涯_reqで要求された値に対応しないかもしれません。 文脈生涯の規制が全く課されないなら、これは、INDEFINITE生涯_reqを表す予約された値を返すことによって、示されるかもしれません。 ルーチンの主要な_状態が_GSS_S COMPLETEを示さない場合、生涯_recの値は未定義です。
If the mutual_state is TRUE, this fact will be reflected within the output_token. A call to GSS_Accept_sec_context() at the target in conjunction with such a context will return a token, to be processed by a continuation call to GSS_Init_sec_context(), in order to achieve mutual authentication.
互いの_状態がTRUEであるなら、この事実は出力_象徴の中で反映されるでしょう。 そのような文脈に関連した目標のGSS_Accept_秒_文脈()への呼び出しはGSS_Init_秒_文脈()への継続呼び出しで処理されるために象徴を返すでしょう、互いの認証を達成するために。
2.2.2: GSS_Accept_sec_context call
2.2.2: GSS_Accept_秒_文脈呼び出し
Inputs:
入力:
o acceptor_cred_handle CREDENTIAL HANDLE, -- NULL specifies "use default"
o アクセプタ_信用_はCREDENTIAL HANDLEを扱います--NULLが指定する、「デフォルトを使用してください」
o input_context_handle CONTEXT HANDLE, -- 0 specifies "not yet assigned"
o _文脈_ハンドルCONTEXT HANDLEを入力してください--0は「まだ割り当てられなく」指定します。
o chan_bindings OCTET STRING,
o chan_結合OCTET STRING
o input_token OCTET STRING
o 入力_象徴OCTET STRING
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o src_name INTERNAL NAME, -- guaranteed to be MN
o src_名前INTERNAL NAME--ミネソタであることを保証します。
Linn Standards Track [Page 40] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[40ページ]。
o mech_type OBJECT IDENTIFIER,
o mech_タイプOBJECT IDENTIFIER
o output_context_handle CONTEXT HANDLE,
o _文脈_ハンドルCONTEXT HANDLEを出力してください。
o deleg_state BOOLEAN,
o deleg_州のブールです。
o mutual_state BOOLEAN,
o 互いの_州のブールです。
o replay_det_state BOOLEAN,
o ブールであることで_det_状態を再演してください。
o sequence_state BOOLEAN,
o 系列_州のブールです。
o anon_state BOOLEAN,
o やがて、_州のブールです。
o trans_state BOOLEAN,
o 移-_州のブールです。
o prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion
o prot_はブールで_状態を準備します--議論に関してセクション1.2.7を見てください。
o conf_avail BOOLEAN,
o conf_利益ブールです。
o integ_avail BOOLEAN,
o integ_利益ブールです。
o lifetime_rec INTEGER, - in seconds, or reserved value for INDEFINITE
o 秒の生涯_rec INTEGER、またはINDEFINITEにおいて、予約された値
o delegated_cred_handle CREDENTIAL HANDLE,
o _信用_ハンドルCREDENTIAL HANDLEを代表として派遣しました。
o output_token OCTET STRING -NULL or token to pass to context initiator
o 出力_象徴OCTET STRING -NULLか文脈創始者に渡す象徴
This call may block pending network interactions for those mech_types in which a directory service or other network entity must be consulted on behalf of a context acceptor in order to validate a received input_token.
この呼び出しは容認された入力_象徴を有効にするために文脈アクセプタを代表して電話番号案内か他のネットワーク実体に相談しなければならないそれらのmech_タイプのために未定のネットワーク相互作用を妨げるかもしれません。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that context-level data structures were successfully initialized, and that per-message processing can now be performed in conjunction with this context.
o GSS_S_COMPLETEは首尾よく文脈レベルデータ構造を初期化して、現在この文脈に関連してメッセージ処理を実行できるのを示します。
o GSS_S_CONTINUE_NEEDED indicates that control information in the returned output_token must be sent to the initiator, and that a response must be received and passed as the input_token argument to a continuation call to GSS_Accept_sec_context(), before per-message processing can be performed in conjunction with this context.
o CONTINUE_が必要としたGSS_S_は入力_象徴議論としてGSS_Accept_秒_文脈()への継続呼び出しに応答を返された出力_象徴の制御情報を創始者に送らなければならなくて、受けて、通過しなければならないのを示します、この文脈に関連してメッセージ処理を実行できる前に。
Linn Standards Track [Page 41] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[41ページ]。
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the input_token failed, preventing further processing from being performed based on that token.
o GSS_S_DEFECTIVE_TOKENは、一貫性チェックが処理がその象徴に基づいて実行されるのをさらに防いで、失敗された入力_象徴に働いたのを示します。
o GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential structure referenced by acceptor_cred_handle failed, preventing further processing from being performed using that credential structure.
o GSS_S_DEFECTIVE_CREDENTIALは、アクセプタ_信用_ハンドルによって参照をつけられる信任している構造に実行された一貫性チェックが失敗したのを示します、処理がその信任している構造を使用することで実行されるのをさらに防いで。
o GSS_S_BAD_SIG indicates that the received input_token contains an incorrect integrity check, so context setup cannot be accomplished.
o GSS_S_BAD_SIGが、容認された入力_象徴が不正確な保全チェックを含むのを示すので、文脈セットアップを実行できません。
o GSS_S_DUPLICATE_TOKEN indicates that the integrity check on the received input_token was correct, but that the input_token was recognized as a duplicate of an input_token already processed. No new context is established.
o GSS_S_DUPLICATE_TOKENは、容認された入力_象徴の保全チェックが正しかったのですが、入力_象徴の写しに既に処理されたとき入力_象徴が認識されたのを示します。 どんな新しい関係も確立されません。
o GSS_S_OLD_TOKEN indicates that the integrity check on the received input_token was correct, but that the input_token is too old to be checked for duplication against previously-processed input_tokens. No new context is established.
o GSS_S_OLD_TOKENは、容認された入力_象徴の保全チェックが正しかったのですが、入力_象徴が複製がないかどうか以前に処理された入力_象徴に対してチェックできないくらい古いのを示します。 どんな新しい関係も確立されません。
o GSS_S_NO_CRED indicates that no context was established, either because the input cred_handle was invalid, because the referenced credentials are valid for context initiator use only, or because the caller lacks authorization to access the referenced credentials.
o GSS_S_いいえ_CREDは、文脈が全く確立されなかったのを示します、文脈創始者使用だけに、参照をつけられた信任状が有効であるので入力信用_ハンドルが無効であったか、または訪問者が参照をつけられた信任状にアクセスする認可を欠いているので。
o GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided through the input acceptor_cred_handle argument are no longer valid, so context establishment cannot be completed.
o GSS_S_CREDENTIALS_EXPIREDが、入力アクセプタ_信用_ハンドル議論で提供された信任状がもう有効でないことを示すので、文脈設立は終了できません。
o GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-provided chan_bindings and those extracted from the input_token was detected, signifying a security-relevant event and preventing context establishment.
o GSS_S_BAD_BINDINGSは、訪問者によって提供されたchan_結合と入力_象徴から抽出されたものの間のミスマッチが検出されたのを示します、セキュリティ関連している出来事を意味して、文脈設立を防いで。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided; this major status will be returned only for successor calls following GSS_S_CONTINUE_ NEEDED status returns.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 この主要な状態は_S_CONTINUE_が状態リターンを必要としたという後継者呼び出しの次のGSSのためだけに返されるでしょう。
o GSS_S_BAD_MECH indicates receipt of a context establishment token specifying a mechanism unsupported by the local system or with the caller's active credentials.
o GSS_S_BAD_MECHはローカルシステムでサポートされないメカニズムを指定する文脈設立象徴か訪問者のアクティブな信任状で領収書を示します。
Linn Standards Track [Page 42] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[42ページ]。
o GSS_S_FAILURE indicates that context setup could not be accomplished for reasons unspecified at the GSS-API level, and that no interface-defined recovery action is available.
o GSS_S_FAILUREはGSS-APIレベルで不特定の理由で文脈セットアップを実行できないで、どんなインタフェースで定義された回復動作も利用可能でないことを示します。
The GSS_Accept_sec_context() routine is used by a context target. Using information in the credentials structure referenced by the input acceptor_cred_handle, it verifies the incoming input_token and (following the successful completion of a context establishment sequence) returns the authenticated src_name and the mech_type used. The returned src_name is guaranteed to be an MN, processed by the mechanism under which the context was established. The acceptor_cred_handle must correspond to the same valid credentials structure on the initial call to GSS_Accept_sec_context() and on any successor calls resulting from GSS_S_CONTINUE_NEEDED status returns; different protocol sequences modeled by the GSS_S_CONTINUE_NEEDED mechanism will require access to credentials at different points in the context establishment sequence.
GSS_Accept_秒_文脈()ルーチンは文脈目標によって使用されます。 入力アクセプタ_信用_ハンドルによって参照をつけられる信任状構造で情報を使用して、入って来る入力_象徴について確かめます、そして、(文脈設立系列の無事終了に続きます)は認証されたsrc_名とタイプが使用したmech_を返します。 返されたsrc_名前は、文脈が確立されたメカニズムによって処理されたミネソタになるように保証されます。 アクセプタ_信用_ハンドルはGSS_Accept_秒_文脈()への初期の呼び出しの同じ正当な証明書構造に対応しなければなりません、そして、CONTINUE_が必要としたGSS_S_から生じるどんな後継者呼び出しのときにも、状態は戻ります。 文脈設立系列でCONTINUE_が必要としたGSS_S_によってモデル化された異なったプロトコル系列は異なるところでポイントに信任状にアクセスしますメカニズムが、必要である。
The input_context_handle argument is 0, specifying "not yet assigned", on the first GSS_Accept_sec_context() call relating to a given context. If successful (i.e., if accompanied by major_status GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and only if successful, the initial GSS_Accept_sec_context() call returns a non-zero output_context_handle for use in future references to this context. Once a non-zero output_context_handle has been returned, GSS-API callers should call GSS_Delete_sec_context() to release context- related resources if errors occur in later phases of context establishment, or when an established context is no longer required.
与えられた文脈に関連する最初のGSS_Accept_秒の_文脈()呼び出しのときに入力_文脈_ハンドル議論は0、「まだ割り当てられなかった」指定です。 うまくいくなら(すなわち、GSS__S COMPLETEか_GSS_S CONTINUE_が必要とした主要な_状態によって伴われるなら)、うまくいく場合にだけ、初期のGSS_Accept_秒_文脈()呼び出しは非ゼロ出力_文脈_を返します。この文脈の後学における使用のために、扱います。 確立した関係はもう必要でないときに、いったん非ゼロ出力_文脈_ハンドルを返すと、誤りが文脈設立の後期で発生するなら、GSS-API訪問者は、GSS_Delete_をリリース文脈関連するリソースに秒_文脈()と呼ぶべきです。
The chan_bindings argument is used by the caller to provide information binding the security context to security-related characteristics (e.g., addresses, cryptographic keys) of the underlying communications channel. See Section 1.1.6 of this document for more discussion of this argument's usage.
chan_結合議論は、基本的なコミュニケーションチャンネルのセキュリティ関連の特性(例えば、アドレス、暗号化キー)にセキュリティ文脈を縛る情報を提供するのに訪問者によって使用されます。 この議論の用法の、より多くの議論のためのこの.6通のセクション1.1ドキュメントを見てください。
The returned state results (deleg_state, mutual_state, replay_det_state, sequence_state, anon_state, trans_state, and prot_ready_state) reflect the same information as described for GSS_Init_sec_context(), and their values are significant under the same return state conditions.
返された州の結果(deleg_状態、互いの_状態、再生_det_状態、系列_はやがて、_州、移-_州、およびprotの_の持ち合わせの_が述べると述べる)はGSS_Init_秒_文脈()のための説明されるのと同じ情報を反映します、そして、彼らの値は同じリターン州の状態の下で重要です。
Linn Standards Track [Page 43] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[43ページ]。
The conf_avail return value indicates whether the context supports per-message confidentiality services, and so informs the caller whether or not a request for encryption through the conf_req_flag input to GSS_Wrap() can be honored. In similar fashion, the integ_avail return value indicates whether per-message integrity services are available (through either GSS_GetMIC() or GSS_Wrap()) on the established context. These values are significant under the same return state conditions as described under GSS_Init_sec_context().
文脈が1メッセージあたりの秘密性サービスを支持するかどうかを示すので、conf_利益リターン価値は、GSS_Wrap()へのconf_req_旗の入力による暗号化を求める要求を光栄に思うことができるかどうかを訪問者に知らせます。 同様に、integ_利益リターン価値は、1メッセージの保全あたりのサービスが利用可能であるかどうかを示します。(確立した関係のGSS_GetMIC()かGSS_Wrap())のどちらかを通して。 これらの値はGSS_Init_秒_文脈()の下で説明されるのと同じリターン州の状態の下で重要です。
The lifetime_rec return value is significant only in conjunction with GSS_S_COMPLETE major_status, and indicates the length of time for which the context will be valid, expressed as an offset from the present.
生涯_recリターン価値は、GSS_S_のCOMPLETEの主要な_状態に関連してだけ重要であり、プレゼントから有効で、言い表す文脈がオフセットとしてなる時間の長さを示します。
The mech_type return value indicates the specific mechanism employed on the context, is valid only along with major_status GSS_S_COMPLETE, and will never indicate the value for "default".
mech_タイプリターン価値は、文脈で使われた特定のメカニズムを示して、_主要な_状態GSS_S COMPLETEだけと共に有効であり、「デフォルト」のために値は決して示さないでしょう。
The delegated_cred_handle result is significant only when deleg_state is TRUE, and provides a means for the target to reference the delegated credentials. The output_token result, when non-NULL, provides a context-level token to be returned to the context initiator to continue a multi-step context establishment sequence. As noted with GSS_Init_sec_context(), any returned token should be transferred to the context's peer (in this case, the context initiator), independent of the value of the accompanying returned major_status.
代表として派遣された_信用_ハンドル結果は、deleg_状態がTRUEであるときにだけ、重要であり、参照への目標のための手段に代表として派遣された信任状を提供します。 非NULLであるときに、出力_象徴結果は多段階文脈設立系列を続けるために文脈創始者に返される文脈レベル象徴を提供します。 GSS_Init_秒_文脈()で注意されるように、文脈の同輩(この場合文脈創始者)にどんな返された象徴も移すべきです、付随の返された主要な_状態の値の如何にかかわらず。
Note: A target must be able to distinguish a context-level input_token, which is passed to GSS_Accept_sec_context(), from the per-message data elements passed to GSS_VerifyMIC() or GSS_Unwrap(). These data elements may arrive in a single application message, and GSS_Accept_sec_context() must be performed before per-message processing can be performed successfully.
以下に注意してください。 目標は文脈レベル入力_象徴を区別できなければなりません、GSS_VerifyMIC()かGSS_Unwrap()に渡された1メッセージあたりのデータ要素から。(象徴はGSS_Accept_秒_文脈()に渡されます)。 これらのデータ要素はただ一つのアプリケーションメッセージに届くかもしれません、そして、首尾よくメッセージ処理を実行できる前にGSS_Accept_秒_文脈()を実行しなければなりません。
2.2.3: GSS_Delete_sec_context call
2.2.3: GSS_Delete_秒_文脈呼び出し
Input:
以下を入力してください。
o context_handle CONTEXT HANDLE
o 文脈_ハンドルCONTEXT HANDLE
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
Linn Standards Track [Page 44] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[44ページ]。
o output_context_token OCTET STRING
o 出力_文脈_象徴OCTET STRING
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the context was recognized, and that relevant context-specific information was flushed. If the caller provides a non-null buffer to receive an output_context_token, and the mechanism returns a non-NULL token into that buffer, the returned output_context_token is ready for transfer to the context's peer.
o GSS_S_COMPLETEは、文脈が認識されて、関連文脈特殊情報が洗い流されたのを示します。 訪問者が出力_文脈_象徴を受け取るために非ヌルバッファを提供して、メカニズムが非NULL象徴をそのバッファの中に返すなら、返された出力_文脈_象徴は文脈の同輩への転送の準備ができています。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided, so no deletion was performed.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったので削除が全く実行されなかったのを示します。
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Delete_sec_context() operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、文脈が認識されましたが、GSS-APIレベルで不特定の理由でGSS_Delete_秒_文脈()操作を実行できなかったのを示します。
This call may block pending network interactions for mech_types in which active notification must be made to a central server when a security context is to be deleted.
この呼び出しはセキュリティ文脈が削除されることであるときに活発な通知をセントラルサーバーにしなければならないmech_タイプのために未定のネットワーク相互作用を妨げるかもしれません。
This call can be made by either peer in a security context, to flush context-specific information. If a non-null output_context_token parameter is provided by the caller, an output_context_token may be returned to the caller. If an output_context_token is provided to the caller, it can be passed to the context's peer to inform the peer's GSS-API implementation that the peer's corresponding context information can also be flushed. (Once a context is established, the peers involved are expected to retain cached credential and context- related information until the information's expiration time is reached or until a GSS_Delete_sec_context() call is made.)
どちらの同輩も、文脈特殊情報を洗い流すためにセキュリティ文脈でこの電話をかけることができます。 訪問者が非ヌル出力_文脈_象徴パラメタを提供するなら、出力_文脈_象徴を訪問者に返すかもしれません。 出力_文脈_象徴を訪問者に提供するなら、また、同輩の対応する文脈情報を洗い流すことができることを同輩のGSS-API実行に知らせるために文脈の同輩にそれを渡すことができます。 (文脈がいったん確立されると、かかわった同輩が情報の満了時間に達しているか、またはGSS_Delete_秒_文脈()電話をかけるまでキャッシュされた信任状と文脈の関連する情報を保有すると予想されます。)
The facility for context_token usage to signal context deletion is retained for compatibility with GSS-API Version 1. For current usage, it is recommended that both peers to a context invoke GSS_Delete_sec_context() independently, passing a null output_context_token buffer to indicate that no context_token is required. Implementations of GSS_Delete_sec_context() should delete relevant locally-stored context information.
文脈_象徴用法が文脈削除を示す施設はGSS-APIバージョン1との互換性のために保有されます。 現在の用法に、文脈への両方の同輩が独自にGSS_Delete_秒_文脈()を呼び出すのは、お勧めです、文脈_象徴は全く必要でないことを示すためにヌル出力_文脈_象徴バッファを渡して。 GSS_Delete_秒_文脈()の実現は関連局所的に格納された文脈情報を削除するべきです。
Attempts to perform per-message processing on a deleted context will result in error returns.
削除された文脈にメッセージ処理を実行する試みは誤りリターンをもたらすでしょう。
Linn Standards Track [Page 45] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[45ページ]。
2.2.4: GSS_Process_context_token call
2.2.4: GSS_Process_文脈_象徴呼び出し
Inputs:
入力:
o context_handle CONTEXT HANDLE,
o 文脈_ハンドルCONTEXT HANDLE
o input_context_token OCTET STRING
o 入力_文脈_象徴OCTET STRING
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the input_context_token was successfully processed in conjunction with the context referenced by context_handle.
o GSS_S_COMPLETEは、入力_文脈_象徴が首尾よく文脈_ハンドルによって参照をつけられる文脈に関連して処理されたのを示します。
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the received context_token failed, preventing further processing from being performed with that token.
o GSS_S_DEFECTIVE_TOKENは、一貫性チェックが処理がその象徴で実行されるのをさらに防いで、失敗された容認された文脈_象徴に働いたのを示します。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Process_context_token() operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、文脈が認識されましたが、GSS-APIレベルで不特定の理由でGSS_Process_文脈_象徴()操作を実行できなかったのを示します。
This call is used to process context_tokens received from a peer once a context has been established, with corresponding impact on context-level state information. One use for this facility is processing of the context_tokens generated by GSS_Delete_sec_context(); GSS_Process_context_token() will not block pending network interactions for that purpose. Another use is to process tokens indicating remote-peer context establishment failures after the point where the local GSS-API implementation has already indicated GSS_S_COMPLETE status.
この呼び出しは文脈がいったん確立されると同輩から受け取られた文脈_象徴を処理するのに使用されます、文脈レベル州の情報への対応する影響で。 この施設の1つの使用がGSS_Delete_秒_文脈()で発生する文脈_象徴の処理です。 GSS_Process_文脈_象徴()はそのために未定のネットワーク相互作用を妨げないでしょう。 別の使用はポイントのときに地方のGSS-API実行が既にGSS_S_COMPLETE状態を示した後リモート同輩文脈設立失敗を示す象徴を処理することです。
Linn Standards Track [Page 46] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[46ページ]。
2.2.5: GSS_Context_time call
2.2.5: GSS_Context_時間呼び出し
Input:
以下を入力してください。
o context_handle CONTEXT HANDLE,
o 文脈_ハンドルCONTEXT HANDLE
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o lifetime_rec INTEGER - in seconds, or reserved value for INDEFINITE
o 秒の生涯_rec INTEGER、またはINDEFINITEにおいて、予約された値
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the referenced context is valid, and will remain valid for the amount of time indicated in lifetime_rec.
o GSS_S_COMPLETEは参照をつけられた文脈が有効であることを示して、生涯_recで示された時間、有効なままで残るでしょう。
o GSS_S_CONTEXT_EXPIRED indicates that data items related to the referenced context have expired.
o GSS_S_CONTEXT_EXPIREDは、参照をつけられた文脈に関連するデータ項目が期限が切れたのを示します。
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired.
o GSS_S_CREDENTIALS_EXPIREDは、文脈が認識されますが、関連信任状が期限が切れたのを示します。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。
o GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。
This call is used to determine the amount of time for which a currently established context will remain valid.
この呼び出しは、現在確立した関係が有効なままで残っている時間を決定するのに使用されます。
2.2.6: GSS_Inquire_context call
2.2.6: GSS_Inquire_文脈呼び出し
Input:
以下を入力してください。
o context_handle CONTEXT HANDLE,
o 文脈_ハンドルCONTEXT HANDLE
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
Linn Standards Track [Page 47] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[47ページ]。
o src_name INTERNAL NAME, -- name of context initiator, -- guaranteed to be MN
o src_名前INTERNAL NAME(文脈創始者の名前)は、ミネソタであることを保証しました。
o targ_name INTERNAL NAME, -- name of context target, -- guaranteed to be MN
o targ_名前INTERNAL NAME(文脈目標の名前)は、ミネソタであることを保証しました。
o lifetime_rec INTEGER -- in seconds, or reserved value for INDEFINITE,
o 秒の生涯_rec INTEGER、またはINDEFINITEにおいて、予約された値
o mech_type OBJECT IDENTIFIER, -- the mechanism supporting this security context
o mech_タイプOBJECT IDENTIFIER--このセキュリティ文脈を支持するメカニズム
o deleg_state BOOLEAN,
o deleg_州のブールです。
o mutual_state BOOLEAN,
o 互いの_州のブールです。
o replay_det_state BOOLEAN,
o ブールであることで_det_状態を再演してください。
o sequence_state BOOLEAN,
o 系列_州のブールです。
o anon_state BOOLEAN,
o やがて、_州のブールです。
o trans_state BOOLEAN,
o 移-_州のブールです。
o prot_ready_state BOOLEAN,
o protの_の持ち合わせの_州のブールです。
o conf_avail BOOLEAN,
o conf_利益ブールです。
o integ_avail BOOLEAN,
o integ_利益ブールです。
o locally_initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor
o 局所的にブールで開始された_--、TRUE、創始者、FALSEである、アクセプタです。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the referenced context is valid and that src_name, targ_name, lifetime_rec, mech_type, deleg_state, mutual_state, replay_det_state, sequence_state, anon_state, trans_state, prot_ready_state, conf_avail, integ_avail, and locally_initiated return values describe the corresponding characteristics of the context.
o GSS_S_COMPLETEは、系列_が、参照をつけられた文脈が有効であり、srcがやがて文脈の対応する特性について説明すると述べるのを_州、移-_州、protの_の持ち合わせの_州、conf_利益、integ_利益、および局所的に_の開始しているリターンが、評価する_名、targ_名、生涯_rec、mech_タイプ、deleg_状態、互いの_状態、再生_det_が、述べる示します。
o GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle is recognized, but that the referenced context has expired. Return values other than major_status and minor_status are undefined.
o GSS_S_CONTEXT_EXPIREDは、提供された入力文脈_ハンドルが認識されますが、参照をつけられた文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
Linn Standards Track [Page 48] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[48ページ]。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided. Return values other than major_status and minor_status are undefined.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API level. Return values other than major_status and minor_status are undefined.
o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
This call is used to extract information describing characteristics of a security context.
この呼び出しは、セキュリティ文脈の特性について説明する情報を抜粋するのに使用されます。
2.2.7: GSS_Wrap_size_limit call
2.2.7: GSS_Wrap_サイズ_限界呼び出し
Inputs:
入力:
o context_handle CONTEXT HANDLE,
o 文脈_ハンドルCONTEXT HANDLE
o qop INTEGER,
o qop INTEGER
o output_size INTEGER
o 出力_サイズINTEGER
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o max_input_size INTEGER
o 最大_入力_サイズINTEGER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates a successful token size determination: an input message with a length in octets equal to the returned max_input_size value will, when passed to GSS_Wrap() for processing on the context identified by the context_handle parameter and with the quality of protection specifier provided in the qop parameter, yield an output token no larger than the value of the provided output_size parameter.
o GSS_S_COMPLETEはうまくいっている象徴サイズ決断を示します: 処理のために文脈_ハンドルパラメタと保護特許説明書の作成書の品質をqopパラメタに提供している状態で特定された文脈でGSS_Wrap()に通過されると、返された最大_入力_サイズ価値と等しい八重奏における長さがある入力メッセージは提供された出力_サイズ・パラメータの値ほど大きくない出力象徴をもたらすでしょう。
o GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle is recognized, but that the referenced context has expired. Return values other than major_status and minor_status are undefined.
o GSS_S_CONTEXT_EXPIREDは、提供された入力文脈_ハンドルが認識されますが、参照をつけられた文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided. Return values other than major_status and minor_status are undefined.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
Linn Standards Track [Page 49] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[49ページ]。
o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.
o GSS_S_BAD_QOPは、提供されたQOP値が文脈のために認識もされませんし、支持もされないのを示します。
o GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API level. Return values other than major_status and minor_status are undefined.
o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
This call is used to determine the largest input datum which may be passed to GSS_Wrap() without yielding an output token larger than a caller-specified value.
この呼び出しは、訪問者規定値より大きい出力象徴をもたらさないでGSS_Wrap()に通過されるかもしれない中で最も大きい入力データを決定するのに使用されます。
2.2.8: GSS_Export_sec_context call
2.2.8: GSS_Export_秒_文脈呼び出し
Inputs:
入力:
o context_handle CONTEXT HANDLE
o 文脈_ハンドルCONTEXT HANDLE
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o interprocess_token OCTET STRING
o インタプロセス_象徴OCTET STRING
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the referenced context has been successfully exported to a representation in the interprocess_token, and is no longer available for use by the caller.
o GSS_S_COMPLETEは参照をつけられた文脈が首尾よくインタプロセス_象徴の表現に輸出されて、もう訪問者による使用に利用可能でないことを示します。
o GSS_S_UNAVAILABLE indicates that the context export facility is not available for use on the referenced context. (This status should occur only for contexts for which the trans_state value is FALSE.) Return values other than major_status and minor_status are undefined.
o GSS_S_UNAVAILABLEは、参照をつけられた文脈のにおける使用について、文脈輸出施設がないのを示します。 (この状態は移-_州の価値がFALSEである文脈のためだけに起こるべきです。) 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle is recognized, but that the referenced context has expired. Return values other than major_status and minor_status are undefined.
o GSS_S_CONTEXT_EXPIREDは、提供された入力文脈_ハンドルが認識されますが、参照をつけられた文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided. Return values other than major_status and minor_status are undefined.
o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
Linn Standards Track [Page 50] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[50ページ]。
o GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API level. Return values other than major_status and minor_status are undefined.
o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
This call generates an interprocess token for transfer to another process within an end system, in order to transfer control of a security context to that process. The recipient of the interprocess token will call GSS_Import_sec_context() to accept the transfer. The GSS_Export_sec_context() operation is defined for use only with security contexts which are fully and successfully established (i.e., those for which GSS_Init_sec_context() and GSS_Accept_sec_context() have returned GSS_S_COMPLETE major_status).
この呼び出しは別の過程への転送のためにエンドシステムの中でインタプロセス象徴を発生させます、セキュリティ文脈のコントロールをその過程に移すために。 インタプロセス象徴の受取人は、GSS_Import_を転送を受け入れる秒_文脈()と呼ぶでしょう。 GSS_Export_秒_文脈()操作は使用のために単に完全に首尾よく確立されるセキュリティ文脈(すなわち、GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()が_S_COMPLETEの主要な_状態をGSSに返したそれら)で定義されます。
To ensure portability, a caller of GSS_Export_sec_context() must not assume that a context may continue to be used once it has been exported; following export, the context referenced by the context_handle cannot be assumed to remain valid. Further, portable callers must not assume that a given interprocess token can be imported by GSS_Import_sec_context() more than once, thereby creating multiple instantiations of a single context. GSS-API implementations may detect and reject attempted multiple imports, but are not required to do so.
携帯性を確実にするために、GSS_Export_秒_文脈()の訪問者は、文脈が、いったんそれを輸出すると使用し続けるかもしれないと仮定してはいけません。 輸出に続いて、文脈_ハンドルによって参照をつけられる文脈が有効なままで残っていると思うことができません。 さらに、携帯用の訪問者は、一度より多くのGSS_Import_秒_文脈()で与えられたインタプロセス象徴を輸入できると仮定してはいけません、その結果、ただ一つの文脈の複数の具体化を作成します。 GSS-API実行は、試みられた倍数輸入を検出して、拒絶するかもしれませんが、そうするのに必要ではありません。
The internal representation contained within the interprocess token is an implementation-defined local matter. Interprocess tokens cannot be assumed to be transferable across different GSS-API implementations.
インタプロセス象徴の中に含まれた内部の表現は実現で定義された地域にかかわる事柄です。 インタプロセス象徴が異なったGSS-API実行の向こう側に移転可能であると思うことができません。
It is recommended that GSS-API implementations adopt policies suited to their operational environments in order to define the set of processes eligible to import a context, but specific constraints in this area are local matters. Candidate examples include transfers between processes operating on behalf of the same user identity, or processes comprising a common job. However, it may be impossible to enforce such policies in some implementations.
GSS-API実行が文脈を輸入する資格がある過程のセットを定義するために彼らの運用環境に合う方針を採りますが、この領域での特定の規制が地域にかかわる事柄であることはお勧めです。 候補の例は、同じユーザアイデンティティ、または一般的な仕事を包括する過程を代表して作動しながら、過程の間に転送を含んでいます。 しかしながら、いくつかの実現におけるそのような方針を実施するのは不可能であるかもしれません。
In support of the above goals, implementations may protect the transferred context data by using cryptography to protect data within the interprocess token, or by using interprocess tokens as a means to reference local interprocess communication facilities (protected by other means) rather than storing the context data directly within the tokens.
上の目標を支持して、実現は、象徴の直接中に文脈データを格納するよりインタプロセス象徴の中にデータを保護するのに暗号を使用するか、または手段として参照の地方のプロセス間通信施設(他の手段で、保護される)にインタプロセス象徴を使用することによって、わたっている文脈データをむしろ保護するかもしれません。
Transfer of an open context may, for certain mechanisms and implementations, reveal data about the credential which was used to establish the context. Callers should, therefore, be cautious about the trustworthiness of processes to which they transfer contexts. Although the GSS-API implementation may provide its own set of
あるメカニズムと実現のために、開いている文脈の転送は文脈を証明するのに使用された信任状に関するデータを明らかにするかもしれません。 したがって、訪問者はそれらが文脈を移す過程の信頼できることに関して用心深いはずです。 GSS-API実行は提供されるかもしれませんが、それ自身はセットされました。
Linn Standards Track [Page 51] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[51ページ]。
protections over the exported context, the caller is responsible for protecting the interprocess token from disclosure, and for taking care that the context is transferred to an appropriate destination process.
輸出された文脈の上の保護、公開からインタプロセス象徴を保護して、文脈が適切な目的地の過程に移されることに注意するのに訪問者は責任があります。
2.2.9: GSS_Import_sec_context call
2.2.9: GSS_Import_秒_文脈呼び出し
Inputs:
入力:
o interprocess_token OCTET STRING
o インタプロセス_象徴OCTET STRING
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o context_handle CONTEXT HANDLE
o 文脈_ハンドルCONTEXT HANDLE
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the context represented by the input interprocess_token has been successfully transferred to the caller, and is available for future use via the output context_handle.
o GSS_S_COMPLETEは入力インタプロセス_象徴によって表された文脈が首尾よく訪問者に移されて、出力文脈_ハンドルを通して今後の使用に利用可能であることを示します。
o GSS_S_CONTEXT_EXPIRED indicates that the context represented by the input interprocess_token has expired. Return values other than major_status and minor_status are undefined.
o GSS_S_CONTEXT_EXPIREDは、入力インタプロセス_象徴によって表された文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_NO_CONTEXT indicates that the context represented by the input interprocess_token was invalid. Return values other than major_status and minor_status are undefined.
o GSS_S_いいえ_CONTEXTは、入力インタプロセス_象徴によって表された文脈が無効であったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_DEFECTIVE_TOKEN indicates that the input interprocess_token was defective. Return values other than major_status and minor_status are undefined.
o GSS_S_DEFECTIVE_TOKENは、入力インタプロセス_象徴は欠陥があったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_UNAVAILABLE indicates that the context import facility is not available for use on the referenced context. Return values other than major_status and minor_status are undefined.
o GSS_S_UNAVAILABLEは、参照をつけられた文脈のにおける使用について、文脈輸入施設がないのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
o GSS_S_UNAUTHORIZED indicates that the context represented by the input interprocess_token is unauthorized for transfer to the caller. Return values other than major_status and minor_status are undefined.
o GSS_S_UNAUTHORIZEDは、入力インタプロセス_象徴によって表された文脈が訪問者への転送のために権限がないのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
Linn Standards Track [Page 52] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[52ページ]。
o GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API level. Return values other than major_status and minor_status are undefined.
o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。
This call processes an interprocess token generated by GSS_Export_sec_context(), making the transferred context available for use by the caller. After a successful GSS_Import_sec_context() operation, the imported context is available for use by the importing process.
この呼び出しはわたっている文脈を訪問者による使用に利用可能にして、GSS_Export_秒_文脈()で発生するインタプロセス象徴を処理します。 うまくいっているGSS_Import_秒_文脈()操作の後に、輸入された文脈は輸入工程で使用に利用可能です。
For further discussion of the security and authorization issues regarding this call, please see the discussion in Section 2.2.8.
セキュリティと認可問題のさらなる議論に関しては、この呼び出しを見なして、セクション2.2で.8に議論を見てください。
2.3: Per-message calls
2.3: 1メッセージあたりの呼び出し
This group of calls is used to perform per-message protection processing on an established security context. None of these calls block pending network interactions. These calls may be invoked by a context's initiator or by the context's target. The four members of this group should be considered as two pairs; the output from GSS_GetMIC() is properly input to GSS_VerifyMIC(), and the output from GSS_Wrap() is properly input to GSS_Unwrap().
This group of calls is used to perform per-message protection processing on an established security context. None of these calls block pending network interactions. These calls may be invoked by a context's initiator or by the context's target. The four members of this group should be considered as two pairs; the output from GSS_GetMIC() is properly input to GSS_VerifyMIC(), and the output from GSS_Wrap() is properly input to GSS_Unwrap().
GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication and data integrity services. When GSS_GetMIC() is invoked on an input message, it yields a per-message token containing data items which allow underlying mechanisms to provide the specified security services. The original message, along with the generated per-message token, is passed to the remote peer; these two data elements are processed by GSS_VerifyMIC(), which validates the message in conjunction with the separate token.
GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication and data integrity services. When GSS_GetMIC() is invoked on an input message, it yields a per-message token containing data items which allow underlying mechanisms to provide the specified security services. The original message, along with the generated per-message token, is passed to the remote peer; these two data elements are processed by GSS_VerifyMIC(), which validates the message in conjunction with the separate token.
GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality in addition to the data origin authentication and data integrity services offered by GSS_GetMIC() and GSS_VerifyMIC(). GSS_Wrap() outputs a single data element, encapsulating optionally enciphered user data as well as associated token data items. The data element output from GSS_Wrap() is passed to the remote peer and processed by GSS_Unwrap() at that system. GSS_Unwrap() combines decipherment (as required) with validation of data items related to authentication and integrity.
GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality in addition to the data origin authentication and data integrity services offered by GSS_GetMIC() and GSS_VerifyMIC(). GSS_Wrap() outputs a single data element, encapsulating optionally enciphered user data as well as associated token data items. The data element output from GSS_Wrap() is passed to the remote peer and processed by GSS_Unwrap() at that system. GSS_Unwrap() combines decipherment (as required) with validation of data items related to authentication and integrity.
Linn Standards Track [Page 53] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 53] RFC 2078 GSS-API January 1997
2.3.1: GSS_GetMIC call
2.3.1: GSS_GetMIC call
Note: This call is functionally equivalent to the GSS_Sign call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Sign are deprecated.
Note: This call is functionally equivalent to the GSS_Sign call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Sign are deprecated.
Inputs:
Inputs:
o context_handle CONTEXT HANDLE,
o context_handle CONTEXT HANDLE,
o qop_req INTEGER,-0 specifies default QOP
o qop_req INTEGER,-0 specifies default QOP
o message OCTET STRING
o message OCTET STRING
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o per_msg_token OCTET STRING
o per_msg_token OCTET STRING
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that an integrity check, suitable for an established security context, was successfully applied and that the message and corresponding per_msg_token are ready for transmission.
o GSS_S_COMPLETE indicates that an integrity check, suitable for an established security context, was successfully applied and that the message and corresponding per_msg_token are ready for transmission.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.
o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.
o GSS_S_FAILURE indicates that the context is recognized, but that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the context is recognized, but that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Linn Standards Track [Page 54] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 54] RFC 2078 GSS-API January 1997
Using the security context referenced by context_handle, apply an integrity check to the input message (along with timestamps and/or other data included in support of mech_type-specific mechanisms) and return the result in per_msg_token. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control. The caller passes the message and the per_msg_token to the target.
Using the security context referenced by context_handle, apply an integrity check to the input message (along with timestamps and/or other data included in support of mech_type-specific mechanisms) and return the result in per_msg_token. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control. The caller passes the message and the per_msg_token to the target.
The GSS_GetMIC() function completes before the message and per_msg_token is sent to the peer; successful application of GSS_GetMIC() does not guarantee that a corresponding GSS_VerifyMIC() has been (or can necessarily be) performed successfully when the message arrives at the destination.
The GSS_GetMIC() function completes before the message and per_msg_token is sent to the peer; successful application of GSS_GetMIC() does not guarantee that a corresponding GSS_VerifyMIC() has been (or can necessarily be) performed successfully when the message arrives at the destination.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
2.3.2: GSS_VerifyMIC call
2.3.2: GSS_VerifyMIC call
Note: This call is functionally equivalent to the GSS_Verify call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Verify are deprecated.
Note: This call is functionally equivalent to the GSS_Verify call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Verify are deprecated.
Inputs:
Inputs:
o context_handle CONTEXT HANDLE,
o context_handle CONTEXT HANDLE,
o message OCTET STRING,
o message OCTET STRING,
o per_msg_token OCTET STRING
o per_msg_token OCTET STRING
Outputs:
Outputs:
o qop_state INTEGER,
o qop_state INTEGER,
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the message was successfully verified.
o GSS_S_COMPLETE indicates that the message was successfully verified.
Linn Standards Track [Page 55] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 55] RFC 2078 GSS-API January 1997
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the received per_msg_token failed, preventing further processing from being performed with that token.
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the received per_msg_token failed, preventing further processing from being performed with that token.
o GSS_S_BAD_SIG indicates that the received per_msg_token contains an incorrect integrity check for the message.
o GSS_S_BAD_SIG indicates that the received per_msg_token contains an incorrect integrity check for the message.
o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per-message replay detection features described in Section 1.2.3; their semantics are described in that section.
o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per-message replay detection features described in Section 1.2.3; their semantics are described in that section.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_VerifyMIC() operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_VerifyMIC() operation could not be performed for reasons unspecified at the GSS-API level.
Using the security context referenced by context_handle, verify that the input per_msg_token contains an appropriate integrity check for the input message, and apply any active replay detection or sequencing features. Return an indication of the quality-of- protection applied to the processed message in the qop_state result. Since the GSS_VerifyMIC() routine never provides a confidentiality service, its implementations should not return non-zero values in the confidentiality fields of the output qop_state.
Using the security context referenced by context_handle, verify that the input per_msg_token contains an appropriate integrity check for the input message, and apply any active replay detection or sequencing features. Return an indication of the quality-of- protection applied to the processed message in the qop_state result. Since the GSS_VerifyMIC() routine never provides a confidentiality service, its implementations should not return non-zero values in the confidentiality fields of the output qop_state.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
2.3.3: GSS_Wrap call
2.3.3: GSS_Wrap call
Note: This call is functionally equivalent to the GSS_Seal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Seal are deprecated.
Note: This call is functionally equivalent to the GSS_Seal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Seal are deprecated.
Linn Standards Track [Page 56] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 56] RFC 2078 GSS-API January 1997
Inputs:
Inputs:
o context_handle CONTEXT HANDLE,
o context_handle CONTEXT HANDLE,
o conf_req_flag BOOLEAN,
o conf_req_flag BOOLEAN,
o qop_req INTEGER,-0 specifies default QOP
o qop_req INTEGER,-0 specifies default QOP
o input_message OCTET STRING
o input_message OCTET STRING
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o conf_state BOOLEAN,
o conf_state BOOLEAN,
o output_message OCTET STRING
o output_message OCTET STRING
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the output_message is ready for transmission.
o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the output_message is ready for transmission.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.
o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Wrap() operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Wrap() operation could not be performed for reasons unspecified at the GSS-API level.
Performs the data origin authentication and data integrity functions of GSS_GetMIC(). If the input conf_req_flag is TRUE, requests that confidentiality be applied to the input_message. Confidentiality may
Performs the data origin authentication and data integrity functions of GSS_GetMIC(). If the input conf_req_flag is TRUE, requests that confidentiality be applied to the input_message. Confidentiality may
Linn Standards Track [Page 57] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 57] RFC 2078 GSS-API January 1997
not be supported in all mech_types or by all implementations; the returned conf_state flag indicates whether confidentiality was provided for the input_message. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control.
not be supported in all mech_types or by all implementations; the returned conf_state flag indicates whether confidentiality was provided for the input_message. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control.
In all cases, the GSS_Wrap() call yields a single output_message data element containing (optionally enciphered) user data as well as control information.
In all cases, the GSS_Wrap() call yields a single output_message data element containing (optionally enciphered) user data as well as control information.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
2.3.4: GSS_Unwrap call
2.3.4: GSS_Unwrap call
Note: This call is functionally equivalent to the GSS_Unseal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Unseal are deprecated.
Note: This call is functionally equivalent to the GSS_Unseal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Unseal are deprecated.
Inputs:
Inputs:
o context_handle CONTEXT HANDLE,
o context_handle CONTEXT HANDLE,
o input_message OCTET STRING
o input_message OCTET STRING
Outputs:
Outputs:
o conf_state BOOLEAN,
o conf_state BOOLEAN,
o qop_state INTEGER,
o qop_state INTEGER,
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o output_message OCTET STRING
o output_message OCTET STRING
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the resulting output_message is available.
o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the resulting output_message is available.
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the per_msg_token extracted from the input_message failed, preventing further processing from being performed.
o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the per_msg_token extracted from the input_message failed, preventing further processing from being performed.
Linn Standards Track [Page 58] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 58] RFC 2078 GSS-API January 1997
o GSS_S_BAD_SIG indicates that an incorrect integrity check was detected for the message.
o GSS_S_BAD_SIG indicates that an incorrect integrity check was detected for the message.
o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per-message replay detection features described in Section 1.2.3; their semantics are described in that section.
o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per-message replay detection features described in Section 1.2.3; their semantics are described in that section.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated credentials have expired, so that the requested operation cannot be performed.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Unwrap() operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Unwrap() operation could not be performed for reasons unspecified at the GSS-API level.
Processes a data element generated (and optionally enciphered) by GSS_Wrap(), provided as input_message. The returned conf_state value indicates whether confidentiality was applied to the input_message. If conf_state is TRUE, GSS_Unwrap() deciphers the input_message. Returns an indication of the quality-of-protection applied to the processed message in the qop_state result. GSS_Wrap() performs the data integrity and data origin authentication checking functions of GSS_VerifyMIC() on the plaintext data. Plaintext data is returned in output_message.
Processes a data element generated (and optionally enciphered) by GSS_Wrap(), provided as input_message. The returned conf_state value indicates whether confidentiality was applied to the input_message. If conf_state is TRUE, GSS_Unwrap() deciphers the input_message. Returns an indication of the quality-of-protection applied to the processed message in the qop_state result. GSS_Wrap() performs the data integrity and data origin authentication checking functions of GSS_VerifyMIC() on the plaintext data. Plaintext data is returned in output_message.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.
2.4: Support calls
2.4: Support calls
This group of calls provides support functions useful to GSS-API callers, independent of the state of established contexts. Their characterization with regard to blocking or non-blocking status in terms of network interactions is unspecified.
This group of calls provides support functions useful to GSS-API callers, independent of the state of established contexts. Their characterization with regard to blocking or non-blocking status in terms of network interactions is unspecified.
Linn Standards Track [Page 59] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 59] RFC 2078 GSS-API January 1997
2.4.1: GSS_Display_status call
2.4.1: GSS_Display_status call
Inputs:
Inputs:
o status_value INTEGER,-GSS-API major_status or minor_status return value
o status_value INTEGER,-GSS-API major_status or minor_status return value
o status_type INTEGER,-1 if major_status, 2 if minor_status
o status_type INTEGER,-1 if major_status, 2 if minor_status
o mech_type OBJECT IDENTIFIER-mech_type to be used for minor_ status translation
o mech_type OBJECT IDENTIFIER-mech_type to be used for minor_ status translation
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o status_string_set SET OF OCTET STRING
o status_string_set SET OF OCTET STRING
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that a valid printable status representation (possibly representing more than one status event encoded within the status_value) is available in the returned status_string_set.
o GSS_S_COMPLETE indicates that a valid printable status representation (possibly representing more than one status event encoded within the status_value) is available in the returned status_string_set.
o GSS_S_BAD_MECH indicates that translation in accordance with an unsupported mech_type was requested, so translation could not be performed.
o GSS_S_BAD_MECH indicates that translation in accordance with an unsupported mech_type was requested, so translation could not be performed.
o GSS_S_BAD_STATUS indicates that the input status_value was invalid, or that the input status_type carried a value other than 1 or 2, so translation could not be performed.
o GSS_S_BAD_STATUS indicates that the input status_value was invalid, or that the input status_type carried a value other than 1 or 2, so translation could not be performed.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Provides a means for callers to translate GSS-API-returned major and minor status codes into printable string representations.
Provides a means for callers to translate GSS-API-returned major and minor status codes into printable string representations.
2.4.2: GSS_Indicate_mechs call
2.4.2: GSS_Indicate_mechs call
Input:
Input:
o (none)
o (none)
Linn Standards Track [Page 60] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 60] RFC 2078 GSS-API January 1997
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o mech_set SET OF OBJECT IDENTIFIER
o mech_set SET OF OBJECT IDENTIFIER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that a set of available mechanisms has been returned in mech_set.
o GSS_S_COMPLETE indicates that a set of available mechanisms has been returned in mech_set.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to determine the set of mechanism types available on the local system. This call is intended for support of specialized callers who need to request non-default mech_type sets from GSS_Acquire_cred(), and should not be needed by other callers.
Allows callers to determine the set of mechanism types available on the local system. This call is intended for support of specialized callers who need to request non-default mech_type sets from GSS_Acquire_cred(), and should not be needed by other callers.
2.4.3: GSS_Compare_name call
2.4.3: GSS_Compare_name call
Inputs:
Inputs:
o name1 INTERNAL NAME,
o name1 INTERNAL NAME,
o name2 INTERNAL NAME
o name2 INTERNAL NAME
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o name_equal BOOLEAN
o name_equal BOOLEAN
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that name1 and name2 were comparable, and that the name_equal result indicates whether name1 and name2 represent the same entity.
o GSS_S_COMPLETE indicates that name1 and name2 were comparable, and that the name_equal result indicates whether name1 and name2 represent the same entity.
o GSS_S_BAD_NAMETYPE indicates that one or both of name1 and name2 contained internal type specifiers uninterpretable by the applicable underlying GSS-API mechanism(s), or that the two names' types are different and incomparable, so that the comparison operation could not be completed.
o GSS_S_BAD_NAMETYPE indicates that one or both of name1 and name2 contained internal type specifiers uninterpretable by the applicable underlying GSS-API mechanism(s), or that the two names' types are different and incomparable, so that the comparison operation could not be completed.
Linn Standards Track [Page 61] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 61] RFC 2078 GSS-API January 1997
o GSS_S_BAD_NAME indicates that one or both of the input names was ill-formed in terms of its internal type specifier, so the comparison operation could not be completed.
o GSS_S_BAD_NAME indicates that one or both of the input names was ill-formed in terms of its internal type specifier, so the comparison operation could not be completed.
o GSS_S_FAILURE indicates that the call's operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the call's operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to compare two internal name representations to determine whether they refer to the same entity. If either name presented to GSS_Compare_name() denotes an anonymous principal, GSS_Compare_name() shall indicate FALSE. It is not required that either or both inputs name1 and name2 be MNs; for some implementations and cases, GSS_S_BAD_NAMETYPE may be returned, indicating name incomparability, for the case where neither input name is an MN.
Allows callers to compare two internal name representations to determine whether they refer to the same entity. If either name presented to GSS_Compare_name() denotes an anonymous principal, GSS_Compare_name() shall indicate FALSE. It is not required that either or both inputs name1 and name2 be MNs; for some implementations and cases, GSS_S_BAD_NAMETYPE may be returned, indicating name incomparability, for the case where neither input name is an MN.
2.4.4: GSS_Display_name call
2.4.4: GSS_Display_name call
Inputs:
Inputs:
o name INTERNAL NAME
o name INTERNAL NAME
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o name_string OCTET STRING,
o name_string OCTET STRING,
o name_type OBJECT IDENTIFIER
o name_type OBJECT IDENTIFIER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that a valid printable name representation is available in the returned name_string.
o GSS_S_COMPLETE indicates that a valid printable name representation is available in the returned name_string.
o GSS_S_BAD_NAMETYPE indicates that the provided name was of a type uninterpretable by the applicable underlying GSS-API mechanism(s), so no printable representation could be generated.
o GSS_S_BAD_NAMETYPE indicates that the provided name was of a type uninterpretable by the applicable underlying GSS-API mechanism(s), so no printable representation could be generated.
o GSS_S_BAD_NAME indicates that the contents of the provided name were inconsistent with the internally-indicated name type, so no printable representation could be generated.
o GSS_S_BAD_NAME indicates that the contents of the provided name were inconsistent with the internally-indicated name type, so no printable representation could be generated.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Linn Standards Track [Page 62] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 62] RFC 2078 GSS-API January 1997
Allows callers to translate an internal name representation into a printable form with associated namespace type descriptor. The syntax of the printable form is a local matter.
Allows callers to translate an internal name representation into a printable form with associated namespace type descriptor. The syntax of the printable form is a local matter.
If the input name represents an anonymous identity, a reserved value (GSS_C_NT_ANONYMOUS) shall be returned for name_type.
If the input name represents an anonymous identity, a reserved value (GSS_C_NT_ANONYMOUS) shall be returned for name_type.
2.4.5: GSS_Import_name call
2.4.5: GSS_Import_name call
Inputs:
Inputs:
o input_name_string OCTET STRING,
o input_name_string OCTET STRING,
o input_name_type OBJECT IDENTIFIER
o input_name_type OBJECT IDENTIFIER
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o output_name INTERNAL NAME
o output_name INTERNAL NAME
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that a valid name representation is output in output_name and described by the type value in output_name_type.
o GSS_S_COMPLETE indicates that a valid name representation is output in output_name and described by the type value in output_name_type.
o GSS_S_BAD_NAMETYPE indicates that the input_name_type is unsupported by the applicable underlying GSS-API mechanism(s), so the import operation could not be completed.
o GSS_S_BAD_NAMETYPE indicates that the input_name_type is unsupported by the applicable underlying GSS-API mechanism(s), so the import operation could not be completed.
o GSS_S_BAD_NAME indicates that the provided input_name_string is ill-formed in terms of the input_name_type, so the import operation could not be completed.
o GSS_S_BAD_NAME indicates that the provided input_name_string is ill-formed in terms of the input_name_type, so the import operation could not be completed.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to provide a name representation as a contiguous octet string, designate the type of namespace in conjunction with which it should be parsed, and convert that representation to an internal form suitable for input to other GSS-API routines. The syntax of the input_name_string is defined in conjunction with its associated name type; depending on the input_name_type, the associated input_name_string may or may not be a printable string. Note: The input_name_type argument serves to describe and qualify the
Allows callers to provide a name representation as a contiguous octet string, designate the type of namespace in conjunction with which it should be parsed, and convert that representation to an internal form suitable for input to other GSS-API routines. The syntax of the input_name_string is defined in conjunction with its associated name type; depending on the input_name_type, the associated input_name_string may or may not be a printable string. Note: The input_name_type argument serves to describe and qualify the
Linn Standards Track [Page 63] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 63] RFC 2078 GSS-API January 1997
interpretation of the associated input_name_string; it does not specify the data type of the returned output_name.
interpretation of the associated input_name_string; it does not specify the data type of the returned output_name.
If a mechanism claims support for a particular name type, its GSS_Import_name() operation shall be able to accept all possible values conformant to the external name syntax as defined for that name type. These imported values may correspond to:
If a mechanism claims support for a particular name type, its GSS_Import_name() operation shall be able to accept all possible values conformant to the external name syntax as defined for that name type. These imported values may correspond to:
(1) locally registered entities (for which credentials may be acquired),
(1) locally registered entities (for which credentials may be acquired),
(2) non-local entities (for which local credentials cannot be acquired, but which may be referenced as targets of initiated security contexts or initiators of accepted security contexts), or to
(2) non-local entities (for which local credentials cannot be acquired, but which may be referenced as targets of initiated security contexts or initiators of accepted security contexts), or to
(3) neither of the above.
(3) neither of the above.
Determination of whether a particular name belongs to class (1), (2), or (3) as described above is not guaranteed to be performed by the GSS_Import_name() function.
Determination of whether a particular name belongs to class (1), (2), or (3) as described above is not guaranteed to be performed by the GSS_Import_name() function.
The internal name generated by a GSS_Import_name() operation may be a single-mechanism MN, and is likely to be an MN within a single- mechanism implementation, but portable callers must not depend on this property (and must not, therefore, assume that the output from GSS_Import_name() can be passed directly to GSS_Export_name() without first being processed through GSS_Canonicalize_name()).
The internal name generated by a GSS_Import_name() operation may be a single-mechanism MN, and is likely to be an MN within a single- mechanism implementation, but portable callers must not depend on this property (and must not, therefore, assume that the output from GSS_Import_name() can be passed directly to GSS_Export_name() without first being processed through GSS_Canonicalize_name()).
2.4.6: GSS_Release_name call
2.4.6: GSS_Release_name call
Inputs:
Inputs:
o name INTERNAL NAME
o name INTERNAL NAME
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER
o minor_status INTEGER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the storage associated with the input name was successfully released.
o GSS_S_COMPLETE indicates that the storage associated with the input name was successfully released.
o GSS_S_BAD_NAME indicates that the input name argument did not contain a valid name.
o GSS_S_BAD_NAME indicates that the input name argument did not contain a valid name.
Linn Standards Track [Page 64] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 64] RFC 2078 GSS-API January 1997
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to release the storage associated with an internal name representation. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
Allows callers to release the storage associated with an internal name representation. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
2.4.7: GSS_Release_buffer call
2.4.7: GSS_Release_buffer call
Inputs:
Inputs:
o buffer OCTET STRING
o buffer OCTET STRING
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER
o minor_status INTEGER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the storage associated with the input buffer was successfully released.
o GSS_S_COMPLETE indicates that the storage associated with the input buffer was successfully released.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to release the storage associated with an OCTET STRING buffer allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
Allows callers to release the storage associated with an OCTET STRING buffer allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
2.4.8: GSS_Release_OID_set call
2.4.8: GSS_Release_OID_set call
Inputs:
Inputs:
o buffer SET OF OBJECT IDENTIFIER
o buffer SET OF OBJECT IDENTIFIER
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
Linn Standards Track [Page 65] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 65] RFC 2078 GSS-API January 1997
o minor_status INTEGER
o minor_status INTEGER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates that the storage associated with the input object identifier set was successfully released.
o GSS_S_COMPLETE indicates that the storage associated with the input object identifier set was successfully released.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
Allows callers to release the storage associated with an object identifier set object allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
Allows callers to release the storage associated with an object identifier set object allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
2.4.9: GSS_Create_empty_OID_set call
2.4.9: GSS_Create_empty_OID_set call
Inputs:
Inputs:
o (none)
o (none)
Outputs:
Outputs:
o major_status INTEGER,
o major_status INTEGER,
o minor_status INTEGER,
o minor_status INTEGER,
o oid_set SET OF OBJECT IDENTIFIER
o oid_set SET OF OBJECT IDENTIFIER
Return major_status codes:
Return major_status codes:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETE indicates successful completion
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILURE indicates that the operation failed
Creates an object identifier set containing no object identifiers, to which members may be subsequently added using the GSS_Add_OID_set_member() routine. These routines are intended to be used to construct sets of mechanism object identifiers, for input to GSS_Acquire_cred().
Creates an object identifier set containing no object identifiers, to which members may be subsequently added using the GSS_Add_OID_set_member() routine. These routines are intended to be used to construct sets of mechanism object identifiers, for input to GSS_Acquire_cred().
Linn Standards Track [Page 66] RFC 2078 GSS-API January 1997
Linn Standards Track [Page 66] RFC 2078 GSS-API January 1997
2.4.10: GSS_Add_OID_set_member call
2.4.10: GSS_Add_OID_set_member call
Inputs:
Inputs:
o member_oid OBJECT IDENTIFIER,
o member_oid OBJECT IDENTIFIER,
o oid_set SET OF OBJECT IDENTIFIER
o oid_セットSET OF OBJECT IDENTIFIER
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETEは無事終了を示します。
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILUREは、操作が失敗したのを示します。
Adds an Object Identifier to an Object Identifier set. This routine is intended for use in conjunction with GSS_Create_empty_OID_set() when constructing a set of mechanism OIDs for input to GSS_Acquire_cred().
Object IdentifierへのObject Identifierがセットしたと言い足します。 入力のためにGSS_Acquire_信用()にメカニズムOIDsの1セットを構成するとき、このルーチンは使用のためにGSS_Createの_の空の_OID_セット()に関連して意図します。
2.4.11: GSS_Test_OID_set_member call
2.4.11: GSS_Test_OID_セット_メンバー呼び出し
Inputs:
入力:
o member OBJECT IDENTIFIER,
o メンバーOBJECT IDENTIFIER
o set SET OF OBJECT IDENTIFIER
o SET OF OBJECT IDENTIFIERを設定してください。
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o present BOOLEAN
o プレゼントブールです。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETEは無事終了を示します。
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILUREは、操作が失敗したのを示します。
Linn Standards Track [Page 67] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[67ページ]。
Interrogates an Object Identifier set to determine whether a specified Object Identifier is a member. This routine is intended to be used with OID sets returned by GSS_Indicate_mechs(), GSS_Acquire_cred(), and GSS_Inquire_cred().
指定されたObject Identifierがメンバーであるかどうか決定するためにObject Identifierセットについて査問します。 GSS_Indicate_mechs()によって返されたOIDセット、GSS_Acquire_信用()、およびGSS_Inquire_信用()と共にこのルーチンが使用されることを意図します。
2.4.12: GSS_Release_OID call
2.4.12: GSS_Release_OID呼び出し
Inputs:
入力:
o oid OBJECT IDENTIFIER
o oid OBJECT IDENTIFIER
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER
o 小さい方の_状態INTEGER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETEは無事終了を示します。
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILUREは、操作が失敗したのを示します。
Allows the caller to release the storage associated with an OBJECT IDENTIFIER buffer allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, this call may be superfluous within bindings where memory management is automatic.
訪問者が別のGSS-API呼び出しで割り当てるOBJECT IDENTIFIERバッファに関連しているストレージをリリースするのを許容します。 この呼び出しの特異的行動はGSS-API実行が運転して、したがって適切な結合仕様の中で詳細である言語とプログラミング環境によります。 メモリ管理が自動であるところでこの呼び出しは結合の中で特に、余計であるかもしれません。
2.4.13: GSS_OID_to_str call
2.4.13: _str呼び出しへのGSS_OID_
Inputs:
入力:
o oid OBJECT IDENTIFIER
o oid OBJECT IDENTIFIER
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o oid_str OCTET STRING
o oid_str OCTET STRING
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETEは無事終了を示します。
Linn Standards Track [Page 68] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[68ページ]。
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILUREは、操作が失敗したのを示します。
The function GSS_OID_to_str() returns a string representing the input OID in numeric ASN.1 syntax format (curly-brace enclosed, space- delimited, e.g., "{2 16 840 1 113687 1 2 1}"). The string is releasable using GSS_Release_buffer(). If the input "oid" does not represent a syntactically valid object identifier, GSS_S_FAILURE status is returned and the returned oid_str result is NULL.
_str()への機能GSS_OID_は、数値ASN.1構文形式で入力OIDを表しながら、ストリングを返します。(巻き毛の支柱が同封した、例えば区切られたスペース、「2、16、840、1、113687、1 2 1、」、) ストリングは、GSS_Release_バッファ()を使用することでリリース可能です。 入力"oid"がシンタクス上有効なオブジェクト識別子を表さないなら、GSS_S_FAILURE状態は返されます、そして、返されたoid_str結果はNULLです。
2.4.14: GSS_Str_to_OID call
2.4.14: OIDが呼ぶ_へのGSS_Str_
Inputs:
入力:
o oid_str OCTET STRING
o oid_str OCTET STRING
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o oid OBJECT IDENTIFIER
o oid OBJECT IDENTIFIER
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates successful completion
o GSS_S_COMPLETEは無事終了を示します。
o GSS_S_FAILURE indicates that the operation failed
o GSS_S_FAILUREは、操作が失敗したのを示します。
The function GSS_Str_to_OID() constructs and returns an OID from its printable form; implementations should be able to accept the numeric ASN.1 syntax form as described for GSS_OID_to_str(), and this form should be used for portability, but implementations of this routine may also accept other formats (e.g., "1.2.3.3"). The OID is suitable for release using the function GSS_Release_OID(). If the input oid_str cannot be translated into an OID, GSS_S_FAILURE status is returned and the "oid" result is NULL.
_OID()への機能GSS_Str_は印刷可能なフォームからOIDを組み立てて、返します。 実装がGSS_OID_のために_str()に説明されるように数値ASN.1構文フォームを受け入れることができるべきであって、このフォームが移植性に使用されるべきですが、また、このルーチンの実装が他の形式を受け入れるかもしれない、(例えば、「1.2 .3 0.3インチ)、」 OIDは、機能GSS_Release_OID()を使用することでリリースに適しています。 入力oid_strをOIDに翻訳できないなら、GSS_S_FAILURE状態は返されます、そして、"oid"結果はNULLです。
2.4.15: GSS_Inquire_names_for_mech call
2.4.15: GSS_Inquire_は_mechのための_を呼び出しと命名します。
Input:
以下を入力してください。
o input_mech_type OBJECT IDENTIFIER, -- mechanism type
o 入力_mech_タイプOBJECT IDENTIFIER--メカニズムタイプ
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
Linn Standards Track [Page 69] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[69ページ]。
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o name_type_set SET OF OBJECT IDENTIFIER
o 名前_タイプ_はSET OF OBJECT IDENTIFIERを設定します。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that the output name_type_set contains a list of name types which are supported by the locally available mechanism identified by input_mech_type.
o GSS_S_COMPLETEは、タイプという_が設定した出力名の_が入力_mech_タイプによって特定された局所的に利用可能なメカニズムによってサポートされる名前タイプのリストを含むのを示します。
o GSS_S_BAD_MECH indicates that the mechanism identified by input_mech_type was unsupported within the local implementation, causing the query to fail.
o 質問が失敗することを引き起こして、GSS_S_BAD_MECHは、入力_mech_タイプによって特定されたメカニズムが地方の実装の中でサポートされなかったのを示します。
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、GSS-APIレベルで不特定の理由で要求された操作を実行できなかったのを示します。
Allows callers to determine the set of name types which are supportable by a specific locally-available mechanism.
訪問者が特定の局所的に利用可能なメカニズムで我慢できる名前タイプのセットを決定するのを許容します。
2.4.16: GSS_Inquire_mechs_for_name call
2.4.16: _名前のためのmechs_が呼ぶGSS_Inquire_
Inputs:
入力:
o input_name INTERNAL NAME,
o _名前INTERNAL NAMEを入力してください。
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o mech_types SET OF OBJECT IDENTIFIER
o mech_はSET OF OBJECT IDENTIFIERをタイプします。
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that a set of object identifiers, corresponding to the set of mechanisms suitable for processing the input_name, is available in mech_types.
o GSS_S_COMPLETEは、1セットの入力_名前を処理するのに適当なメカニズムのセットに対応するオブジェクト識別子がmech_タイプで利用可能であることを示します。
o GSS_S_BAD_NAME indicates that the input_name could not be processed.
o GSS_S_BAD_NAMEは、入力_名前を処理できなかったのを示します。
o GSS_S_BAD_NAMETYPE indicates that the type of the input_name is unsupported by the GSS-API implementation.
o GSS_S_BAD_NAMETYPEは、入力_名前のタイプがGSS-API実行でサポートされないのを示します。
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、GSS-APIレベルで不特定の理由で要求された操作を実行できなかったのを示します。
Linn Standards Track [Page 70] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[70ページ]。
This routine returns the mechanism set with which the input_name may be processed. After use, the mech_types object should be freed by the caller via the GSS_Release_OID_set() call. Note: it is anticipated that implementations of GSS_Inquire_mechs_for_name() will commonly operate based on type information describing the capabilities of available mechanisms; it is not guaranteed that all identified mechanisms will necessarily be able to canonicalize (via GSS_Canonicalize_name()) a particular name.
このルーチンは入力_名前が処理されるかもしれないメカニズムセットを返します。 使用の後に、mechはGSS_Release_OID_セット()呼び出しで訪問者によって解放されるべきです_タイプが、反対する。 以下に注意してください。 _名前()のためのmechs_が一般的に操作するGSS_Inquire_の実装が利用可能なメカニズムの能力について説明する情報をタイプに基礎づけたと予期されます。 それはすべての特定されたメカニズムが必ずcanonicalizeすることができるのが保証されません。(GSS_Canonicalize_を通して、特定の名前と())を命名してください。
2.4.17: GSS_Canonicalize_name call
2.4.17: GSS_Canonicalize_名前呼び出し
Inputs:
入力:
o input_name INTERNAL NAME,
o _名前INTERNAL NAMEを入力してください。
o mech_type OBJECT IDENTIFIER -- must be explicit mechanism, not "default" specifier
o mech_タイプOBJECT IDENTIFIER--「デフォルト」特許説明書の作成書ではなく、明白なメカニズムでなければなりません。
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o output_name INTERNAL NAME
o 出力_名前INTERNAL NAME
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that a mechanism-specific reduction of the input_name, as processed by the mechanism identified by mech_type, is available in output_name.
o GSS_S_COMPLETEは、mech_タイプによって特定されたメカニズムによって処理される入力_名前のメカニズム特有の減少が出力_名前で利用可能であることを示します。
o GSS_S_BAD_MECH indicates that the identified mechanism is unsupported.
o GSS_S_BAD_MECHは、特定されたメカニズムがサポートされないのを示します。
o GSS_S_BAD_NAMETYPE indicates that the input name does not contain an element with suitable type for processing by the identified mechanism.
o GSS_S_BAD_NAMETYPEは、入力名が特定されたメカニズムで処理のための適当なタイプに従った要素を含まないのを示します。
o GSS_S_BAD_NAME indicates that the input name contains an element with suitable type for processing by the identified mechanism, but that this element could not be processed successfully.
o GSS_S_BAD_NAMEは、入力名が特定されたメカニズムで処理のための適当なタイプに従った要素を含みますが、首尾よくこの要素を処理できなかったのを示します。
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、GSS-APIレベルで不特定の理由で要求された操作を実行できなかったのを示します。
Linn Standards Track [Page 71] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[71ページ]。
This routine reduces a GSS-API internal name, which may in general contain elements corresponding to multiple mechanisms, to a mechanism-specific Mechanism Name (MN) by applying the translations corresponding to the mechanism identified by mech_type.
このルーチンはGSS-API内部名を減少させます、mech_タイプによって特定されたメカニズムに対応する翻訳を適用するのによるメカニズム特有のMechanism Name(ミネソタ)に。(一般に、内部名は複数のメカニズムに対応する要素を含むかもしれません)。
2.4.18: GSS_Export_name call
2.4.18: GSS_Export_名前呼び出し
Inputs:
入力:
o input_name INTERNAL NAME, -- required to be MN
o 入力_名前INTERNAL NAME--ミネソタであることが必要です。
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o output_name OCTET STRING
o 出力_名前OCTET STRING
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that a flat representation of the input name is available in output_name.
o GSS_S_COMPLETEは、入力名の平坦な表現が出力_名前で利用可能であることを示します。
o GSS_S_NAME_NOT_MN indicates that the input name contained elements corresponding to multiple mechanisms, so cannot be exported into a single-mechanism flat form.
o 複数のメカニズムに対応する要素を含んでいるので、_ミネソタではなく、S_NAME_が示す入力が命名するGSS_をただ一つのメカニズムの平坦なフォームにエクスポートすることができません。
o GSS_S_BAD_NAME indicates that the input name was an MN, but could not be processed.
o GSS_S_BAD_NAMEを入力名がミネソタであったのを示しますが、処理できませんでした。
o GSS_S_BAD_NAMETYPE indicates that the input name was an MN, but that its type is unsupported by the GSS-API implementation.
o GSS_S_BAD_NAMETYPEは、入力名がミネソタでしたが、タイプがGSS-API実行でサポートされないのを示します。
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、GSS-APIレベルで不特定の理由で要求された操作を実行できなかったのを示します。
This routine creates a flat name representation, suitable for bytewise comparison or for input to GSS_Import_name() in conjunction with the reserved GSS-API Exported Name Object OID, from a internal- form Mechanism Name (MN) as emitted, e.g., by GSS_Canonicalize_name() or GSS_Accept_sec_context().
比較をbytewiseするか、またはGSS_Importへの_が内部のフォームからの予約されたGSS-API Exported Name Object OIDに関連した()をMechanism Name(ミネソタ)と命名する入力ために例えば、GSS_Canonicalize_名()かGSS_Accept_秒_文脈()によって放たれて、このルーチンは平坦な名前表現で、適当に作成します。
The emitted GSS-API Exported Name Object is self-describing; no associated parameter-level OID need be emitted by this call. This flat representation consists of a mechanism-independent wrapper layer, defined in Section 3.2 of this document, enclosing a mechanism-defined name representation.
放たれたGSS-API Exported Name Objectは自己に説明しています。 どんな関連パラメタレベルOIDもこの呼び出しで放たれる必要はありません。 この平坦な表現はメカニズムで定義された名前表現を同封するこのドキュメントのセクション3.2で定義されたメカニズムから独立しているラッパー層から成ります。
Linn Standards Track [Page 72] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[72ページ]。
In all cases, the flat name output by GSS_Export_name() to correspond to a particular input MN must be invariant over time within a particular installation.
すべてのケース、GSS_Export_名()によって出力された、特定の入力に相当した平坦な名前では、ミネソタは時間がたつにつれて、特定のインストールの中で不変であるに違いありません。
The GSS_S_NAME_NOT_MN status code is provided to enable implementations to reject input names which are not MNs. It is not, however, required for purposes of conformance to this specification that all non-MN input names must necessarily be rejected.
_ミネソタステータスコードではなく、S_NAME_が実装が拒絶するのを可能にするために提供されるGSS_はMNsでない名前を入力しました。 しかしながら、順応の目的のために、必ずすべての非ミネソタ入力名を拒絶しなければならないのがこの仕様に必要ではありません。
2.4.19: GSS_Duplicate_name call
2.4.19: GSS_Duplicate_名前呼び出し
Inputs:
入力:
o src_name INTERNAL NAME
o src_名前INTERNAL NAME
Outputs:
出力:
o major_status INTEGER,
o 主要な_状態INTEGER
o minor_status INTEGER,
o 小さい方の_状態INTEGER
o dest_name INTERNAL NAME
o dest_名前INTERNAL NAME
Return major_status codes:
主要な_ステータスコードを返してください:
o GSS_S_COMPLETE indicates that dest_name references an internal name object containing the same name as passed to src_name.
o GSS_S_COMPLETEは、dest_がsrc_名前に通過されるのと同じ名前を含む内部名オブジェクトと参照を命名するのを示します。
o GSS_S_BAD_NAME indicates that the input name was invalid.
o GSS_S_BAD_NAMEは、入力名が無効であったのを示します。
o GSS_S_BAD_NAMETYPE indicates that the input name's type is unsupported by the GSS-API implementation.
o GSS_S_BAD_NAMETYPEは、タイプという入力名前のものがGSS-API実行でサポートされないのを示します。
o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.
o GSS_S_FAILUREは、GSS-APIレベルで不特定の理由で要求された操作を実行できなかったのを示します。
This routine takes input internal name src_name, and returns another reference (dest_name) to that name which can be used even if src_name is later freed. (Note: This may be implemented by copying or through use of reference counts.)
このルーチンは、入力内部名src_名を取って、src_名前が後で解放されても使用できるその名前の別の参照(dest_名前)を返します。 (注意: これはコピーするか、参照カウントの使用を通して実装されるかもしれません。)
3: Data Structure Definitions for GSS-V2 Usage
3: GSS-V2用法のためのデータ構造定義
Subsections of this section define, for interoperability and portability purposes, certain data structures for use with GSS-V2.
このセクションの小区分は相互運用性と移植性目的のためにGSS-V2との使用のためのあるデータ構造を定義します。
Linn Standards Track [Page 73] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[73ページ]。
3.1: Mechanism-Independent Token Format
3.1: メカニズムから独立しているトークン形式
This section specifies a mechanism-independent level of encapsulating representation for the initial token of a GSS-API context establishment sequence, incorporating an identifier of the mechanism type to be used on that context and enabling tokens to be interpreted unambiguously at GSS-API peers. Use of this format is required for initial context establishment tokens of Internet standards-track GSS-API mechanisms; use in non-initial tokens is optional.
このセクションはGSS-API文脈設立系列の初期のトークンの表現をカプセル化して、その文脈で使用されるためにメカニズムタイプに関する識別子を取り入れて、トークンが明白にGSS-API同輩で解釈されるのを可能にするメカニズム独立者レベルを指定します。 この形式の使用がインターネット標準化過程GSS-APIメカニズムの初期の文脈設立トークンに必要です。 非初期のトークンにおける使用は任意です。
The encoding format for the token tag is derived from ASN.1 and DER (per illustrative ASN.1 syntax included later within this subsection), but its concrete representation is defined directly in terms of octets rather than at the ASN.1 level in order to facilitate interoperable implementation without use of general ASN.1 processing code. The token tag consists of the following elements, in order:
ASN.1とDER(後でこの小区分の中に説明に役立ったASN.1構文を含んでいるのあたりの)からトークンタグのためのコード化形式を得ますが、一般的なASN.1処理コードの使用なしで共同利用できる実装を容易にするために直接ASN.1レベルでというよりむしろ八重奏で具体的な表現を定義します。 トークンタグはオーダーで以下の要素から成ります:
1. 0x60 -- Tag for [APPLICATION 0] SEQUENCE; indicates that constructed form, definite length encoding follows.
1. 0×60--[アプリケーション0]には、系列にタグ付けをしてください。 その組み立てられたフォーム、コード化が続く明確な長さを示します。
2. Token length octets, specifying length of subsequent data (i.e., the summed lengths of elements 3-5 in this list, and of the mechanism-defined token object following the tag). This element comprises a variable number of octets:
2. 順次データ(すなわち、このリストの要素3-5、およびタグに続くメカニズムで定義されたトークンオブジェクトのまとめられた長さ)の長さを指定するトークン長さの八重奏。 この要素は可変数の八重奏を含みます:
2a. If the indicated value is less than 128, it shall be represented in a single octet with bit 8 (high order) set to "0" and the remaining bits representing the value.
2a。 表示値が128未満であるなら、「0インチと値を表す残っているビット」に設定されたビット8(高位)でそれはただ一つの八重奏で表されるものとします。
2b. If the indicated value is 128 or more, it shall be represented in two or more octets, with bit 8 of the first octet set to "1" and the remaining bits of the first octet specifying the number of additional octets. The subsequent octets carry the value, 8 bits per octet, most significant digit first. The minimum number of octets shall be used to encode the length (i.e., no octets representing leading zeros shall be included within the length encoding).
2b。 表示値が128以上であるなら、それは2つ以上の八重奏で表されるものとします、「1インチと追加八重奏の数を指定する最初の八重奏の残っているビット」に設定された最初の八重奏のビット8で。 その後の八重奏は最初に、値、1八重奏あたり8ビット、最上位けたを運びます。 八重奏の最小の数は、長さをコード化するのに使用されるものとします(長さのコード化の中にすなわち、先行ゼロを表す八重奏を全く含んでいないものとします)。
3. 0x06 -- Tag for OBJECT IDENTIFIER
3. 0×06--オブジェクト識別子のためのタグ
4. Object identifier length -- length (number of octets) of the encoded object identifier contained in element 5, encoded per rules as described in 2a. and 2b. above.
4. オブジェクト識別子の長さ--1上で2a.と2b.で説明される規則あたり要素5で含まれて、コード化されたコード化されたオブジェクト識別子の長さ(八重奏の数)。
5. Object identifier octets -- variable number of octets, encoded per ASN.1 BER rules:
5. オブジェクト識別子八重奏--ASN.1BER規則単位でコード化された可変数の八重奏:
Linn Standards Track [Page 74] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[74ページ]。
5a. The first octet contains the sum of two values: (1) the top- level object identifier component, multiplied by 40 (decimal), and (2) the second-level object identifier component. This special case is the only point within an object identifier encoding where a single octet represents contents of more than one component.
5a。 最初の八重奏は合計2つの値を含んでいます: (1) (2) 40(10進)が掛けられた先端の平らなオブジェクト識別子の部品と第2レベルオブジェクト識別子の部品。 この特別なケースはただ一つの八重奏が1つ以上のコンポーネントのコンテンツを表すところでコード化されるオブジェクト識別子の中の唯一のポイントです。
5b. Subsequent octets, if required, encode successively-lower components in the represented object identifier. A component's encoding may span multiple octets, encoding 7 bits per octet (most significant bits first) and with bit 8 set to "1" on all but the final octet in the component's encoding. The minimum number of octets shall be used to encode each component (i.e., no octets representing leading zeros shall be included within a component's encoding).
5b。 必要なら、その後の八重奏は表されたオブジェクト識別子の相次ぐ下側のコンポーネントをコード化します。 コンポーネントのコード化は複数の八重奏にかかるかもしれません、1八重奏あたり7ビットをコード化して(最上位ビット、最初に)、ビット8で、「コンポーネントのコード化における最終的な八重奏以外のすべての1インチ」にセットしてください。 八重奏の最小の数は、各コンポーネントをコード化するのに使用されるものとします(コンポーネントのコード化の中にすなわち、先行ゼロを表す八重奏を全く含んでいないものとします)。
(Note: In many implementations, elements 3-5 may be stored and referenced as a contiguous string constant.)
(注意: 多くの実装では、要素3-5は、隣接のストリング定数として保存されて、参照をつけられるかもしれません。)
The token tag is immediately followed by a mechanism-defined token object. Note that no independent size specifier intervenes following the object identifier value to indicate the size of the mechanism- defined token object. While ASN.1 usage within mechanism-defined tokens is permitted, there is no requirement that the mechanism- specific innerContextToken, innerMsgToken, and sealedUserData data elements must employ ASN.1 BER/DER encoding conventions.
メカニズムで定義されたトークンオブジェクトはすぐに、トークンタグを支えます。 オブジェクト識別子価値に続いて、どんな独立しているサイズ特許説明書の作成書も介入しないことに注意して、メカニズムの定義されたトークンオブジェクトのサイズを示してください。 メカニズムで定義されたトークンの中のASN.1用法は受入れられますが、メカニズムの特定のinnerContextToken、innerMsgToken、およびsealedUserDataデータ要素がコンベンションをコード化するASN.1BER/DERを使わなければならないという要件が全くありません。
Linn Standards Track [Page 75] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[75ページ]。
The following ASN.1 syntax is included for descriptive purposes only, to illustrate structural relationships among token and tag objects. For interoperability purposes, token and tag encoding shall be performed using the concrete encoding procedures described earlier in this subsection.
以下のASN.1構文は描写的である目的だけのために含まれていて、トークンとタグの中で構造的な関係を例証するのは反対します。 相互運用性目的のために、トークンとタグコード化は、この小区分で、より早く説明された手順をコード化するコンクリートを使用することで実行されるものとします。
GSS-API DEFINITIONS ::=
GSS-API定義:、:=
BEGIN
始まってください。
MechType ::= OBJECT IDENTIFIER -- data structure definitions
MechType:、:= OBJECT IDENTIFIER--データ構造定義
-- callers must be able to distinguish among -- InitialContextToken, SubsequentContextToken, -- PerMsgToken, and SealedMessage data elements -- based on the usage in which they occur
-- 訪問者は--InitialContextToken、SubsequentContextToken--PerMsgToken、およびSealedMessageデータ要素の中で区別できなければなりません--それらが起こる用法に基づいています。
InitialContextToken ::= -- option indication (delegation, etc.) indicated within -- mechanism-specific token [APPLICATION 0] IMPLICIT SEQUENCE { thisMech MechType, innerContextToken ANY DEFINED BY thisMech -- contents mechanism-specific -- ASN.1 structure not required }
InitialContextToken:、:= -- 中で示されたオプション指示(委譲など)--メカニズム特有のトークン[APPLICATION0]IMPLICIT SEQUENCEthisMech MechType、innerContextToken、どんなDEFINED BY thisMechも--コンテンツメカニズム詳細--ASN.1構造は必要ではありません。
SubsequentContextToken ::= innerContextToken ANY -- interpretation based on predecessor InitialContextToken -- ASN.1 structure not required
SubsequentContextToken:、:= innerContextToken、いずれ--前任者InitialContextTokenに基づく解釈--ASN.1構造は必要ではありません。
PerMsgToken ::= -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC -- ASN.1 structure not required innerMsgToken ANY
PerMsgToken:、:= -- GSS_GetMICによって放たれていて、GSS_VerifyMICによって処理されるように、必要です、--ASN.1構造は少しもinnerMsgTokenを必要としませんでした。
SealedMessage ::= -- as emitted by GSS_Wrap and processed by GSS_Unwrap -- includes internal, mechanism-defined indicator -- of whether or not encrypted -- ASN.1 structure not required sealedUserData ANY
SealedMessage:、:= -- 放たれている、GSS_Unwrapによって_Wrapであって処理されたGSS--内部の、そして、メカニズムで定義されたインディケータを含んでいます--、暗号化される、--ASN.1構造は少しもsealedUserDataが必要でなかった
END
終わり
Linn Standards Track [Page 76] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[76ページ]。
3.2: Mechanism-Independent Exported Name Object Format
3.2: メカニズムから独立しているエクスポートしている名前オブジェクト形式
This section specifies a mechanism-independent level of encapsulating representation for names exported via the GSS_Export_name() call, including an object identifier representing the exporting mechanism. The format of names encapsulated via this representation shall be defined within individual mechanism drafts. Name objects of this type will be identified with the following Object Identifier:
このセクションは呼ぶというGSS_Export_名()でエクスポートされた名前のためのメカニズムから独立しているレベルの要約表現を指定します、輸出メカニズムを表すオブジェクト識別子を含んでいて。 この表現でカプセル化された名前の書式は個々のメカニズム草稿の中で定義されるものとします。 このタイプの名前オブジェクトは以下のObject Identifierと同一視されるでしょう:
{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes), 4(gss-api-exported-name)}
1(iso)、3(org)、6(dod)、1(インターネット)、5(セキュリティ)、6(nametypes)、4(名前であるとエクスポートされたgss-api)
No name type OID is included in this mechanism-independent level of format definition, since (depending on individual mechanism specifications) the enclosed name may be implicitly typed or may be explicitly typed using a means other than OID encoding.
名前タイプOIDは全くこのメカニズムから独立しているレベルの形式定義に含まれていません、(独特のメカニズム仕様によります)同封の名がOIDコード化を除いた手段を使用することでそれとなくタイプされるか、または明らかにタイプされるかもしれないので。
Length Name Description
長さの名前記述
2 TOK_ID Token Identifier For exported name objects, this must be hex 04 01. 2 MECH_OID_LEN Length of the Mechanism OID MECH_OID_LEN MECH_OID Mechanism OID, in DER 4 NAME_LEN Length of name NAME_LEN NAME Exported name; format defined in applicable mechanism draft.
2 TOK_ID Token Identifier Forは名前オブジェクトをエクスポートして、これは十六進法04 01であるに違いない。 2MECH、_レンNAME Exportedが命名する名前NAME_のDER4NAME_LEN LengthのMechanism OID MECH_OID_LEN MECH_OID Mechanism OIDのOID_LEN Length。 適切なメカニズム草稿で定義された書式。
4: Name Type Definitions
4: 名前型定義
This section includes definitions for name types and associated syntaxes which are defined in a mechanism-independent fashion at the GSS-API level rather than being defined in individual mechanism specifications.
このセクションは独特のメカニズム仕様に基づき定義されるよりGSS-APIレベルでむしろメカニズムから独立しているファッションで定義される名前タイプと関連構文のための定義を含んでいます。
4.1: Host-Based Service Name Form
4.1: ホストベースのサービス名フォーム
The following Object Identifier value is provided as a means to identify this name form:
この名前を特定する手段が形成されるとき、以下のObject Identifier値を提供します:
{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes), 2(gss-host-based-services)}
1(iso)、3(org)、6(dod)、1(インターネット)、5(セキュリティ)、6(nametypes)、2(gssのホストベースのサービス)
The recommended symbolic name for this type is "GSS_C_NT_HOSTBASED_SERVICE".
このタイプにおけるお勧めの英字名は「GSS_C_NT_HOSTBASED_サービス」です。
Linn Standards Track [Page 77] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[77ページ]。
This name type is used to represent services associated with host computers. This name form is constructed using two elements, "service" and "hostname", as follows:
この名前タイプは、ホストコンピュータに関連しているサービスを表すのに使用されます。 この名前フォームは以下の通り2つの要素、「サービス」、および「ホスト名」を使用することで構成されます:
service@hostname
service@hostname
When a reference to a name of this type is resolved, the "hostname" is canonicalized by attempting a DNS lookup and using the fully- qualified domain name which is returned, or by using the "hostname" as provided if the DNS lookup fails. The canonicalization operation also maps the host's name into lower-case characters.
このタイプの名前の参照が決議されているとき、「ホスト名」は、DNSルックアップを試みて、返される完全に適切なドメイン名を使用するか、またはDNSルックアップが失敗するなら提供するように「ホスト名」を使用することによって、canonicalizedされます。 また、canonicalization操作はホストの名前を小文字に写像します。
The "hostname" element may be omitted. If no "@" separator is included, the entire name is interpreted as the service specifier, with the "hostname" defaulted to the canonicalized name of the local host.
「ホスト名」要素は省略されるかもしれません。 どんな"@"分離符も含まれていないなら、存在という全体の名前はサービス特許説明書の作成書を解釈しました、「ホスト名」がローカル・ホストのcanonicalized名前をデフォルトとして。
Values for the "service" element are registered with the IANA.
「サービス」要素のための値はIANAに示されます。
4.2: User Name Form
4.2: ユーザ名前フォーム
This name form shall be represented by the Object Identifier {iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2) generic(1) user_name(1)}. The recommended mechanism-independent symbolic name for this type is "GSS_C_NT_USER_NAME". (Note: the same name form and OID is defined within the Kerberos V5 GSS-API mechanism, but the symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)
この名前書式はiso(1)メンバーボディー(2)合衆国(840)mit(113554) infosys(1) gssapi(2)ジェネリック(1)ユーザ_が(1)と命名するObject Identifierによって表されるものとします。 このタイプにおけるお勧めのメカニズムから独立している英字名は「GSS_C_NT_ユーザ_名」です。 (注意: 同じ名前のフォームとOIDはケルベロスV5 GSS-APIメカニズムの中で定義されますが、そこのお勧めの英字名は「GSS_KRB5_NT_」接頭語で始まります。)
This name type is used to indicate a named user on a local system. Its interpretation is OS-specific. This name form is constructed as:
この名前タイプは、ローカルシステムで命名されたユーザを示すのに使用されます。 解釈はOS特有です。 この名前フォームは以下として構成されます。
username
ユーザ名
4.3: Machine UID Form
4.3: マシンUIDフォーム
This name form shall be represented by the Object Identifier {iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2) generic(1) machine_uid_name(2)}. The recommended mechanism- independent symbolic name for this type is "GSS_C_NT_MACHINE_UID_NAME". (Note: the same name form and OID is defined within the Kerberos V5 GSS-API mechanism, but the symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)
この名前書式はiso(1)メンバーボディー(2)合衆国(840)mit(113554) infosys(1) gssapi(2)ジェネリック(1)マシン_uid_が(2)と命名するObject Identifierによって表されるものとします。 このタイプにおけるお勧めのメカニズム独立している英字名は「GSS_C_NT_マシン_UID_名」です。 (注意: 同じ名前のフォームとOIDはケルベロスV5 GSS-APIメカニズムの中で定義されますが、そこのお勧めの英字名は「GSS_KRB5_NT_」接頭語で始まります。)
This name type is used to indicate a numeric user identifier corresponding to a user on a local system. Its interpretation is OS-specific. The gss_buffer_desc representing a name of this type should contain a locally-significant uid_t, represented in host byte
この名前タイプは、ユーザにとって、ローカルシステムで対応する数値ユーザ識別子を示すのに使用されます。 解釈はOS特有です。 このタイプの名前を表すgss_バッファ_descはホストバイトで表された局所的に重要なuid_tを含むはずです。
Linn Standards Track [Page 78] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[78ページ]。
order. The GSS_Import_name() operation resolves this uid into a username, which is then treated as the User Name Form.
注文してください。 GSS_Import_名前()操作はこのuidにユーザ名に変えます。(次に、それは、User Name Formとして扱われます)。
4.4: String UID Form
4.4: ストリングUIDフォーム
This name form shall be represented by the Object Identifier {iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2) generic(1) string_uid_name(3)}. The recommended symbolic name for this type is "GSS_C_NT_STRING_UID_NAME". (Note: the same name form and OID is defined within the Kerberos V5 GSS-API mechanism, but the symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)
この名前書式はiso(1)メンバーボディー(2)合衆国(840)mit(113554) infosys(1) gssapi(2)ジェネリック(1)ストリング_uid_が(3)と命名するObject Identifierによって表されるものとします。 このタイプにおけるお勧めの英字名は「GSS_C_NT_ストリング_UID_名」です。 (注意: 同じ名前のフォームとOIDはケルベロスV5 GSS-APIメカニズムの中で定義されますが、そこのお勧めの英字名は「GSS_KRB5_NT_」接頭語で始まります。)
This name type is used to indicate a string of digits representing the numeric user identifier of a user on a local system. Its interpretation is OS-specific. This name type is similar to the Machine UID Form, except that the buffer contains a string representing the uid_t.
この名前タイプは、ローカルシステムにユーザの数値ユーザ識別子を表す一連のケタを示すのに使用されます。 解釈はOS特有です。 バッファがuid_tを表すストリングを入れてあるのを除いて、この名前タイプはMachine UID Formと同様です。
5: Mechanism-Specific Example Scenarios
5: メカニズム特有の例のシナリオ
This section provides illustrative overviews of the use of various candidate mechanism types to support the GSS-API. These discussions are intended primarily for readers familiar with specific security technologies, demonstrating how GSS-API functions can be used and implemented by candidate underlying mechanisms. They should not be regarded as constrictive to implementations or as defining the only means through which GSS-API functions can be realized with a particular underlying technology, and do not demonstrate all GSS-API features with each technology.
このセクションは、GSS-APIをサポートするために様々な候補メカニズムタイプの使用の説明に役立った概要を提供します。 これらの議論は主として特定のセキュリティー技術に詳しい読者のために意図します、候補発症機序でどうGSS-API関数を使用して、実装することができるかを示して。それらを実装への圧縮か各技術でGSS-API関数が特定の基本的な技術で実現できて、すべてのGSS-APIの特徴を示すというわけではない唯一の手段を定義すると見なすべきではありません。
5.1: Kerberos V5, single-TGT
5.1: ケルベロスV5、独身のTGT
OS-specific login functions yield a TGT to the local realm Kerberos server; TGT is placed in a credentials structure for the client. Client calls GSS_Acquire_cred() to acquire a cred_handle in order to reference the credentials for use in establishing security contexts.
OS特有のログイン機能はローカルの分野ケルベロスサーバにTGTを譲ります。 TGTはクライアントのために資格証明書構造に置かれます。 クライアントは、GSS_をセキュリティ文脈を確立することにおける使用のために資格証明書に参照をつけるために信用_ハンドルを入手するAcquire_信用()と呼びます。
Client calls GSS_Init_sec_context(). If the requested service is located in a different realm, GSS_Init_sec_context() gets the necessary TGT/key pairs needed to traverse the path from local to target realm; these data are placed in the owner's TGT cache. After any needed remote realm resolution, GSS_Init_sec_context() yields a service ticket to the requested service with a corresponding session key; these data are stored in conjunction with the context. GSS-API code sends KRB_TGS_REQ request(s) and receives KRB_TGS_REP response(s) (in the successful case) or KRB_ERROR.
クライアントは、GSS_Init_を秒_文脈()と呼びます。 要求されたサービスが異なった分野に位置しているなら、GSS_Init_秒_文脈()は分野を狙うためには地方から経路を横断するのが必要である必要なTGT/主要な組を得ます。 これらのデータは所有者のTGTキャッシュに置かれます。 どんな必要なリモート分野解決の後にも、GSS_Init_秒_文脈()は対応するセッションキーで要求されたサービスにサービスチケットを譲ります。 これらのデータは文脈に関連して保存されます。 GSS-APIコードは、_TGS_REQ要求をKRBに送って、KRB_TGS_REP応答(うまくいっている場合における)かKRB_ERRORを受けます。
Linn Standards Track [Page 79] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[79ページ]。
Assuming success, GSS_Init_sec_context() builds a Kerberos-formatted KRB_AP_REQ message, and returns it in output_token. The client sends the output_token to the service.
成功を仮定して、GSS_Init_秒_文脈()は、ケルベロスでフォーマットされたKRB_AP_REQメッセージを築き上げて、出力_トークンでそれを返します。 クライアントは出力_トークンをサービスに送ります。
The service passes the received token as the input_token argument to GSS_Accept_sec_context(), which verifies the authenticator, provides the service with the client's authenticated name, and returns an output_context_handle.
サービスは、GSS_Accept_秒_文脈()への入力_トークン議論がクライアントの認証された名前をサービスに提供するのに応じて容認されたトークンを通過して、出力_文脈_ハンドルを返します。文脈は固有識別文字について確かめます。
Both parties now hold the session key associated with the service ticket, and can use this key in subsequent GSS_GetMIC(), GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap() operations.
双方は、現在サービスチケットに関連しているセッションかぎを握って、その後のGSS_GetMIC()、GSS_VerifyMIC()、GSS_Wrap()、およびGSS_Unwrap()操作にこのキーを使用できます。
5.2: Kerberos V5, double-TGT
5.2: ケルベロスV5、二重TGT
TGT acquisition as above.
上のTGT獲得。
Note: To avoid unnecessary frequent invocations of error paths when implementing the GSS-API atop Kerberos V5, it seems appropriate to represent "single-TGT K-V5" and "double-TGT K-V5" with separate mech_types, and this discussion makes that assumption.
以下に注意してください。 ケルベロスV5の上でGSS-APIを実装するとき、誤り経路の不要な頻繁な実施を避けるために、表すのが適切に見える、「独身のTGT K-V5"、「別々のmech_と二重TGT K-V5"はタイプします、そして、この議論はそれを仮定にします」。
Based on the (specified or defaulted) mech_type, GSS_Init_sec_context() determines that the double-TGT protocol should be employed for the specified target. GSS_Init_sec_context() returns GSS_S_CONTINUE_NEEDED major_status, and its returned output_token contains a request to the service for the service's TGT. (If a service TGT with suitably long remaining lifetime already exists in a cache, it may be usable, obviating the need for this step.) The client passes the output_token to the service. Note: this scenario illustrates a different use for the GSS_S_CONTINUE_NEEDED status return facility than for support of mutual authentication; note that both uses can coexist as successive operations within a single context establishment operation.
(指定するか、またはデフォルトとします)mech_タイプに基づいて、GSS_Init_秒_文脈()は、二重TGTプロトコルが指定された目標に使われるべきであることを決定します。 GSS_Init_秒_文脈()はCONTINUE_が必要としたGSS_S_に主要な_状態を返します、そして、返された出力_トークンはサービスのTGTのためのサービスに要求を含んでいます。 (適当に長い残っている生涯があるサービスTGTがキャッシュで既に存在しているなら、使用可能であるかもしれません、このステップの必要性を取り除いて。) クライアントは出力_トークンをサービスに通過します。 以下に注意してください。 GSS_S_CONTINUE_が互いの認証のサポートより状態リターン施設を必要としたので、このシナリオは異なった使用を例証します。 両方の用途が連続した操作としてただ一つの文脈設立操作の中に共存できることに注意してください。
The service passes the received token as the input_token argument to GSS_Accept_sec_context(), which recognizes it as a request for TGT. (Note that current Kerberos V5 defines no intra-protocol mechanism to represent such a request.) GSS_Accept_sec_context() returns GSS_S_CONTINUE_NEEDED major_status and provides the service's TGT in its output_token. The service sends the output_token to the client.
サービスは入力_トークン議論としてGSS_Accept_秒_文脈()に容認されたトークンを通過します。(それは、TGTを求めてそれが要求であると認めます)。 (現在のケルベロスV5がそのような要求を表すためにイントラプロトコルメカニズムを全く定義しないことに注意してください。) GSS_Accept_秒_文脈()は、CONTINUE_が必要としたGSS_S_に主要な_状態を返して、出力_トークンにサービスのTGTを提供します。 サービスは出力_トークンをクライアントに送ります。
The client passes the received token as the input_token argument to a continuation of GSS_Init_sec_context(). GSS_Init_sec_context() caches the received service TGT and uses it as part of a service ticket request to the Kerberos authentication server, storing the returned service ticket and session key in conjunction with the context. GSS_Init_sec_context() builds a Kerberos-formatted authenticator,
クライアントは入力_トークン議論としてGSS_Init_秒_文脈()の継続に容認されたトークンを通過します。 GSS_Init_秒_文脈()は、ケルベロス認証サーバに容認されたサービスTGTをキャッシュして、サービスチケット要求の一部としてそれを使用します、文脈に関連して主要な返されたサービスチケットとセッションを保存して。 GSS_Init_秒_文脈()はケルベロスでフォーマットされた固有識別文字を築き上げます。
Linn Standards Track [Page 80] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[80ページ]。
and returns it in output_token along with GSS_S_COMPLETE return major_status. The client sends the output_token to the service.
そして、GSS_S_COMPLETEリターン少佐_状態に伴う出力_トークンでそれを返します。 クライアントは出力_トークンをサービスに送ります。
Service passes the received token as the input_token argument to a continuation call to GSS_Accept_sec_context(). GSS_Accept_sec_context() verifies the authenticator, provides the service with the client's authenticated name, and returns major_status GSS_S_COMPLETE.
サービスは入力_トークン議論としてGSS_Accept_秒_文脈()への継続呼び出しに容認されたトークンを通過します。 GSS_Accept_秒_文脈()は、固有識別文字について確かめて、クライアントの認証された名前をサービスに提供して、_主要な_状態GSS_S COMPLETEを返します。
GSS_GetMIC(), GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap() as above.
GSS_GetMIC()、GSS_VerifyMIC()、GSS_Wrap()、および上のGSS_Unwrap()。
5.3: X.509 Authentication Framework
5.3: X.509認証フレームワーク
This example illustrates use of the GSS-API in conjunction with public-key mechanisms, consistent with the X.509 Directory Authentication Framework.
この例はX.509ディレクトリAuthentication Frameworkと一致した公開鍵メカニズムに関連してGSS-APIの使用を例証します。
The GSS_Acquire_cred() call establishes a credentials structure, making the client's private key accessible for use on behalf of the client.
クライアントの秘密鍵をクライアントを代表して使用にアクセスしやすくして、GSS_Acquire_信用()呼び出しは資格証明書構造を確立します。
The client calls GSS_Init_sec_context(), which interrogates the Directory to acquire (and validate) a chain of public-key certificates, thereby collecting the public key of the service. The certificate validation operation determines that suitable integrity checks were applied by trusted authorities and that those certificates have not expired. GSS_Init_sec_context() generates a secret key for use in per-message protection operations on the context, and enciphers that secret key under the service's public key.
クライアントが、GSS_Init_を取得するディレクトリについて査問する秒_文脈()と呼ぶ、(有効にする、)、その結果サービスの公開鍵を集める公開鍵証明書のチェーン。 証明書合法化操作は適当な保全チェックが信じられた当局によって適用されて、それらの証明書が呼吸が絶えていないことを決定します。 GSS_Init_秒_文脈()は、文脈で1メッセージあたりの保護操作における使用のための秘密鍵を生成して、サービスの公開鍵の下でその秘密鍵を暗号化します。
The enciphered secret key, along with an authenticator quantity signed with the client's private key, is included in the output_token from GSS_Init_sec_context(). The output_token also carries a certification path, consisting of a certificate chain leading from the service to the client; a variant approach would defer this path resolution to be performed by the service instead of being asserted by the client. The client application sends the output_token to the service.
暗号化された秘密鍵はクライアントの秘密鍵を契約された固有識別文字量と共に出力_トークンにGSS_Init_秒_文脈()から含まれています。 また、クライアントに対するサービスから導く証明書チェーンから成って、出力_トークンは証明経路を運びます。 異形アプローチはこのクライアントによって断言されることの代わりにサービスで実行されるべき経路解決を延期するでしょう。 クライアントアプリケーションは出力_トークンをサービスに送ります。
The service passes the received token as the input_token argument to GSS_Accept_sec_context(). GSS_Accept_sec_context() validates the certification path, and as a result determines a certified binding between the client's distinguished name and the client's public key. Given that public key, GSS_Accept_sec_context() can process the input_token's authenticator quantity and verify that the client's private key was used to sign the input_token. At this point, the
サービスは入力_トークン議論としてGSS_Accept_秒_文脈()に容認されたトークンを通過します。 GSS_Accept_秒_文脈()は、証明経路を有効にして、その結果クライアントの分類名とクライアントの公開鍵の間の公認された結合を決定します。 その公開鍵を考えて、GSS_Accept_秒_文脈()は、入力_トークンの固有識別文字量を処理して、クライアントの秘密鍵が入力_トークンに署名するのに使用されたことを確かめることができます。 この時点で
Linn Standards Track [Page 81] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[81ページ]。
client is authenticated to the service. The service uses its private key to decipher the enciphered secret key provided to it for per- message protection operations on the context.
クライアントはサービスに認証されます。 サービスが暗号化された秘密鍵がそれに提供した暗号文の解読に秘密鍵を使用する、-、文脈におけるメッセージ保護操作。
The client calls GSS_GetMIC() or GSS_Wrap() on a data message, which causes per-message authentication, integrity, and (optional) confidentiality facilities to be applied to that message. The service uses the context's shared secret key to perform corresponding GSS_VerifyMIC() and GSS_Unwrap() calls.
クライアントは、データメッセージにGSS_GetMIC()かGSS_をWrap()と呼びます。(それは、通報認証、保全、および(任意)の秘密性施設をそのメッセージに適用します)。 サービスは文脈の対応するGSS_VerifyMIC()を実行するために主要な共有秘密キーを使用します、そして、GSS_Unwrap()は呼びます。
6: Security Considerations
6: セキュリティ問題
Security issues are discussed throughout this memo.
このメモ中で安全保障問題について議論します。
7: Related Activities
7: 関連活動
In order to implement the GSS-API atop existing, emerging, and future security mechanisms:
存在、現れ、および将来のセキュリティー対策の上でGSS-APIを実装してください:
object identifiers must be assigned to candidate GSS-API mechanisms and the name types which they support
候補GSS-APIメカニズムとタイプというそれらがサポートする名前にオブジェクト識別子を割り当てなければなりません。
concrete data element formats and processing procedures must be defined for candidate mechanisms
候補メカニズムのために具体的なデータ要素形式と現像処理を定義しなければなりません。
Calling applications must implement formatting conventions which will enable them to distinguish GSS-API tokens from other data carried in their application protocols.
アプリケーションと呼ぶのが彼らがそれらのアプリケーション・プロトコルで運ばれた他のデータとGSS-APIトークンを区別するのを可能にする形式コンベンションを実装しなければなりません。
Concrete language bindings are required for the programming environments in which the GSS-API is to be employed, as RFC-1509 defines for the C programming language and GSS-V1.
具体的な言語結合がGSS-APIが採用していることになっているプログラミング環境に必要です、RFC-1509がCのためにプログラミング言語とGSS-V1を定義するとき。
Linn Standards Track [Page 82] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[82ページ]。
APPENDIX A
付録A
MECHANISM DESIGN CONSTRAINTS
メカニズム・デザイン規制
The following constraints on GSS-API mechanism designs are adopted in response to observed caller protocol requirements, and adherence thereto is anticipated in subsequent descriptions of GSS-API mechanisms to be documented in standards-track Internet specifications.
GSS-APIメカニズム・デザインにおける以下の規制は観測された訪問者プロトコル要件に対応して採用されます、そして、それに加えて固守は、標準化過程インターネット仕様に記録されるためにGSS-APIメカニズムのその後の記述で予期されます。
It is strongly recommended that mechanisms offering per-message protection services also offer at least one of the replay detection and sequencing services, as mechanisms offering neither of the latter will fail to satisfy recognized requirements of certain candidate caller protocols.
また、1メッセージあたりの保護サービスを提供するメカニズムが少なくとも再生検出と配列サービスの1つを提供することが強く勧められます、後者のどちらも提供しないメカニズムが、ある候補訪問者プロトコルの認識された要件を満たさないとき。
APPENDIX B
付録B
COMPATIBILITY WITH GSS-V1
GSS-V1との互換性
It is the intent of this document to define an interface and procedures which preserve compatibility between GSS-V1 (RFC-1508) callers and GSS- V2 providers. All calls defined in GSS-V1 are preserved, and it has been a goal that GSS-V1 callers should be able to operate atop GSS-V2 provider implementations. Certain detailed changes, summarized in this section, have been made in order to resolve omissions identified in GSS-V1.
GSS-V1(RFC-1508)訪問者とGSS- V2プロバイダーとの互換性を保存するのは、このドキュメントがインタフェースと手順を定義する意図です。 GSS-V1で定義されたすべての呼び出しが保存されます、そして、それはGSS-V1訪問者がGSS-V2プロバイダー実装の上で操作できるべきである目標です。 このセクションでまとめられたある詳細な変更は、GSS-V1で特定された省略を決議するために行われました。
The following GSS-V1 constructs, while supported within GSS-V2, are deprecated:
以下のGSS-V1構造物はGSS-V2の中でサポートされる間、推奨しないです:
Names for per-message processing routines: GSS_Seal() deprecated in favor of GSS_Wrap(); GSS_Sign() deprecated in favor of GSS_GetMIC(); GSS_Unseal() deprecated in favor of GSS_Unwrap(); GSS_Verify() deprecated in favor of GSS_VerifyMIC().
1メッセージ処理あたりのルーチンのための名前: GSS_Wrap()を支持して推奨しないGSS_Seal()。 GSS_GetMIC()を支持して推奨しないGSS_Sign()。 GSS_Unwrap()を支持して推奨しないGSS_Unseal()。 GSS_VerifyMIC()を支持して推奨しないGSS_Verify()。
GSS_Delete_sec_context() facility for context_token usage, allowing mechanisms to signal context deletion, is retained for compatibility with GSS-V1. For current usage, it is recommended that both peers to a context invoke GSS_Delete_sec_context() independently, passing a null output_context_token buffer to indicate that no context_token is required. Implementations of GSS_Delete_sec_context() should delete relevant locally-stored context information.
メカニズムが文脈削除を示すのを許容して、文脈_トークン用法のためのGSS_Delete_秒_文脈()施設はGSS-V1との互換性のために保有されます。 現在の用法に、文脈への両方の同輩が独自にGSS_Delete_秒_文脈()を呼び出すのは、お勧めです、文脈_トークンは全く必要でないことを示すためにヌル出力_文脈_トークンバッファを渡して。 GSS_Delete_秒_文脈()の実装は関連局所的に保存された文脈情報を削除するべきです。
Linn Standards Track [Page 83] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[83ページ]。
This GSS-V2 specification adds the following calls which are not present in GSS-V1:
このGSS-V2仕様はGSS-V1で以下の存在していない呼び出しを加えます:
Credential management calls: GSS_Add_cred(), GSS_Inquire_cred_by_mech().
資格証明管理は電話をします: GSS_は、_信用()、GSS_が_mech()で_信用_について問い合わせると言い足します。
Context-level calls: GSS_Inquire_context(), GSS_Wrap_size_limit(), GSS_Export_sec_context(), GSS_Import_sec_context().
文脈レベルは呼びます: GSS_は_文脈()について問い合わせて、GSS_包装_サイズ_限界()、GSS_輸出_秒_文脈()、GSS_は、_が秒_文脈()であるとインポートします。
Per-message calls: No new calls. Existing calls have been renamed.
メッセージは呼びます: 新しい呼び出しがありません。 既存の呼び出しは改名されました。
Support calls: GSS_Create_empty_OID_set(), GSS_Add_OID_set_member(), GSS_Test_OID_set_member(), GSS_Release_OID(), GSS_OID_to_str(), GSS_Str_to_OID(), GSS_Inquire_names_for_mech(), GSS_Inquire_mechs_for_name(), GSS_Canonicalize_name(), GSS_Export_name(), GSS_Duplicate_name().
サポートは呼びます: 作成..空..セット..加える..設定..メンバー..テスト..セット..メンバー..リリース..問い合わせる..名前..問い合わせる..名前..名前..輸出..名前..コピー..名前
This GSS-V2 specification introduces three new facilities applicable to security contexts, indicated using the following context state values which are not present in GSS-V1:
このGSS-V2仕様はGSS-V1で以下の存在していない文脈州の値を使用することで示されたセキュリティ文脈に適切な3つの新しい設備を導入します:
anon_state, set TRUE to indicate that a context's initiator is anonymous from the viewpoint of the target; Section 1.2.5 of this specification provides a summary description of the GSS-V2 anonymity support facility, support and use of which is optional.
やがて、_は、TRUEにそれを示すように設定するように述べます。文脈の創始者は目標の観点から匿名です。 この.5のセクション1.2仕様がGSS-V2匿名サポート施設の概要記述を提供します。サポートとその使用は任意です。
prot_ready_state, set TRUE to indicate that a context may be used for per-message protection before final completion of context establishment; Section 1.2.7 of this specification provides a summary description of the GSS-V2 facility enabling mechanisms to selectively permit per-message protection during context establishment, support and use of which is optional.
protの_の持ち合わせの_状態、文脈が文脈設立の竣工の前に1メッセージあたりの保護に使用されるかもしれないのを示すセットTRUE。 この.7のセクション1.2仕様がメカニズムがそれのサポートと使用が任意である文脈設立の間、選択的に1メッセージあたりの保護を可能にするのを可能にするGSS-V2施設の概要記述を提供します。
trans_state, set TRUE to indicate that a context is transferable to another process using the GSS-V2 GSS_Export_sec_context() facility.
移-_状態、文脈がGSS-V2 GSS_Export_秒_文脈()施設を使用することで別のプロセスに移転可能であることを示すセットTRUE。
These state values are represented (at the C bindings level) in positions within a bit vector which are unused in GSS-V1, and may be safely ignored by GSS-V1 callers.
これらの州の値は、しばらくベクトルの中のGSS-V1で未使用であることの位置に表されて(C結合レベルで)、GSS-V1訪問者によって安全に無視されるかもしれません。
Relative to GSS-V1, GSS-V2 provides additional guidance to GSS-API implementors in the following areas: implementation robustness, credential management, behavior in multi-mechanism configurations, naming support, and inclusion of optional sequencing services. The token tagging facility as defined in GSS-V2, Section 3.1, is now described directly in terms of octets to facilitate interoperable implementation without general ASN.1 processing code; the corresponding ASN.1 syntax, included for descriptive purposes, is
GSS-V1に比例して、GSS-V2は以下の領域のGSS-API作成者に追加指導を提供します: 実装丈夫さ、資格証明管理、任意に配列サービスのマルチメカニズム構成、命名サポート、および包含における振舞い。 GSS-V2で定義されるトークンタグ付け施設(セクション3.1)は現在、一般的なASN.1処理コードなしで共同利用できる実装を容易にするために直接八重奏で説明されます。 描写的である目的のために含まれていた対応するASN.1構文はそうです。
Linn Standards Track [Page 84] RFC 2078 GSS-API January 1997
リンStandardsはGSS-API1997年1月にRFC2078を追跡します[84ページ]。
unchanged from that in GSS-V1. For use in conjunction with added naming support facilities, a new Exported Name Object construct is added. Additional name types are introduced in Section 4.
それから、GSS-V1で変わりがありません。 加えられた命名サポート施設に関連した使用において、新しいExported Name Object構造物は加えられます。 セクション4で追加名前タイプを導入します。
This GSS-V2 specification adds the following major_status values which are not defined in GSS-V1:
このGSS-V2仕様はGSS-V1で定義されない以下の主要な_状態値を加えます:
GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements GSS_S_GAP_TOKEN skipped predecessor token(s) detected
サポートされないGSS_S QOP値のGSS_S_UNAUTHORIZED_BAD_QOP操作権限のない入手できないGSS_S GSS_S_DUPLICATE_ELEMENT写し資格証明書_UNAVAILABLE操作要素が、GSS_S_NAME_NOT_ミネソタ名がGAP_TOKENがスキップしたマルチメカニズム要素GSS_S_を含むよう要求した、検出された前任者トークン
Of these added status codes, only two values are defined to be returnable by calls existing in GSS-V1: GSS_S_BAD_QOP (returnable by GSS_GetMIC() and GSS_Wrap()), and GSS_S_GAP_TOKEN (returnable by GSS_VerifyMIC() and GSS_Unwrap()).
これらの加えられたステータスコードでは、2つの値だけがGSS-V1に存在する呼び出しで返却可能になるように定義されます: _GSS_S悪い_QOP、(GSS_GetMIC()、GSS_包装())、およびGSS_S_ギャップ_トークンで返却可能である、(返却可能である、GSS_で、VerifyMIC()とGSS_は())を開けます。
Additionally, GSS-V2 descriptions of certain calls present in GSS-V1 have been updated to allow return of additional major_status values from the set as defined in GSS-V1: GSS_Inquire_cred() has GSS_S_DEFECTIVE_CREDENTIAL and GSS_S_CREDENTIALS_EXPIRED defined as returnable, GSS_Init_sec_context() has GSS_S_OLD_TOKEN, GSS_S_DUPLICATE_TOKEN, and GSS_S_BAD_MECH defined as returnable, and GSS_Accept_sec_context() has GSS_S_BAD_MECH defined as returnable.
さらに、GSS-V1で定義されるようにセットから追加主要な_状態値の復帰を許容するためにGSS-V1の現在のある呼び出しのGSS-V2記述をアップデートしました: GSS_Inquire_信用()には_GSS_S DEFECTIVE_CREDENTIALがあります、そして、CREDENTIALS_EXPIREDが返却可能です、GSS_Init_秒_文脈()には__GSS_S OLD_TOKEN、GSS_S DUPLICATE_TOKENがあって、GSS_S_BAD_MECHが返却可能、そして、GSS_Accept_秒_文脈()を定義したと定義したGSS_S_は_GSS_S BAD_MECHを返却可能であると定義させます。
Author's Address
作者のアドレス
John Linn OpenVision Technologies One Main St. Cambridge, MA 02142 USA
主なジョンリンOpenVision Technologies1聖MA02142ケンブリッジ(米国)
Phone: +1 617.374.2245 EMail: John.Linn@ov.com
以下に電話をしてください。 +1 617.374 .2245 メール: John.Linn@ov.com
Linn Standards Track [Page 85]
リン標準化過程[85ページ]
一覧
スポンサーリンク