RFC2495 日本語訳

2495 Definitions of Managed Objects for the DS1, E1, DS2 and E2Interface Types. D. Fowler, Ed.. January 1999. (Format: TXT=155560 bytes) (Obsoletes RFC1406) (Obsoleted by RFC3895) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                              D. Fowler, Editor
Request for Comments: 2495                        Newbridge Networks
Obsoletes: 1406                                         January 1999
Category: Standards Track

Network Working Group D. Fowler, Editor Request for Comments: 2495 Newbridge Networks Obsoletes: 1406 January 1999 Category: Standards Track

                     Definitions of Managed Objects
              for the DS1, E1, DS2 and E2 Interface Types

Definitions of Managed Objects for the DS1, E1, DS2 and E2 Interface Types

Status of this Memo

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it describes objects used for managing DS1, E1, DS2
   and E2 interfaces.  This document is a companion document with
   Definitions of Managed Objects for the DS0 (RFC 2494 [30]), DS3/E3
   (RFC 2496 [28]), and the work in progress, SONET/SDH Interface Types.

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects used for managing DS1, E1, DS2 and E2 interfaces. This document is a companion document with Definitions of Managed Objects for the DS0 (RFC 2494 [30]), DS3/E3 (RFC 2496 [28]), and the work in progress, SONET/SDH Interface Types.

   This memo specifies a MIB module in a manner that is both compliant
   to the SNMPv2 SMI, and semantically identical to the peer SNMPv1
   definitions.

This memo specifies a MIB module in a manner that is both compliant to the SNMPv2 SMI, and semantically identical to the peer SNMPv1 definitions.

Table of Contents

Table of Contents

   1 The SNMP Management Framework ................................    2
   1.1 Changes from RFC1406 .......................................    3
   2 Overview .....................................................    4
   2.1 Use of ifTable for DS1 Layer ...............................    5
   2.2 Usage Guidelines ...........................................    6
   2.2.1 Usage of ifStackTable for Routers and DSUs ...............    6
   2.2.2 Usage of ifStackTable for DS1/E1 on DS2/E2 ...............    8
   2.2.3 Usage of Channelization for DS3, DS1, DS0 ................    9
   2.2.4 Usage of Channelization for DS3, DS2, DS1 ................    9
   2.2.5 Usage of Loopbacks .......................................   10
   2.3 Objectives of this MIB Module ..............................   11
   2.4 DS1 Terminology ............................................   11

1 The SNMP Management Framework ................................ 2 1.1 Changes from RFC1406 ....................................... 3 2 Overview ..................................................... 4 2.1 Use of ifTable for DS1 Layer ............................... 5 2.2 Usage Guidelines ........................................... 6 2.2.1 Usage of ifStackTable for Routers and DSUs ............... 6 2.2.2 Usage of ifStackTable for DS1/E1 on DS2/E2 ............... 8 2.2.3 Usage of Channelization for DS3, DS1, DS0 ................ 9 2.2.4 Usage of Channelization for DS3, DS2, DS1 ................ 9 2.2.5 Usage of Loopbacks ....................................... 10 2.3 Objectives of this MIB Module .............................. 11 2.4 DS1 Terminology ............................................ 11

Fowler, Ed.                 Standards Track                     [Page 1]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 1] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

   2.4.1 Error Events .............................................   12
   2.4.2 Performance Defects ......................................   12
   2.4.3 Performance Parameters ...................................   14
   2.4.4 Failure States ...........................................   17
   2.4.5 Other Terms ..............................................   21
   3 Object Definitions ...........................................   21
   3.1 The DS1 Near End Group .....................................   22
   3.1.1 The DS1 Configuration Table ..............................   22
   3.1.2 The DS1 Current Table ....................................   33
   3.1.3 The DS1 Interval Table ...................................   36
   3.1.4 The DS1 Total Table ......................................   39
   3.1.5 The DS1 Channel Table ....................................   42
   3.2 The DS1 Far End Group ......................................   43
   3.2.1 The DS1 Far End Current Table ............................   43
   3.2.2 The DS1 Far End Interval Table ...........................   47
   3.2.3 The DS1 Far End Total Table ..............................   50
   3.3 The DS1 Fractional Table ...................................   53
   3.4 The DS1 Trap Group .........................................   55
   3.5 Conformance Groups .........................................   61
   4 Appendix A - Use of dsx1IfIndex and dsx1LineIndex ............   66
   5 Appendix B - The delay approach to Unavialable Seconds.  .....   69
   6 Intellectual Property ........................................   70
   7 Acknowledgments ..............................................   70
   8 References ...................................................   71
   9 Security Considerations ......................................   73
   10 Author's Address ............................................   74
   11 Full Copyright Statement ....................................   75

2.4.1 Error Events ............................................. 12 2.4.2 Performance Defects ...................................... 12 2.4.3 Performance Parameters ................................... 14 2.4.4 Failure States ........................................... 17 2.4.5 Other Terms .............................................. 21 3 Object Definitions ........................................... 21 3.1 The DS1 Near End Group ..................................... 22 3.1.1 The DS1 Configuration Table .............................. 22 3.1.2 The DS1 Current Table .................................... 33 3.1.3 The DS1 Interval Table ................................... 36 3.1.4 The DS1 Total Table ...................................... 39 3.1.5 The DS1 Channel Table .................................... 42 3.2 The DS1 Far End Group ...................................... 43 3.2.1 The DS1 Far End Current Table ............................ 43 3.2.2 The DS1 Far End Interval Table ........................... 47 3.2.3 The DS1 Far End Total Table .............................. 50 3.3 The DS1 Fractional Table ................................... 53 3.4 The DS1 Trap Group ......................................... 55 3.5 Conformance Groups ......................................... 61 4 Appendix A - Use of dsx1IfIndex and dsx1LineIndex ............ 66 5 Appendix B - The delay approach to Unavialable Seconds. ..... 69 6 Intellectual Property ........................................ 70 7 Acknowledgments .............................................. 70 8 References ................................................... 71 9 Security Considerations ...................................... 73 10 Author's Address ............................................ 74 11 Full Copyright Statement .................................... 75

1.  The SNMP Management Framework

1. The SNMP Management Framework

   The SNMP Management Framework presently consists of five major
   components:

The SNMP Management Framework presently consists of five major components:

    o   An overall architecture, described in RFC 2271 [1].

o An overall architecture, described in RFC 2271 [1].

    o   Mechanisms for describing and naming objects and events for the
        purpose of management. The first version of this Structure of
        Management Information (SMI) is called SMIv1 and described in
        STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
        second version, called SMIv2, is described in RFC 1902 [5], RFC
        1903 [6] and RFC 1904 [7].

o Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC 1904 [7].

    o   Message protocols for transferring management information. The
        first version of the SNMP message protocol is called SNMPv1 and
        described in STD 15, RFC 1157 [8]. A second version of the SNMP
        message protocol, which is not an Internet standards track
        protocol, is called SNMPv2c and described in RFC 1901 [9] and
        RFC 1906 [10].  The third version of the message protocol is

o Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is

Fowler, Ed.                 Standards Track                     [Page 2]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 2] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

        called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and
        RFC 2274 [12].

called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].

    o   Protocol operations for accessing management information. The
        first set of protocol operations and associated PDU formats is
        described in STD 15, RFC 1157 [8]. A second set of protocol
        operations and associated PDU formats is described in RFC 1905
        [13].

o Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].

    o   A set of fundamental applications described in RFC 2273 [14] and
        the view-based access control mechanism described in RFC 2275
        [15].  Managed objects are accessed via a virtual information
        store, termed the Management Information Base or MIB.  Objects
        in the MIB are defined using the mechanisms defined in the SMI.
        This memo specifies a MIB module that is compliant to the SMIv2.
        A MIB conforming to the SMIv1 can be produced through the
        appropriate translations. The resulting translated MIB must be
        semantically equivalent, except where objects or events are
        omitted because no translation is possible (use of Counter64).
        Some machine readable information in SMIv2 will be converted
        into textual descriptions in SMIv1 during the translation
        process. However, this loss of machine readable information is
        not considered to change the semantics of the MIB.

o A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

1.1.  Changes from RFC1406

1.1. Changes from RFC1406

   The changes from RFC1406 are the following:

The changes from RFC1406 are the following:

        (1)  The Fractional Table has been deprecated.

(1) The Fractional Table has been deprecated.

        (2)  This document uses SMIv2.

(2) This document uses SMIv2.

        (3)  Usage is given for ifTable and ifXTable.

(3) Usage is given for ifTable and ifXTable.

        (4)  Example usage of ifStackTable is included.

(4) Example usage of ifStackTable is included.

        (5)  dsx1IfIndex has been deprecated.

(5) dsx1IfIndex has been deprecated.

        (6)  Support for DS2 and E2 have been added.

(6) Support for DS2 and E2 have been added.

        (7)  Additional lineTypes for DS2, E2, and unframed E1
             were added.

(7) Additional lineTypes for DS2, E2, and unframed E1 were added.

        (8)  The definition of valid intervals has been clarified
             for the case where the agent proxied for other devices.  In
             particular, the treatment of missing intervals has been
             clarified.

(8) The definition of valid intervals has been clarified for the case where the agent proxied for other devices. In particular, the treatment of missing intervals has been clarified.

Fowler, Ed.                 Standards Track                     [Page 3]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 3] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

        (9)  An inward loopback has been added.

(9) An inward loopback has been added.

        (10) Additional lineStatus bits have been added for Near End in
             Unavailable Signal State, Carrier Equipment Out of Service,
             DS2 Payload AIS, and DS2 Performance Threshold.

(10) Additional lineStatus bits have been added for Near End in Unavailable Signal State, Carrier Equipment Out of Service, DS2 Payload AIS, and DS2 Performance Threshold.

        (11) A read-write line Length object has been added.

(11) A read-write line Length object has been added.

        (12) Signal mode of other has been added.

(12) Signal mode of other has been added.

        (13) Added a lineStatus last change, trap and enabler.

(13) Added a lineStatus last change, trap and enabler.

        (14) The e1(19) ifType has been obsoleted so this MIB
             does not list it as a supported ifType.

(14) The e1(19) ifType has been obsoleted so this MIB does not list it as a supported ifType.

        (15) Textual Conventions for statistics objects have been used.

(15) Textual Conventions for statistics objects have been used.

        (16) A new object, dsx1LoopbackStatus has been introduced to
             reflect the loopbacks established on a DS1 interface and
             the source to the requests.  dsx1LoopbackConfig continues
             to be the desired loopback state while dsx1LoopbackStatus
             reflects the actual state.

(16) A new object, dsx1LoopbackStatus has been introduced to reflect the loopbacks established on a DS1 interface and the source to the requests. dsx1LoopbackConfig continues to be the desired loopback state while dsx1LoopbackStatus reflects the actual state.

        (17) A dual loopback has been added to allow the setting of an
             inward loopback and a line loopback at the same time.

(17) A dual loopback has been added to allow the setting of an inward loopback and a line loopback at the same time.

        (18) An object indicating which channel to use within a parent
             object (i.e. DS3) has been added.

(18) An object indicating which channel to use within a parent object (i.e. DS3) has been added.

        (19) An object has been added to indicate whether or not this
             DS1/E1 is channelized.

(19) An object has been added to indicate whether or not this DS1/E1 is channelized.

        (20) Line coding type of B6ZS has been added for DS2

(20) Line coding type of B6ZS has been added for DS2

2.  Overview

2. Overview

   These objects are used when the particular media being used to
   realize an interface is a DS1/E1/DS2/E2 interface.  At present, this
   applies to these values of the ifType variable in the Internet-
   standard MIB:

These objects are used when the particular media being used to realize an interface is a DS1/E1/DS2/E2 interface. At present, this applies to these values of the ifType variable in the Internet- standard MIB:

        ds1 (18)

ds1 (18)

   The definitions contained herein are based on the AT&T T-1 Superframe
   (a.k.a., D4) and Extended Superframe (ESF) formats [17, 18], the
   latter of which conforms to ANSI specifications [19], and the CCITT
   Recommendations [20, 21], referred to as E1 for the rest of this
   memo.

The definitions contained herein are based on the AT&T T-1 Superframe (a.k.a., D4) and Extended Superframe (ESF) formats [17, 18], the latter of which conforms to ANSI specifications [19], and the CCITT Recommendations [20, 21], referred to as E1 for the rest of this memo.

Fowler, Ed.                 Standards Track                     [Page 4]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 4] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

   The various DS1 and E1 line disciplines are similar enough that
   separate MIBs are unwarranted, although there are some differences.
   For example, Loss of Frame is defined more rigorously in the ESF
   specification than in the D4 specification, but it is defined in
   both.  Therefore,  interface types e1(19) and g703at2mb(67) have been
   obsoleted.

The various DS1 and E1 line disciplines are similar enough that separate MIBs are unwarranted, although there are some differences. For example, Loss of Frame is defined more rigorously in the ESF specification than in the D4 specification, but it is defined in both. Therefore, interface types e1(19) and g703at2mb(67) have been obsoleted.

   Where it is necessary to distinguish between the flavors of E1 with
   and without CRC, E1-CRC denotes the "with CRC" form (G.704 Table 4b)
   and E1-noCRC denotes the "without CRC" form (G.704 Table 4a).

Where it is necessary to distinguish between the flavors of E1 with and without CRC, E1-CRC denotes the "with CRC" form (G.704 Table 4b) and E1-noCRC denotes the "without CRC" form (G.704 Table 4a).

2.1.  Use of ifTable for DS1 Layer

2.1. Use of ifTable for DS1 Layer

   Only the ifGeneralGroup needs to be supported.

Only the ifGeneralGroup needs to be supported.

           ifTable Object    Use for DS1 Layer
======================================================================
           ifIndex           Interface index.

ifTable Object Use for DS1 Layer ====================================================================== ifIndex Interface index.

           ifDescr           See interfaces MIB [16]

ifDescr See interfaces MIB [16]

           ifType            ds1(18)

ifType ds1(18)

           ifSpeed           Speed of line rate
                             DS1 - 1544000
                             E1  - 2048000
                             DS2 - 6312000
                             E2  - 8448000

ifSpeed Speed of line rate DS1 - 1544000 E1 - 2048000 DS2 - 6312000 E2 - 8448000

           ifPhysAddress     The value of the Circuit Identifier.
                             If no Circuit Identifier has been assigned
                             this object should have an octet string
                             with zero length.

ifPhysAddress The value of the Circuit Identifier. If no Circuit Identifier has been assigned this object should have an octet string with zero length.

           ifAdminStatus     See interfaces MIB [16]

ifAdminStatus See interfaces MIB [16]

           ifOperStatus      See interfaces MIB [16]

ifOperStatus See interfaces MIB [16]

           ifLastChange      See interfaces MIB [16]

ifLastChange See interfaces MIB [16]

           ifName            See interfaces MIB [16].

ifName See interfaces MIB [16].

           ifLinkUpDownTrapEnable   Set to enabled(1).

ifLinkUpDownTrapEnable Set to enabled(1).

           ifHighSpeed       Speed of line in Mega-bits per second
                             (2, 6, or 8)

ifHighSpeed Speed of line in Mega-bits per second (2, 6, or 8)

           ifConnectorPresent Set to true(1) normally, except for

ifConnectorPresent Set to true(1) normally, except for

Fowler, Ed.                 Standards Track                     [Page 5]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 5] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

                              cases such as DS1/E1 over AAL1/ATM where
                              false(2) is appropriate

cases such as DS1/E1 over AAL1/ATM where false(2) is appropriate

2.2.  Usage Guidelines

2.2. Usage Guidelines

2.2.1.  Usage of ifStackTable for Routers and DSUs

2.2.1. Usage of ifStackTable for Routers and DSUs

   The object dsx1IfIndex has been deprecated.  This object previously
   allowed a very special proxy situation to exist for Routers and CSUs.
   This section now describes how to use ifStackTable to represent this
   relationship.

The object dsx1IfIndex has been deprecated. This object previously allowed a very special proxy situation to exist for Routers and CSUs. This section now describes how to use ifStackTable to represent this relationship.

   The paragraphs discussing dsx1IfIndex and dsx1LineIndex have been
   preserved in Appendix A for informational purposes.

The paragraphs discussing dsx1IfIndex and dsx1LineIndex have been preserved in Appendix A for informational purposes.

   The ifStackTable is used in the proxy case to represent the
   association between pairs of interfaces, e.g. this T1 is attached to
   that T1.  This use is consistent with the use of the ifStackTable to
   show the association between various sub-layers of an interface.  In
   both cases entire PDUs are exchanged between the interface pairs - in
   the case of a T1, entire T1 frames are exchanged; in the case of PPP
   and HDLC, entire HDLC frames are exchanged.  This usage is not meant
   to suggest the use of the ifStackTable to represent Time Division
   Multiplexing (TDM) connections in general.

The ifStackTable is used in the proxy case to represent the association between pairs of interfaces, e.g. this T1 is attached to that T1. This use is consistent with the use of the ifStackTable to show the association between various sub-layers of an interface. In both cases entire PDUs are exchanged between the interface pairs - in the case of a T1, entire T1 frames are exchanged; in the case of PPP and HDLC, entire HDLC frames are exchanged. This usage is not meant to suggest the use of the ifStackTable to represent Time Division Multiplexing (TDM) connections in general.

   External&Internal interface scenario: the SNMP Agent resides on a
   host external from the device supporting DS1 interfaces (e.g., a
   router). The Agent represents both the host and the DS1 device.

External&Internal interface scenario: the SNMP Agent resides on a host external from the device supporting DS1 interfaces (e.g., a router). The Agent represents both the host and the DS1 device.

   Example:

Example:

   A shelf full of CSUs connected to a Router. An SNMP Agent residing on
   the router proxies for itself and the CSU. The router has also an
   Ethernet interface:

A shelf full of CSUs connected to a Router. An SNMP Agent residing on the router proxies for itself and the CSU. The router has also an Ethernet interface:

Fowler, Ed.                 Standards Track                     [Page 6]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 6] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

         +-----+
   |     |     |
   |     |     |               +---------------------+
   |E    |     |  1.544  MBPS  |              Line#A | DS1 Link
   |t    |  R  |---------------+ - - - - -  - - -  - +------>
   |h    |     |               |                     |
   |e    |  O  |  1.544  MBPS  |              Line#B | DS1 Link
   |r    |     |---------------+ - - - - - - - - - - +------>
   |n    |  U  |               |  CSU Shelf          |
   |e    |     |  1.544  MBPS  |              Line#C | DS1 Link
   |t    |  T  |---------------+ - - - -- -- - - - - +------>
   |     |     |               |                     |
   |-----|  E  |  1.544  MBPS  |              Line#D | DS1 Link
   |     |     |---------------+ -  - - - -- - - - - +------>
   |     |  R  |               |_____________________|
   |     |     |
   |     +-----+

+-----+ | | | | | | +---------------------+ |E | | 1.544 MBPS | Line#A | DS1 Link |t | R |---------------+ - - - - - - - - - +------> |h | | | | |e | O | 1.544 MBPS | Line#B | DS1 Link |r | |---------------+ - - - - - - - - - - +------> |n | U | | CSU Shelf | |e | | 1.544 MBPS | Line#C | DS1 Link |t | T |---------------+ - - - -- -- - - - - +------> | | | | | |-----| E | 1.544 MBPS | Line#D | DS1 Link | | |---------------+ - - - - -- - - - - +------> | | R | |_____________________| | | | | +-----+

   The assignment of the index values could for example be:

The assignment of the index values could for example be:

           ifIndex  Description
           1        Ethernet
           2        Line#A Router
           3        Line#B Router
           4        Line#C Router
           5        Line#D Router
           6        Line#A CSU Router
           7        Line#B CSU Router
           8        Line#C CSU Router
           9        Line#D CSU Router
           10       Line#A CSU Network
           11       Line#B CSU Network
           12       Line#C CSU Network
           13       Line#D CSU Network

ifIndex Description 1 Ethernet 2 Line#A Router 3 Line#B Router 4 Line#C Router 5 Line#D Router 6 Line#A CSU Router 7 Line#B CSU Router 8 Line#C CSU Router 9 Line#D CSU Router 10 Line#A CSU Network 11 Line#B CSU Network 12 Line#C CSU Network 13 Line#D CSU Network

   The ifStackTable is then used to show the relationships between the
   various DS1 interfaces.

The ifStackTable is then used to show the relationships between the various DS1 interfaces.

           ifStackTable Entries
           HigherLayer   LowerLayer
           2             6
           3             7
           4             8
           5             9
           6             10
           7             11
           8             12
           9             13

ifStackTable Entries HigherLayer LowerLayer 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 13

Fowler, Ed.                 Standards Track                     [Page 7]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 7] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

   If the CSU shelf is managed by itself by a local SNMP Agent, the
   situation would be identical, except the Ethernet and the 4 router
   interfaces are deleted.  Interfaces would also be numbered from 1 to
   8.

If the CSU shelf is managed by itself by a local SNMP Agent, the situation would be identical, except the Ethernet and the 4 router interfaces are deleted. Interfaces would also be numbered from 1 to 8.

           ifIndex  Description
           1        Line#A CSU Router
           2        Line#B CSU Router
           3        Line#C CSU Router
           4        Line#D CSU Router
           5        Line#A CSU Network
           6        Line#B CSU Network
           7        Line#C CSU Network
           8        Line#D CSU Network

ifIndex Description 1 Line#A CSU Router 2 Line#B CSU Router 3 Line#C CSU Router 4 Line#D CSU Router 5 Line#A CSU Network 6 Line#B CSU Network 7 Line#C CSU Network 8 Line#D CSU Network

           ifStackTable Entries

ifStackTable Entries

           HigherLayer   LowerLayer
           1             5
           2             6
           3             7
           4             8

HigherLayer LowerLayer 1 5 2 6 3 7 4 8

2.2.2.  Usage of ifStackTable for DS1/E1 on DS2/E2

2.2.2. Usage of ifStackTable for DS1/E1 on DS2/E2

   An example is given of how DS1/E2 interfaces are stacked on DS2/E2
   interfaces.  It is not necessary nor is it always desirable to
   represent DS2 interfaces.  If this is required, the following
   stacking should be used.  All ifTypes are ds1.  The DS2 is determined
   by examining ifSpeed or dsx1LineType.

An example is given of how DS1/E2 interfaces are stacked on DS2/E2 interfaces. It is not necessary nor is it always desirable to represent DS2 interfaces. If this is required, the following stacking should be used. All ifTypes are ds1. The DS2 is determined by examining ifSpeed or dsx1LineType.

        ifIndex  Description
        1        DS1 #1
        2        DS1 #2
        3        DS1 #3
        4        DS1 #4
        5        DS2

ifIndex Description 1 DS1 #1 2 DS1 #2 3 DS1 #3 4 DS1 #4 5 DS2

        ifStackTable Entries

ifStackTable Entries

        HigherLayer   LowerLayer
        1             5
        2             5
        3             5
        4             5

HigherLayer LowerLayer 1 5 2 5 3 5 4 5

Fowler, Ed.                 Standards Track                     [Page 8]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 8] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

2.2.3.  Usage of Channelization for DS3, DS1, DS0

2.2.3. Usage of Channelization for DS3, DS1, DS0

   An example is given here to explain the channelization objects in the
   DS3, DS1, and DS0 MIBs to help the implementor use the objects
   correctly. Treatment of E3 and E1 would be similar, with the number
   of DS0s being different depending on the framing of the E1.

An example is given here to explain the channelization objects in the DS3, DS1, and DS0 MIBs to help the implementor use the objects correctly. Treatment of E3 and E1 would be similar, with the number of DS0s being different depending on the framing of the E1.

   Assume that a DS3 (with ifIndex 1) is Channelized into DS1s (without
   DS2s).  The object dsx3Channelization is set to enabledDs1.  There
   will be 28 DS1s in the ifTable.  Assume the entries in the ifTable
   for the DS1s are created in channel order and the ifIndex values are
   2 through 29. In the DS1 MIB, there will be an entry in the
   dsx1ChanMappingTable for each ds1.  The entries will be as follows:

Assume that a DS3 (with ifIndex 1) is Channelized into DS1s (without DS2s). The object dsx3Channelization is set to enabledDs1. There will be 28 DS1s in the ifTable. Assume the entries in the ifTable for the DS1s are created in channel order and the ifIndex values are 2 through 29. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each ds1. The entries will be as follows:

           dsx1ChanMappingTable Entries

dsx1ChanMappingTable Entries

           ifIndex  dsx1Ds1ChannelNumber   dsx1ChanMappedIfIndex
           1        1                      2
           1        2                      3
           ......
           1        28                     29

ifIndex dsx1Ds1ChannelNumber dsx1ChanMappedIfIndex 1 1 2 1 2 3 ...... 1 28 29

   In addition, the DS1s are channelized into DS0s.  The object
   dsx1Channelization is set to enabledDS0 for each DS1.   When this
   object is set to this value, 24 DS0s are created by the agent. There
   will be 24 DS0s in the ifTable for each DS1.  If the
   dsx1Channelization is set to disabled, the 24 DS0s are destroyed.

In addition, the DS1s are channelized into DS0s. The object dsx1Channelization is set to enabledDS0 for each DS1. When this object is set to this value, 24 DS0s are created by the agent. There will be 24 DS0s in the ifTable for each DS1. If the dsx1Channelization is set to disabled, the 24 DS0s are destroyed.

   Assume the entries in the ifTable are created in channel order and
   the ifIndex values for the DS0s in the first DS1 are 30 through 53.
   In the DS0 MIB, there will be an entry in the dsx0ChanMappingTable
   for each DS0.  The entries will be as follows:

Assume the entries in the ifTable are created in channel order and the ifIndex values for the DS0s in the first DS1 are 30 through 53. In the DS0 MIB, there will be an entry in the dsx0ChanMappingTable for each DS0. The entries will be as follows:

           dsx0ChanMappingTable Entries

dsx0ChanMappingTable Entries

           ifIndex   dsx0Ds0ChannelNumber  dsx0ChanMappedIfIndex
           2         1                     30
           2         2                     31
           ......
           2         24                    53

ifIndex dsx0Ds0ChannelNumber dsx0ChanMappedIfIndex 2 1 30 2 2 31 ...... 2 24 53

2.2.4.  Usage of Channelization for DS3, DS2, DS1

2.2.4. Usage of Channelization for DS3, DS2, DS1

   An example is given here to explain the channelization objects in the
   DS3 and DS1 MIBs to help the implementor use the objects correctly.

An example is given here to explain the channelization objects in the DS3 and DS1 MIBs to help the implementor use the objects correctly.

Fowler, Ed.                 Standards Track                     [Page 9]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 9] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

   Assume that a DS3 (with ifIndex 1) is Channelized into DS2s.  The
   object dsx3Channelization is set to enabledDs2.  There will be 7 DS2s
   (ifType of DS1) in the ifTable.  Assume the entries in the ifTable
   for the DS2s are created in channel order and the ifIndex values are
   2 through 8. In the DS1 MIB, there will be an entry in the
   dsx1ChanMappingTable for each DS2.  The entries will be as follows:

Assume that a DS3 (with ifIndex 1) is Channelized into DS2s. The object dsx3Channelization is set to enabledDs2. There will be 7 DS2s (ifType of DS1) in the ifTable. Assume the entries in the ifTable for the DS2s are created in channel order and the ifIndex values are 2 through 8. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each DS2. The entries will be as follows:

           dsx1ChanMappingTable Entries

dsx1ChanMappingTable Entries

           ifIndex  dsx1Ds1ChannelNumber   dsx1ChanMappedIfIndex
           1        1                      2
           1        2                      3
           ......
           1        7                      8

ifIndex dsx1Ds1ChannelNumber dsx1ChanMappedIfIndex 1 1 2 1 2 3 ...... 1 7 8

   In addition, the DS2s are channelized into DS1s.  The object
   dsx1Channelization is set to enabledDS1 for each DS2.  There will be
   4 DS1s in the ifTable for each DS2.  Assume the entries in the
   ifTable are created in channel order and the ifIndex values for the
   DS1s in the first DS2 are 9 through 12, then 13 through 16 for the
   second DS2, and so on.  In the DS1 MIB, there will be an entry in the
   dsx1ChanMappingTable for each DS1.  The entries will be as follows:

In addition, the DS2s are channelized into DS1s. The object dsx1Channelization is set to enabledDS1 for each DS2. There will be 4 DS1s in the ifTable for each DS2. Assume the entries in the ifTable are created in channel order and the ifIndex values for the DS1s in the first DS2 are 9 through 12, then 13 through 16 for the second DS2, and so on. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each DS1. The entries will be as follows:

           dsx1ChanMappingTable Entries

dsx1ChanMappingTable Entries

           ifIndex   dsx1Ds1ChannelNumber  dsx1ChanMappedIfIndex
           2         1                     9
           2         2                     10
           2         3                     11
           2         4                     12
           3         1                     13
           3         2                     14
           ...
           8         4                     36

ifIndex dsx1Ds1ChannelNumber dsx1ChanMappedIfIndex 2 1 9 2 2 10 2 3 11 2 4 12 3 1 13 3 2 14 ... 8 4 36

2.2.5.  Usage of Loopbacks

2.2.5. Usage of Loopbacks

   This section discusses the behaviour of objects related to loopbacks.

This section discusses the behaviour of objects related to loopbacks.

   The object dsx1LoopbackConfig represents the desired state of
   loopbacks on this interface.  Using this object a Manager can
   request:
       LineLoopback
       PayloadLoopback (if ESF framing)
       InwardLoopback
       DualLoopback (Line + Inward)
       NoLoopback

The object dsx1LoopbackConfig represents the desired state of loopbacks on this interface. Using this object a Manager can request: LineLoopback PayloadLoopback (if ESF framing) InwardLoopback DualLoopback (Line + Inward) NoLoopback

Fowler, Ed.                 Standards Track                    [Page 10]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 10] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

   The remote end can also request loopbacks either through the FDL
   channel if ESF or inband if D4.  The loopbacks that can be request
   this way are:
       LineLoopback
       PayloadLoopback (if ESF framing)
       NoLoopback

The remote end can also request loopbacks either through the FDL channel if ESF or inband if D4. The loopbacks that can be request this way are: LineLoopback PayloadLoopback (if ESF framing) NoLoopback

   To model the current state of loopbacks on a DS1 interface, the
   object dsx1LoopbackStatus defines which loopback is currently applies
   to an interface.  This objects, which is a bitmap, will have bits
   turned on which reflect the currently active loopbacks on the
   interface as well as the source of those loopbacks.

To model the current state of loopbacks on a DS1 interface, the object dsx1LoopbackStatus defines which loopback is currently applies to an interface. This objects, which is a bitmap, will have bits turned on which reflect the currently active loopbacks on the interface as well as the source of those loopbacks.

   The following restrictions/rules apply to loopbacks:

The following restrictions/rules apply to loopbacks:

   The far end cannot undo loopbacks set by a manager.

The far end cannot undo loopbacks set by a manager.

   A manager can undo loopbacks set by the far end.

A manager can undo loopbacks set by the far end.

   Both a line loopback and an inward loopback can be set at the same
   time.  Only these two loopbacks can co-exist and either one may be
   set by the manager or the far end.  A LineLoopback request from the
   far end is incremental to an existing Inward loopback established by
   a manager.  When a NoLoopback is received from the far end in this
   case, the InwardLoopback remains in place.

Both a line loopback and an inward loopback can be set at the same time. Only these two loopbacks can co-exist and either one may be set by the manager or the far end. A LineLoopback request from the far end is incremental to an existing Inward loopback established by a manager. When a NoLoopback is received from the far end in this case, the InwardLoopback remains in place.

2.3.  Objectives of this MIB Module

2.3. Objectives of this MIB Module

   There are numerous things that could be included in a MIB for DS1
   signals:  the management of multiplexors, CSUs, DSUs, and the like.
   The intent of this document is to facilitate the common management of
   all devices with DS1, E1, DS2, or E3 interfaces.  As such, a design
   decision was made up front to very closely align the MIB with the set
   of objects that can generally be read from these types devices that
   are currently deployed.

There are numerous things that could be included in a MIB for DS1 signals: the management of multiplexors, CSUs, DSUs, and the like. The intent of this document is to facilitate the common management of all devices with DS1, E1, DS2, or E3 interfaces. As such, a design decision was made up front to very closely align the MIB with the set of objects that can generally be read from these types devices that are currently deployed.

   J2 interfaces are not supported by this MIB.

J2 interfaces are not supported by this MIB.

2.4.  DS1 Terminology

2.4. DS1 Terminology

   The terminology used in this document to describe error conditions on
   a DS1 interface as monitored by a DS1 device are based on the late
   but not final draft of what became the ANSI T1.231 standard [11].  If
   the definition in this document does not match the definition in the
   ANSI T1.231 document, the implementer should follow the definition
   described in this document.

The terminology used in this document to describe error conditions on a DS1 interface as monitored by a DS1 device are based on the late but not final draft of what became the ANSI T1.231 standard [11]. If the definition in this document does not match the definition in the ANSI T1.231 document, the implementer should follow the definition described in this document.

Fowler, Ed.                 Standards Track                    [Page 11]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 11] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

2.4.1.  Error Events

2.4.1. Error Events

   Bipolar Violation (BPV) Error Event
       A BPV error event for an AMI-coded signal is the occurrence of a
       pulse of the same polarity as the previous pulse.  (See T1.231
       Section 6.1.1.1.1) A BPV error event for a B8ZS- or HDB3- coded
       signal is the occurrence of a pulse of the same polarity as the
       previous pulse without being a part of the zero substitution
       code.

Bipolar Violation (BPV) Error Event A BPV error event for an AMI-coded signal is the occurrence of a pulse of the same polarity as the previous pulse. (See T1.231 Section 6.1.1.1.1) A BPV error event for a B8ZS- or HDB3- coded signal is the occurrence of a pulse of the same polarity as the previous pulse without being a part of the zero substitution code.

   Excessive Zeroes (EXZ) Error Event
       An Excessive Zeroes error event for an AMI-coded signal is the
       occurrence of more than fifteen contiguous zeroes.  (See T1.231
       Section 6.1.1.1.2) For a B8ZS coded signal, the defect occurs
       when more than seven contiguous zeroes are detected.

Excessive Zeroes (EXZ) Error Event An Excessive Zeroes error event for an AMI-coded signal is the occurrence of more than fifteen contiguous zeroes. (See T1.231 Section 6.1.1.1.2) For a B8ZS coded signal, the defect occurs when more than seven contiguous zeroes are detected.

   Line Coding Violation (LCV) Error Event
       A Line Coding Violation (LCV) is the occurrence of either a
       Bipolar Violation (BPV) or Excessive Zeroes (EXZ) Error Event.
       (Also known as CV-L; See T1.231 Section 6.5.1.1)

Line Coding Violation (LCV) Error Event A Line Coding Violation (LCV) is the occurrence of either a Bipolar Violation (BPV) or Excessive Zeroes (EXZ) Error Event. (Also known as CV-L; See T1.231 Section 6.5.1.1)

   Path Coding Violation (PCV) Error Event
       A Path Coding Violation error event is a frame synchronization
       bit error in the D4 and E1-noCRC formats, or a CRC or frame
       synch. bit error in the ESF and E1-CRC formats. (Also known as
       CV-P; See T1.231 Section 6.5.2.1)

Path Coding Violation (PCV) Error Event A Path Coding Violation error event is a frame synchronization bit error in the D4 and E1-noCRC formats, or a CRC or frame synch. bit error in the ESF and E1-CRC formats. (Also known as CV-P; See T1.231 Section 6.5.2.1)

   Controlled Slip (CS) Error Event
       A Controlled Slip is the replication or deletion of the payload
       bits of a DS1 frame.  (See T1.231 Section 6.1.1.2.3) A Controlled
       Slip may be performed when there is a difference between the
       timing of a synchronous receiving terminal and the received
       signal.  A Controlled Slip does not cause an Out of Frame defect.

Controlled Slip (CS) Error Event A Controlled Slip is the replication or deletion of the payload bits of a DS1 frame. (See T1.231 Section 6.1.1.2.3) A Controlled Slip may be performed when there is a difference between the timing of a synchronous receiving terminal and the received signal. A Controlled Slip does not cause an Out of Frame defect.

2.4.2.  Performance Defects

2.4.2. Performance Defects

   Out Of Frame (OOF) Defect
       An OOF defect is the occurrence of a particular density of
       Framing Error events. (See T1.231 Section 6.1.2.2.1)

Out Of Frame (OOF) Defect An OOF defect is the occurrence of a particular density of Framing Error events. (See T1.231 Section 6.1.2.2.1)

       For DS1 links, an Out of Frame defect is declared when the
       receiver detects two or more framing errors within a 3 msec
       period for ESF signals and 0.75 msec for D4 signals, or two or
       more errors out of five or fewer consecutive framing-bits.

For DS1 links, an Out of Frame defect is declared when the receiver detects two or more framing errors within a 3 msec period for ESF signals and 0.75 msec for D4 signals, or two or more errors out of five or fewer consecutive framing-bits.

       For E1 links, an Out Of Frame defect is declared when three
       consecutive frame alignment signals have been received with an
       error (see G.706 Section 4.1 [26]).

For E1 links, an Out Of Frame defect is declared when three consecutive frame alignment signals have been received with an error (see G.706 Section 4.1 [26]).

Fowler, Ed.                 Standards Track                    [Page 12]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 12] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

       For DS2 links, an Out of Frame defect is declared when 7 or more
       consecutive errored framing patterns (4 multiframe) are received.
       The LOF is cleared when 3 or more consecutive correct framing
       patterns are received.

For DS2 links, an Out of Frame defect is declared when 7 or more consecutive errored framing patterns (4 multiframe) are received. The LOF is cleared when 3 or more consecutive correct framing patterns are received.

       Once an Out Of Frame Defect is declared, the framer starts
       searching for a correct framing pattern.  The Out of Frame defect
       ends when the signal is in frame.

Once an Out Of Frame Defect is declared, the framer starts searching for a correct framing pattern. The Out of Frame defect ends when the signal is in frame.

       In-frame occurs when there are fewer than two frame bit errors
       within 3 msec period for ESF signals and 0.75 msec for D4
       signals.

In-frame occurs when there are fewer than two frame bit errors within 3 msec period for ESF signals and 0.75 msec for D4 signals.

       For E1 links, in-frame occurs when a) in frame N the frame
       alignment signal is correct and b) in frame N+1 the frame
       alignment signal is absent (i.e., bit 2 in TS0 is a one) and c)
       in frame N+2 the frame alignment signal is present and correct.
       (See G.704 Section 4.1)

For E1 links, in-frame occurs when a) in frame N the frame alignment signal is correct and b) in frame N+1 the frame alignment signal is absent (i.e., bit 2 in TS0 is a one) and c) in frame N+2 the frame alignment signal is present and correct. (See G.704 Section 4.1)

   Alarm Indication Signal (AIS) Defect
       For D4 and ESF links, the 'all ones' condition is detected at a
       DS1 line interface upon observing an unframed signal with a one's
       density of at least 99.9% present for a time equal to or greater
       than T, where 3 ms <= T <= 75 ms.  The AIS is terminated upon
       observing a signal not meeting the one's density or the unframed
       signal criteria for a period equal to or greater than than T.
       (See G.775, Section 5.4)

Alarm Indication Signal (AIS) Defect For D4 and ESF links, the 'all ones' condition is detected at a DS1 line interface upon observing an unframed signal with a one's density of at least 99.9% present for a time equal to or greater than T, where 3 ms <= T <= 75 ms. The AIS is terminated upon observing a signal not meeting the one's density or the unframed signal criteria for a period equal to or greater than than T. (See G.775, Section 5.4)

       For E1 links, the 'all-ones' condition is detected at the line
       interface as a string of 512 bits containing fewer than three
       zero bits (see O.162 [23] Section 3.3.2).

For E1 links, the 'all-ones' condition is detected at the line interface as a string of 512 bits containing fewer than three zero bits (see O.162 [23] Section 3.3.2).

       For DS2 links, the DS2 AIS shall be sent from the NT1 to the user
       to indicate a loss of the 6,312 kbps frame capability on the
       network side.  The DS2 AIS is defined as a bit array of 6,312
       kbps in which all binary bits are set to '1'.

For DS2 links, the DS2 AIS shall be sent from the NT1 to the user to indicate a loss of the 6,312 kbps frame capability on the network side. The DS2 AIS is defined as a bit array of 6,312 kbps in which all binary bits are set to '1'.

       The DS2 AIS detection and removal shall be implemented according
       to ITU-T Draft Recommendation G.775 [31] Section 5.5:
       - a DS2 AIS defect is detected when the incoming signal has two
       (2) or less ZEROs in a sequence of 3156 bits (0.5 ms).
       - a DS2 AIS defect is cleared when the incoming signal has three
       (3) or more ZEROs in a sequence of 3156 bits (0.5 ms).

The DS2 AIS detection and removal shall be implemented according to ITU-T Draft Recommendation G.775 [31] Section 5.5: - a DS2 AIS defect is detected when the incoming signal has two (2) or less ZEROs in a sequence of 3156 bits (0.5 ms). - a DS2 AIS defect is cleared when the incoming signal has three (3) or more ZEROs in a sequence of 3156 bits (0.5 ms).

Fowler, Ed.                 Standards Track                    [Page 13]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 13] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

2.4.3.  Performance Parameters

2.4.3. Performance Parameters

   All performance parameters are accumulated in fifteen minute
   intervals and up to 96 intervals (24 hours worth) are kept by an
   agent.  Fewer than 96 intervals of data whelfill be available if the
   agent has been restarted within the last 24 hours.  In addition,
   there is a rolling 24-hour total of each performance parameter.
   Performance parameters continue to be collected when the interface is
   down.

All performance parameters are accumulated in fifteen minute intervals and up to 96 intervals (24 hours worth) are kept by an agent. Fewer than 96 intervals of data whelfill be available if the agent has been restarted within the last 24 hours. In addition, there is a rolling 24-hour total of each performance parameter. Performance parameters continue to be collected when the interface is down.

   There is no requirement for an agent to ensure fixed relationship
   between the start of a fifteen minute interval and any wall clock;
   however some agents may align the fifteen minute intervals with
   quarter hours.

There is no requirement for an agent to ensure fixed relationship between the start of a fifteen minute interval and any wall clock; however some agents may align the fifteen minute intervals with quarter hours.

   Performance parameters are of types PerfCurrentCount,
   PerfIntervalCount and PerfTotalCount.  These textual conventions are
   all Gauge32, and they are used because it is possible for these
   objects to decrease.  Objects may decrease when Unavailable Seconds
   occurs across a fifteen minutes interval boundary. See Unavailable
   Seconds discussion later in this section.

Performance parameters are of types PerfCurrentCount, PerfIntervalCount and PerfTotalCount. These textual conventions are all Gauge32, and they are used because it is possible for these objects to decrease. Objects may decrease when Unavailable Seconds occurs across a fifteen minutes interval boundary. See Unavailable Seconds discussion later in this section.

    Line Errored Seconds (LES)
        A Line Errored Second is a second in which one or more Line Code
        Violation error events were detected. (Also known as ES-L; See
        T1.231 Section 6.5.1.2)

Line Errored Seconds (LES) A Line Errored Second is a second in which one or more Line Code Violation error events were detected. (Also known as ES-L; See T1.231 Section 6.5.1.2)

    Controlled Slip Seconds (CSS)
        A Controlled Slip Second is a one-second interval containing one
        or more controlled slips.  (See T1.231 Section 6.5.2.8) This is
        not incremented during an Unavailable Second.

Controlled Slip Seconds (CSS) A Controlled Slip Second is a one-second interval containing one or more controlled slips. (See T1.231 Section 6.5.2.8) This is not incremented during an Unavailable Second.

    Errored Seconds (ES)
        For ESF and E1-CRC links an Errored Second is a second with one
        or more Path Code Violation OR one or more Out of Frame defects
        OR one or more Controlled Slip events OR a detected AIS defect.
        (See T1.231 Section 6.5.2.2 and G.826 [32] Section B.1)

Errored Seconds (ES) For ESF and E1-CRC links an Errored Second is a second with one or more Path Code Violation OR one or more Out of Frame defects OR one or more Controlled Slip events OR a detected AIS defect. (See T1.231 Section 6.5.2.2 and G.826 [32] Section B.1)

        For D4 and E1-noCRC links, the presence of Bipolar Violations
        also triggers an Errored Second.

For D4 and E1-noCRC links, the presence of Bipolar Violations also triggers an Errored Second.

        This is not incremented during an Unavailable Second.

This is not incremented during an Unavailable Second.

Fowler, Ed.                 Standards Track                    [Page 14]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 14] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

    Bursty Errored Seconds (BES)
        A Bursty Errored Second (also known as Errored Second type B in
        T1.231 Section 6.5.2.4) is a second with fewer than 320 and more
        than 1 Path Coding Violation error events, no Severely Errored
        Frame defects and no detected incoming AIS defects.  Controlled
        slips are not included in this parameter.

Bursty Errored Seconds (BES) A Bursty Errored Second (also known as Errored Second type B in T1.231 Section 6.5.2.4) is a second with fewer than 320 and more than 1 Path Coding Violation error events, no Severely Errored Frame defects and no detected incoming AIS defects. Controlled slips are not included in this parameter.

        This is not incremented during an Unavailable Second.  It
        applies to ESF signals only.

This is not incremented during an Unavailable Second. It applies to ESF signals only.

    Severely Errored Seconds (SES)
        A Severely Errored Second for ESF signals is a second with 320
        or more Path Code Violation Error Events OR one or more Out of
        Frame defects OR a detected AIS defect. (See T1.231 Section
        6.5.2.5)

Severely Errored Seconds (SES) A Severely Errored Second for ESF signals is a second with 320 or more Path Code Violation Error Events OR one or more Out of Frame defects OR a detected AIS defect. (See T1.231 Section 6.5.2.5)

        For E1-CRC signals, a Severely Errored Second is a second with
        832 or more Path Code Violation error events OR one or more Out
        of Frame defects.

For E1-CRC signals, a Severely Errored Second is a second with 832 or more Path Code Violation error events OR one or more Out of Frame defects.

        For E1-noCRC signals, a Severely Errored Second is a 2048 LCVs
        or more.

For E1-noCRC signals, a Severely Errored Second is a 2048 LCVs or more.

        For D4 signals, a Severely Errored Second is a count of one-
        second intervals with Framing Error events, or an OOF defect, or
        1544 LCVs or more.

For D4 signals, a Severely Errored Second is a count of one- second intervals with Framing Error events, or an OOF defect, or 1544 LCVs or more.

        Controlled slips are not included in this parameter.

Controlled slips are not included in this parameter.

        This is not incremented during an Unavailable Second.

This is not incremented during an Unavailable Second.

    Severely Errored Framing Second (SEFS)
        An Severely Errored Framing Second is a second with one or more
        Out of Frame defects OR a detected AIS defect.  (Also known as
        SAS-P (SEF/AIS second); See T1.231 Section 6.5.2.6)

Severely Errored Framing Second (SEFS) An Severely Errored Framing Second is a second with one or more Out of Frame defects OR a detected AIS defect. (Also known as SAS-P (SEF/AIS second); See T1.231 Section 6.5.2.6)

    Degraded Minutes
        A Degraded Minute is one in which the estimated error rate
        exceeds 1E-6 but does not exceed 1E-3 (see G.821 [24]).

Degraded Minutes A Degraded Minute is one in which the estimated error rate exceeds 1E-6 but does not exceed 1E-3 (see G.821 [24]).

        Degraded Minutes are determined by collecting all of the
        Available Seconds, removing any Severely Errored Seconds
        grouping the result in 60-second long groups and counting a 60-
        second long group (a.k.a., minute) as degraded if the cumulative
        errors during the seconds present in the group exceed 1E-6.
        Available seconds are merely those seconds which are not
        Unavailable as described below.

Degraded Minutes are determined by collecting all of the Available Seconds, removing any Severely Errored Seconds grouping the result in 60-second long groups and counting a 60- second long group (a.k.a., minute) as degraded if the cumulative errors during the seconds present in the group exceed 1E-6. Available seconds are merely those seconds which are not Unavailable as described below.

Fowler, Ed.                 Standards Track                    [Page 15]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 15] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

    Unavailable Seconds (UAS)
        Unavailable Seconds (UAS) are calculated by counting the number
        of seconds that the interface is unavailable.  The DS1 interface
        is said to be unavailable from the onset of 10 contiguous SESs,
        or the onset of the condition leading to a failure (see Failure
        States).  If the condition leading to the failure was
        immediately preceded by one or more contiguous SESs, then the
        DS1 interface unavailability starts from the onset of these
        SESs.  Once unavailable, and if no failure is present, the DS1
        interface becomes available at the onset of 10 contiguous
        seconds with no SESs.  Once unavailable, and if a failure is
        present, the DS1 interface becomes available at the onset of 10
        contiguous seconds with no SESs, if the failure clearing time is
        less than or equal to 10 seconds.  If the failure clearing time
        is more than 10 seconds, the DS1 interface becomes available at
        the onset of 10 contiguous seconds with no SESs, or the onset
        period leading to the successful clearing condition, whichever
        occurs later.  With respect to the DS1 error counts, all
        counters are incremented while the DS1 interface is deemed
        available.  While the interface is deemed unavailable, the only
        count that is incremented is UASs.

Unavailable Seconds (UAS) Unavailable Seconds (UAS) are calculated by counting the number of seconds that the interface is unavailable. The DS1 interface is said to be unavailable from the onset of 10 contiguous SESs, or the onset of the condition leading to a failure (see Failure States). If the condition leading to the failure was immediately preceded by one or more contiguous SESs, then the DS1 interface unavailability starts from the onset of these SESs. Once unavailable, and if no failure is present, the DS1 interface becomes available at the onset of 10 contiguous seconds with no SESs. Once unavailable, and if a failure is present, the DS1 interface becomes available at the onset of 10 contiguous seconds with no SESs, if the failure clearing time is less than or equal to 10 seconds. If the failure clearing time is more than 10 seconds, the DS1 interface becomes available at the onset of 10 contiguous seconds with no SESs, or the onset period leading to the successful clearing condition, whichever occurs later. With respect to the DS1 error counts, all counters are incremented while the DS1 interface is deemed available. While the interface is deemed unavailable, the only count that is incremented is UASs.

        Note that this definition implies that the agent cannot
        determine until after a ten second interval has passed whether a
        given one-second interval belongs to available or unavailable
        time.  If the agent chooses to update the various performance
        statistics in real time then it must be prepared to
        retroactively reduce the ES, BES, SES, and SEFS counts by 10 and
        increase the UAS count by 10 when it determines that available
        time has been entered.  It must also be prepared to adjust the
        PCV count and the DM count as necessary since these parameters
        are not accumulated during unavailable time.  It must be
        similarly prepared to retroactively decrease the UAS count by 10
        and increase the ES, BES, and DM counts as necessary upon
        entering available time.  A special case exists when the 10
        second period leading to available or unavailable time crosses a
        900 second statistics window boundary, as the foregoing
        description implies that the ES, BES, SES, SEFS, DM, and UAS
        counts the PREVIOUS interval must be adjusted.  In this case
        successive GETs of the affected dsx1IntervalSESs and
        dsx1IntervalUASs objects will return differing values if the
        first GET occurs during the first few seconds of the window.

Note that this definition implies that the agent cannot determine until after a ten second interval has passed whether a given one-second interval belongs to available or unavailable time. If the agent chooses to update the various performance statistics in real time then it must be prepared to retroactively reduce the ES, BES, SES, and SEFS counts by 10 and increase the UAS count by 10 when it determines that available time has been entered. It must also be prepared to adjust the PCV count and the DM count as necessary since these parameters are not accumulated during unavailable time. It must be similarly prepared to retroactively decrease the UAS count by 10 and increase the ES, BES, and DM counts as necessary upon entering available time. A special case exists when the 10 second period leading to available or unavailable time crosses a 900 second statistics window boundary, as the foregoing description implies that the ES, BES, SES, SEFS, DM, and UAS counts the PREVIOUS interval must be adjusted. In this case successive GETs of the affected dsx1IntervalSESs and dsx1IntervalUASs objects will return differing values if the first GET occurs during the first few seconds of the window.

        The agent may instead choose to delay updates to the various
        statistics by 10 seconds in order to avoid retroactive
        adjustments to the counters.  A way to do this is sketched in
        Appendix B.

The agent may instead choose to delay updates to the various statistics by 10 seconds in order to avoid retroactive adjustments to the counters. A way to do this is sketched in Appendix B.

Fowler, Ed.                 Standards Track                    [Page 16]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 16] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

        In any case, a linkDown trap shall be sent only after the agent
        has determined for certain that the unavailable state has been
        entered, but the time on the trap will be that of the first UAS
        (i.e., 10 seconds earlier).  A linkUp trap shall be handled
        similarly.

In any case, a linkDown trap shall be sent only after the agent has determined for certain that the unavailable state has been entered, but the time on the trap will be that of the first UAS (i.e., 10 seconds earlier). A linkUp trap shall be handled similarly.

        According to ANSI T1.231 unavailable time begins at the _onset_
        of 10 contiguous severely errored seconds -- that is,
        unavailable time starts with the _first_ of the 10 contiguous
        SESs.  Also, while an interface is deemed unavailable all
        counters for that interface are frozen except for the UAS count.
        It follows that an implementation which strictly complies with
        this standard must _not_ increment any counters other than the
        UAS count -- even temporarily -- as a result of anything that
        happens during those 10 seconds.  Since changes in the signal
        state lag the data to which they apply by 10 seconds, an ANSI-
        compliant implementation must pass the the one-second statistics
        through a 10-second delay line prior to updating any counters.
        That can be done by performing the following steps at the end of
        each one second interval.

According to ANSI T1.231 unavailable time begins at the _onset_ of 10 contiguous severely errored seconds -- that is, unavailable time starts with the _first_ of the 10 contiguous SESs. Also, while an interface is deemed unavailable all counters for that interface are frozen except for the UAS count. It follows that an implementation which strictly complies with this standard must _not_ increment any counters other than the UAS count -- even temporarily -- as a result of anything that happens during those 10 seconds. Since changes in the signal state lag the data to which they apply by 10 seconds, an ANSI- compliant implementation must pass the the one-second statistics through a 10-second delay line prior to updating any counters. That can be done by performing the following steps at the end of each one second interval.

   i)   Read near/far end CV counter and alarm status flags from the
        hardware.

i) Read near/far end CV counter and alarm status flags from the hardware.

   ii)  Accumulate the CV counts for the preceding second and compare
        them to the ES and SES threshold for the layer in question.
        Update the signal state and shift the one-second CV counts and
        ES/SES flags into the 10-element delay line.  Note that far-end
        one-second statistics are to be flagged as "absent" during any
        second in which there is an incoming defect at the layer in
        question or at any lower layer.

ii) Accumulate the CV counts for the preceding second and compare them to the ES and SES threshold for the layer in question. Update the signal state and shift the one-second CV counts and ES/SES flags into the 10-element delay line. Note that far-end one-second statistics are to be flagged as "absent" during any second in which there is an incoming defect at the layer in question or at any lower layer.

   iii) Update the current interval statistics using the signal state
        from the _previous_ update cycle and the one-second CV counts
        and ES/SES flags shifted out of the 10-element delay line.

iii) Update the current interval statistics using the signal state from the _previous_ update cycle and the one-second CV counts and ES/SES flags shifted out of the 10-element delay line.

   This approach is further described in Appendix B.

This approach is further described in Appendix B.

2.4.4.  Failure States

2.4.4. Failure States

   The following failure states are received, or detected failures, that
   are reported in the dsx1LineStatus object.  When a DS1 interface
   would, if ever, produce the conditions leading to the failure state
   is described in the appropriate specification.

The following failure states are received, or detected failures, that are reported in the dsx1LineStatus object. When a DS1 interface would, if ever, produce the conditions leading to the failure state is described in the appropriate specification.

Fowler, Ed.                 Standards Track                    [Page 17]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 17] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

    Far End Alarm Failure
        The Far End Alarm failure is also known as "Yellow Alarm" in the
        DS1 case, "Distant Alarm" in the E1 case, and "Remote Alarm" in
        the DS2 case.

Far End Alarm Failure The Far End Alarm failure is also known as "Yellow Alarm" in the DS1 case, "Distant Alarm" in the E1 case, and "Remote Alarm" in the DS2 case.

        For D4 links, the Far End Alarm failure is declared when bit 6
        of all channels has been zero for at least 335 ms and is cleared
        when bit 6 of at least one channel is non-zero for a period T,
        where T is usually less than one second and always less than 5
        seconds.  The Far End Alarm failure is not declared for D4 links
        when a Loss of Signal is detected.

For D4 links, the Far End Alarm failure is declared when bit 6 of all channels has been zero for at least 335 ms and is cleared when bit 6 of at least one channel is non-zero for a period T, where T is usually less than one second and always less than 5 seconds. The Far End Alarm failure is not declared for D4 links when a Loss of Signal is detected.

        For ESF links, the Far End Alarm failure is declared if the
        Yellow Alarm signal pattern occurs in at least seven out of ten
        contiguous 16-bit pattern intervals and is cleared if the Yellow
        Alarm signal pattern does not occur in ten contiguous 16-bit
        signal pattern intervals.

For ESF links, the Far End Alarm failure is declared if the Yellow Alarm signal pattern occurs in at least seven out of ten contiguous 16-bit pattern intervals and is cleared if the Yellow Alarm signal pattern does not occur in ten contiguous 16-bit signal pattern intervals.

        For E1 links, the Far End Alarm failure is declared when bit 3
        of time-slot zero is received set to one on two consecutive
        occasions.  The Far End Alarm failure is cleared when bit 3 of
        time-slot zero is received set to zero.

For E1 links, the Far End Alarm failure is declared when bit 3 of time-slot zero is received set to one on two consecutive occasions. The Far End Alarm failure is cleared when bit 3 of time-slot zero is received set to zero.

        For DS2 links, if a loss of frame alignment (LOF or LOS) and/or
        DS2 AIS condition, is detected, the RAI signal shall be
        generated and transmitted to the remote side.

For DS2 links, if a loss of frame alignment (LOF or LOS) and/or DS2 AIS condition, is detected, the RAI signal shall be generated and transmitted to the remote side.

        The Remote Alarm Indication(RAI) signal is defined on m-bits as
        a repetition of the 16bit sequence consisting of eight binary
        '1s' and eight binary '0s' in m-bits(1111111100000000).  When
        the RAI signal is not sent (in normal operation),the HDLC flag
        pattern (01111110) in the m-bit is sent.

The Remote Alarm Indication(RAI) signal is defined on m-bits as a repetition of the 16bit sequence consisting of eight binary '1s' and eight binary '0s' in m-bits(1111111100000000). When the RAI signal is not sent (in normal operation),the HDLC flag pattern (01111110) in the m-bit is sent.

        The RAI failure is detected when 16 or more consecutive RAI-
        patterns (1111111100000000) are received.  The RAI failure is
        cleared when 4 or more consecutive incorrect-RAI-patterns are
        received.

The RAI failure is detected when 16 or more consecutive RAI- patterns (1111111100000000) are received. The RAI failure is cleared when 4 or more consecutive incorrect-RAI-patterns are received.

    Alarm Indication Signal (AIS) Failure
        The Alarm Indication Signal failure is declared when an AIS
        defect is detected at the input and the  AIS defect still exists
        after the Loss Of Frame failure (which is caused by the unframed
        nature of the 'all-ones' signal) is declared. The AIS failure is
        cleared when the Loss Of Frame failure is cleared.  (See T1.231
        Section 6.2.1.2.1)

Alarm Indication Signal (AIS) Failure The Alarm Indication Signal failure is declared when an AIS defect is detected at the input and the AIS defect still exists after the Loss Of Frame failure (which is caused by the unframed nature of the 'all-ones' signal) is declared. The AIS failure is cleared when the Loss Of Frame failure is cleared. (See T1.231 Section 6.2.1.2.1)

Fowler, Ed.                 Standards Track                    [Page 18]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 18] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

        An AIS defect at a 6312 kbit/s (G.704) interface is detected
        when the incoming signal has two {2} or less ZEROs in a sequence
        of 3156 bits (0.5ms).

An AIS defect at a 6312 kbit/s (G.704) interface is detected when the incoming signal has two {2} or less ZEROs in a sequence of 3156 bits (0.5ms).

        The AIS signal defect is cleared when the incoming signal has
        three {3} or more ZEROs in a sequence of 3156 bits (0.5ms).

The AIS signal defect is cleared when the incoming signal has three {3} or more ZEROs in a sequence of 3156 bits (0.5ms).

    Loss Of Frame Failure
        For DS1 links, the Loss Of Frame failure is declared when an OOF
        or LOS  defect has persisted for T seconds, where 2 <= T <= 10.
        The Loss Of Frame failure is cleared when there have been no OOF
        or LOS defects during a period T where 0 <= T <= 20.  Many
        systems will perform "hit integration" within the period T
        before declaring or clearing the failure e.g., see TR 62411
        [25].

Loss Of Frame Failure For DS1 links, the Loss Of Frame failure is declared when an OOF or LOS defect has persisted for T seconds, where 2 <= T <= 10. The Loss Of Frame failure is cleared when there have been no OOF or LOS defects during a period T where 0 <= T <= 20. Many systems will perform "hit integration" within the period T before declaring or clearing the failure e.g., see TR 62411 [25].

        For E1 links, the Loss Of Frame Failure is declared when an OOF
        defect is detected.

For E1 links, the Loss Of Frame Failure is declared when an OOF defect is detected.

    Loss Of Signal Failure
        For DS1, the Loss Of Signal failure is declared upon observing
        175 +/- 75 contiguous pulse positions with no pulses of either
        positive or negative polarity.  The LOS failure is cleared upon
        observing an average pulse density of at least 12.5% over a
        period of 175 +/- 75 contiguous pulse positions starting with
        the receipt of a pulse.

Loss Of Signal Failure For DS1, the Loss Of Signal failure is declared upon observing 175 +/- 75 contiguous pulse positions with no pulses of either positive or negative polarity. The LOS failure is cleared upon observing an average pulse density of at least 12.5% over a period of 175 +/- 75 contiguous pulse positions starting with the receipt of a pulse.

        For E1 links, the Loss Of Signal failure is declared when
        greater than 10 consecutive zeroes are detected (see O.162
        Section 3.4`<.4).

For E1 links, the Loss Of Signal failure is declared when greater than 10 consecutive zeroes are detected (see O.162 Section 3.4`<.4).

        A LOS defect at 6312kbit/s interfaces is detected when the
        incoming signal has "no transitions", i.e. when the signal level
        is less than or equal to a signal level of 35dB below nominal,
        for N consecutive pulse intervals, where 10 <=N<=255.

A LOS defect at 6312kbit/s interfaces is detected when the incoming signal has "no transitions", i.e. when the signal level is less than or equal to a signal level of 35dB below nominal, for N consecutive pulse intervals, where 10 <=N<=255.

        The LOS defect is cleared when the incoming signal has
        "transitions", i.e. when the signal level is greater than or
        equal to a signal level of 9dB below nominal, for N consecutive
        pulse intervals, where 10<=N<=255.

The LOS defect is cleared when the incoming signal has "transitions", i.e. when the signal level is greater than or equal to a signal level of 9dB below nominal, for N consecutive pulse intervals, where 10<=N<=255.

        A signal with "transitions" corresponds to a G.703 compliant
        signal.

A signal with "transitions" corresponds to a G.703 compliant signal.

Fowler, Ed.                 Standards Track                    [Page 19]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 19] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

    Loopback Pseudo-Failure
        The Loopback Pseudo-Failure is declared when the near end
        equipment has placed a loopback (of any kind) on the DS1.  This
        allows a management entity to determine from one object whether
        the DS1 can be considered to be in service or not (from the
        point of view of the near end equipment).

Loopback Pseudo-Failure The Loopback Pseudo-Failure is declared when the near end equipment has placed a loopback (of any kind) on the DS1. This allows a management entity to determine from one object whether the DS1 can be considered to be in service or not (from the point of view of the near end equipment).

    TS16 Alarm Indication Signal Failure
        For E1 links, the TS16 Alarm Indication Signal failure is
        declared when time-slot 16 is received as all ones for all
        frames of two consecutive multiframes (see G.732 Section 4.2.6).
        This condition is never declared for DS1.

TS16 Alarm Indication Signal Failure For E1 links, the TS16 Alarm Indication Signal failure is declared when time-slot 16 is received as all ones for all frames of two consecutive multiframes (see G.732 Section 4.2.6). This condition is never declared for DS1.

    Loss Of MultiFrame Failure
        The Loss Of MultiFrame failure is declared when two consecutive
        multiframe alignment signals (bits 4 through 7 of TS16 of frame
        0) have been received with an error.  The Loss Of Multiframe
        failure is cleared when the first correct multiframe alignment
        signal is received.  The Loss Of Multiframe failure can only be
        declared for E1 links operating with G.732 [27] framing
        (sometimes called "Channel Associated Signalling" mode).

Loss Of MultiFrame Failure The Loss Of MultiFrame failure is declared when two consecutive multiframe alignment signals (bits 4 through 7 of TS16 of frame 0) have been received with an error. The Loss Of Multiframe failure is cleared when the first correct multiframe alignment signal is received. The Loss Of Multiframe failure can only be declared for E1 links operating with G.732 [27] framing (sometimes called "Channel Associated Signalling" mode).

    Far End Loss Of Multiframe Failure
        The Far End Loss Of Multiframe failure is declared when bit 2 of
        TS16 of frame 0 is received set to one on two consecutive
        occasions.  The Far End Loss Of Multiframe failure is cleared
        when bit 2 of TS16 of frame 0 is received set to zero.  The Far
        End Loss Of Multiframe failure can only be declared for E1 links
        operating in "Channel Associated Signalling" mode. (See G.732)

Far End Loss Of Multiframe Failure The Far End Loss Of Multiframe failure is declared when bit 2 of TS16 of frame 0 is received set to one on two consecutive occasions. The Far End Loss Of Multiframe failure is cleared when bit 2 of TS16 of frame 0 is received set to zero. The Far End Loss Of Multiframe failure can only be declared for E1 links operating in "Channel Associated Signalling" mode. (See G.732)

    DS2 Payload AIS Failure
        The DS2 Payload AIS is detected when the incoming signal of the
        6,312 kbps frame payload [TS1-TS96] has 2 or less 0's in a
        sequence of 3072 bits (0.5ms).  The DS2 Payload AIS is cleared
        when the incoming signal of the 6,312 kbps frame payload [TS1-
        TS96] has 3 or more 0's in a sequence of 3072 bits (0.5 ms).

DS2 Payload AIS Failure The DS2 Payload AIS is detected when the incoming signal of the 6,312 kbps frame payload [TS1-TS96] has 2 or less 0's in a sequence of 3072 bits (0.5ms). The DS2 Payload AIS is cleared when the incoming signal of the 6,312 kbps frame payload [TS1- TS96] has 3 or more 0's in a sequence of 3072 bits (0.5 ms).

    DS2 Performance Threshold
        DS2 Performance Threshold Failure monitors equipment performance
        and is based on the CRC (Cyclic Redundancy Check) Procedure
        defined in G.704.

DS2 Performance Threshold DS2 Performance Threshold Failure monitors equipment performance and is based on the CRC (Cyclic Redundancy Check) Procedure defined in G.704.

        The DS2 Performance Threshold Failure is detected when the bit
        error ratio exceeds 10^-4 (Performance Threshold), and the DS2
        Performance Threshold Failure shall be cleared when the bit
        error ratio decreased to less than 10^-6."

The DS2 Performance Threshold Failure is detected when the bit error ratio exceeds 10^-4 (Performance Threshold), and the DS2 Performance Threshold Failure shall be cleared when the bit error ratio decreased to less than 10^-6."

Fowler, Ed.                 Standards Track                    [Page 20]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 20] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

2.4.5.  Other Terms

2.4.5. Other Terms

    Circuit Identifier
        This is a character string specified by the circuit vendor, and
        is useful when communicating with the vendor during the
        troubleshooting process.

Circuit Identifier This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process.

    Proxy
        In this document, the word proxy is meant to indicate an
        application which receives SNMP messages and replies to them on
        behalf of the devices which implement the actual DS3/E3
        interfaces.  The proxy may have already collected the
        information about the DS3/E3 interfaces into its local database
        and may not necessarily forward the requests to the actual
        DS3/E3 interface.  It is expected in such an application that
        there are periods of time where the proxy is not communicating
        with the DS3/E3 interfaces.  In these instances the proxy will
        not necessarily have up-to-date configuration information and
        will most likely have missed the collection of some statistics
        data.  Missed statistics data collection will result in invalid
        data in the interval table.

Proxy In this document, the word proxy is meant to indicate an application which receives SNMP messages and replies to them on behalf of the devices which implement the actual DS3/E3 interfaces. The proxy may have already collected the information about the DS3/E3 interfaces into its local database and may not necessarily forward the requests to the actual DS3/E3 interface. It is expected in such an application that there are periods of time where the proxy is not communicating with the DS3/E3 interfaces. In these instances the proxy will not necessarily have up-to-date configuration information and will most likely have missed the collection of some statistics data. Missed statistics data collection will result in invalid data in the interval table.

3.  Object Definitions

3. Object Definitions

     DS1-MIB DEFINITIONS ::= BEGIN

DS1-MIB DEFINITIONS ::= BEGIN

     IMPORTS
          MODULE-IDENTITY, OBJECT-TYPE,
          NOTIFICATION-TYPE, transmission         FROM SNMPv2-SMI
          DisplayString, TimeStamp, TruthValue    FROM SNMPv2-TC
          MODULE-COMPLIANCE, OBJECT-GROUP,
          NOTIFICATION-GROUP                      FROM SNMPv2-CONF
          InterfaceIndex, ifIndex                 FROM IF-MIB
          PerfCurrentCount, PerfIntervalCount,
          PerfTotalCount                          FROM PerfHist-TC-MIB;

IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, transmission FROM SNMPv2-SMI DisplayString, TimeStamp, TruthValue FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF InterfaceIndex, ifIndex FROM IF-MIB PerfCurrentCount, PerfIntervalCount, PerfTotalCount FROM PerfHist-TC-MIB;

     ds1 MODULE-IDENTITY
         LAST-UPDATED "9808011830Z"
         ORGANIZATION "IETF Trunk MIB Working Group"
         CONTACT-INFO
           "        David Fowler

ds1 MODULE-IDENTITY LAST-UPDATED "9808011830Z" ORGANIZATION "IETF Trunk MIB Working Group" CONTACT-INFO " David Fowler

            Postal: Newbridge Networks Corporation
                    600 March Road
                    Kanata, Ontario, Canada K2K 2E6

Postal: Newbridge Networks Corporation 600 March Road Kanata, Ontario, Canada K2K 2E6

                    Tel: +1 613 591 3600

Tel: +1 613 591 3600

Fowler, Ed.                 Standards Track                    [Page 21]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

Fowler, Ed. Standards Track [Page 21] RFC 2495 DS1/E1/DS2/E2 MIB January 1999

                    Fax: +1 613 599 3667

Fax: +1 613 599 3667

            E-mail: davef@newbridge.com"
         DESCRIPTION
              "The MIB module to describe DS1, E1, DS2, and
               E2 interfaces objects."

E-mail: davef@newbridge.com" DESCRIPTION "The MIB module to describe DS1, E1, DS2, and E2 interfaces objects."

         ::= { transmission 18 }

::= { transmission 18 }

     -- note that this subsumes cept (19) and g703at2mb (67)
     -- there is no separate CEPT or G703AT2MB MIB

-- note that this subsumes cept (19) and g703at2mb (67) -- there is no separate CEPT or G703AT2MB MIB

     -- The DS1 Near End Group

-- The DS1 Near End Group

     -- The DS1 Near End Group consists of five tables:
     --    DS1 Configuration
     --    DS1 Current
     --    DS1 Interval
     --    DS1 Total
     --    DS1 Channel Table

-- The DS1 Near End Group consists of five tables: -- DS1 Configuration -- DS1 Current -- DS1 Interval -- DS1 Total -- DS1 Channel Table

     -- The DS1 Configuration Table

-- The DS1 Configuration Table

     dsx1ConfigTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1ConfigEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Configuration table."
          ::= { ds1 6 }

dsx1ConfigTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1ConfigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The DS1 Configuration table." ::= { ds1 6 }

     dsx1ConfigEntry OBJECT-TYPE
          SYNTAX  Dsx1ConfigEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Configuration table."
          INDEX   { dsx1LineIndex }
          ::= { dsx1ConfigTable 1 }

dsx1ConfigEntry OBJECT-TYPE SYNTAX Dsx1ConfigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the DS1 Configuration table." INDEX { dsx1LineIndex } ::= { dsx1ConfigTable 1 }

     Dsx1ConfigEntry ::=
          SEQUENCE {
              dsx1LineIndex                        InterfaceIndex,
              dsx1IfIndex                          InterfaceIndex,
              dsx1TimeElapsed                      INTEGER,
              dsx1ValidIntervals                   INTEGER,
              dsx1LineType                         INTEGER,
              dsx1LineCoding                       INTEGER,

Dsx1ConfigEntry ::= SEQUENCE { dsx1LineIndex InterfaceIndex, dsx1IfIndex InterfaceIndex, dsx1TimeElapsed INTEGER, dsx1ValidIntervals INTEGER, dsx1LineType INTEGER, dsx1LineCoding INTEGER,

Fowler, Ed.                 Standards Track                    [Page 22]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[22ページ]RFC

              dsx1SendCode                         INTEGER,
              dsx1CircuitIdentifier                DisplayString,
              dsx1LoopbackConfig                   INTEGER,
              dsx1LineStatus                       INTEGER,
              dsx1SignalMode                       INTEGER,
              dsx1TransmitClockSource              INTEGER,
              dsx1Fdl                              INTEGER,
              dsx1InvalidIntervals                 INTEGER,
              dsx1LineLength                       INTEGER,
              dsx1LineStatusLastChange             TimeStamp,
              dsx1LineStatusChangeTrapEnable       INTEGER,
              dsx1LoopbackStatus                   INTEGER,
              dsx1Ds1ChannelNumber                 INTEGER,
              dsx1Channelization                   INTEGER
     }

dsx1SendCode整数、dsx1CircuitIdentifier DisplayString、dsx1LoopbackConfig整数、dsx1LineStatus整数、dsx1SignalMode整数、dsx1TransmitClockSource整数、dsx1Fdl整数、dsx1InvalidIntervals整数、dsx1LineLength整数、dsx1LineStatusLastChangeタイムスタンプ、dsx1LineStatusChangeTrapEnable整数、dsx1LoopbackStatus整数、dsx1Ds1ChannelNumber整数、dsx1Channelization整数

     dsx1LineIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "This object should be made equal to ifIndex.  The
                 next paragraph describes its previous usage.
                 Making the object equal to ifIndex allows proper
                 use of ifStackTable and ds0/ds0bundle mibs.

dsx1LineIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述は「ifIndexと等しく作これが反対するされているべきである」。 次のパラグラフは前の用法を説明します。 物をifIndexと等しくすると、ifStackTableとds0/ds0bundle mibsの適切な使用は許容されます。

                 Previously, this object is the identifier of a DS1
                 Interface on a managed device.  If there is an
                 ifEntry that is directly associated with this and
                 only this DS1 interface, it should have the same
                 value as ifIndex.  Otherwise, number the
                 dsx1LineIndices with an unique identifier
                 following the rules of choosing a number that is
                 greater than ifNumber and numbering the inside
                 interfaces (e.g., equipment side) with even
                 numbers and outside interfaces (e.g, network side)
                 with odd numbers."
          ::= { dsx1ConfigEntry 1 }

以前、この物は管理された装置の上のDS1 Interfaceに関する識別子です。 直接これに関連しているifEntryとこのDS1インタフェースしかなければ、それには、ifIndexと同じ値があるべきです。 「さもなければ、ユニークな識別子がifNumberより大きい数を選んで、内部に付番する規則に従っているdsx1LineIndicesが偶数と外部に連結する(例えば、設備側)数は(e.g、ネットワーク側)を奇数に連結します。」 ::= dsx1ConfigEntry1

     dsx1IfIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  deprecated
          DESCRIPTION
                 "This value for this object is equal to the value
                 of ifIndex from the Interfaces table of MIB II
                 (RFC 1213)."
          ::= { dsx1ConfigEntry 2 }

dsx1IfIndex OBJECT-TYPE SYNTAX InterfaceIndexマックス-ACCESS書き込み禁止STATUSは記述を非難しました。「この物のためのこの値はMIB II(RFC1213)のInterfacesテーブルからのifIndexの値と等しいです」。 ::= dsx1ConfigEntry2

Fowler, Ed.                 Standards Track                    [Page 23]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[23ページ]RFC

     dsx1TimeElapsed OBJECT-TYPE
          SYNTAX  INTEGER (0..899)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                   "The number of seconds that have elapsed since
                        the beginning of the near end current error-
                   measurement period.  If, for some reason, such
                        as an adjustment in the system's time-of-day
                        clock, the current interval exceeds the maximum
                        value, the agent will return the maximum value."

dsx1TimeElapsed OBJECT-TYPE SYNTAX INTEGER(0 .899)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「現在の誤り測定の期間の近い終了の始まり以来経過している秒数。」 「現在の間隔がシステムの時刻時計での調整などの何らかの理由で最大値を超えていると、エージェントは最大値を返すでしょう。」

          ::= { dsx1ConfigEntry 3 }

::= dsx1ConfigEntry3

     dsx1ValidIntervals OBJECT-TYPE
          SYNTAX  INTEGER (0..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of previous near end intervals for
                 which data was collected.  The value will be
                 96 unless the interface was brought online within
                 the last 24 hours, in which case the value will be
                 the number of complete 15 minute near end
                 intervals since the interface has been online.  In
                 the case where the agent is a proxy, it is
                 possible that some intervals are unavailable.  In
                 this case, this interval is the maximum interval
                 number for which data is available."
          ::= { dsx1ConfigEntry 4 }

dsx1ValidIntervals OBJECT-TYPE SYNTAX INTEGER(0 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「どのデータに終わりの間隔頃前の数は集められました」。 インタフェースがオンラインでここ24時間の範囲内に収められなかったなら値が96になる、その場合、インタフェースがオンラインであったので、値は終わりの間隔頃の完全な15分の数になるでしょう。 エージェントがプロキシである場合では、いくつかの間隔が入手できないのは、可能です。 「この場合、この間隔はデータが利用可能である最大の間隔番号です。」 ::= dsx1ConfigEntry4

     dsx1LineType OBJECT-TYPE
          SYNTAX  INTEGER {
                     other(1),
                     dsx1ESF(2),
                     dsx1D4(3),
                     dsx1E1(4),
                     dsx1E1CRC(5),
                     dsx1E1MF(6),
                     dsx1E1CRCMF(7),
                     dsx1Unframed(8),
                     dsx1E1Unframed(9),
                     dsx1DS2M12(10),
                     dsx2E2(11)
                 }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION

dsx1LineType OBJECT-TYPE SYNTAX INTEGER、他の(1)、dsx1ESF(2)、dsx1D4(3)、dsx1E1(4)、dsx1E1CRC(5)、dsx1E1MF(6)、dsx1E1CRCMF(7)、dsx1Unframed(8)、dsx1E1Unframed(9)、dsx1DS2M12(10)、マックス-ACCESSがSTATUS現在の記述を読書して書くdsx2E2(11)

Fowler, Ed.                 Standards Track                    [Page 24]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[24ページ]RFC

                 "This variable indicates  the  variety  of  DS1
                 Line  implementing  this  circuit.  The type of
                 circuit affects the number of bits  per  second
                 that  the circuit can reasonably carry, as well
                 as the interpretation of the  usage  and  error
                 statistics.  The values, in sequence, describe:

「この変数はこのサーキットを実行するDS1線のバラエティーを示します。」 サーキットのタイプはサーキットが合理的に運ぶことができるbpsの数、および用法と誤り統計の解釈に影響します。 値は連続して以下について説明します。

                 TITLE:         SPECIFICATION:
                 dsx1ESF         Extended SuperFrame DS1 (T1.107)
                 dsx1D4          AT&T D4 format DS1 (T1.107)
                 dsx1E1          ITU-T Recommendation G.704
                                  (Table 4a)
                 dsx1E1-CRC      ITU-T Recommendation G.704
                                  (Table 4b)
                 dsxE1-MF        G.704 (Table 4a) with TS16
                                  multiframing enabled
                 dsx1E1-CRC-MF   G.704 (Table 4b) with TS16
                                  multiframing enabled
                 dsx1Unframed    DS1 with No Framing
                 dsx1E1Unframed  E1 with No Framing (G.703)
                 dsx1DS2M12      DS2 frame format (T1.107)
                 dsx1E2          E2 frame format (G.704)

タイトル: 仕様: dsx1ESF Extended SuperFrame DS1(T1.107)dsx1D4 AT&T D4がDS1(T1.107)dsx1E1ITU-T Recommendation G.704をフォーマットする、(4a) dsx1E1-CRC ITU-T Recommendation G.704(テーブル4b)dsxE1-MF G.704をテーブルの上に置いてください、(4a)をテーブルの上に置いてください、TS16 multiframingが有効にされている状態で、TS16 multiframingとdsx1E1-CRC-MF G.704(テーブルの4b)はいいえ、Framing dsx1E1Unframedと共にどんなFraming(G.703)dsx1DS2M12 DS2フレーム形式(T1.107)のdsx1E2の2Eのフレーム形式でもdsx1Unframed DS1を1E有効にしませんでした。(G.704)

                 For clarification, the capacity for each E1 type
                 is as listed below:
                 dsx1E1Unframed - E1, no framing = 32 x 64k = 2048k
                 dsx1E1 or dsx1E1CRC - E1, with framing,
                    no signalling = 31 x 64k = 1984k
                 dsx1E1MF or dsx1E1CRCMF - E1, with framing,
                    signalling = 30 x 64k = 1920k

明確化において、1Eのタイプのためのそれぞれの容量は以下に同じくらい記載されています: dsx1E1Unframed--縁どりでないのは32x64kと= 2048k dsx1E1かdsx1E1CRC--31の縁どり、x64k=1984k dsx1E1MFまたは合図でない=dsx1E1CRCMFがある1E--1E等しいです、縁どりで、1Eです、=30x64k=1920kに合図して

                 For further information See ITU-T Recomm G.704"
          ::= { dsx1ConfigEntry 5 }

「詳細See ITU-T Recomm G.704、」、:、:= dsx1ConfigEntry5

     dsx1LineCoding OBJECT-TYPE
          SYNTAX  INTEGER {
                     dsx1JBZS (1),
                     dsx1B8ZS (2),
                     dsx1HDB3 (3),
                     dsx1ZBTSI (4),
                     dsx1AMI (5),
                     other(6),
                     dsx1B6ZS(7)
                 }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
                 "This variable describes the variety of Zero Code

dsx1LineCoding OBJECT-TYPE SYNTAX INTEGER、dsx1JBZS(1)、dsx1B8ZS(2)、dsx1HDB3(3)、dsx1ZBTSI(4)dsx1AMI(5)、他の(6)、マックス-ACCESSがSTATUS現在の記述を読書して書くdsx1B6ZS(7)、「この変数はZero Codeのバラエティーについて説明します」。

Fowler, Ed.                 Standards Track                    [Page 25]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[25ページ]RFC

                 Suppression used on this interface, which in turn
                 affects a number of its characteristics.

順番に多くの特性に影響するこのインタフェースで使用される抑圧。

                 dsx1JBZS refers the Jammed Bit Zero Suppression,
                 in which the AT&T specification of at least one
                 pulse every 8 bit periods is literally implemented
                 by forcing a pulse in bit 8 of each channel.
                 Thus, only seven bits per channel, or 1.344 Mbps,
                 is available for data.

dsx1JBZSはJammed Bit Zero Suppressionを参照します。そこでは、1パルスを押し込める8回のビット周期毎が文字通り実行される少なくとも1パルスのAT&T仕様がそれぞれの8個のチャンネルに噛み付きました。 1チャンネルあたり7ビット、または1.344Mbpsだけがデータに有効です。

                 dsx1B8ZS refers to the use of a specified pattern
                 of normal bits and bipolar violations which are
                 used to replace a sequence of eight zero bits.

dsx1B8ZSは8ゼロ・ビットの系列を置き換えるのに使用される標準のビットとバイポーラ違反の指定されたパターンの使用について言及します。

                 ANSI Clear Channels may use dsx1ZBTSI, or Zero
                 Byte Time Slot Interchange.

ANSI Clear Channelsはdsx1ZBTSI、またはZero Byte Time Slot Interchangeを使用するかもしれません。

                 E1 links, with or without CRC, use dsx1HDB3 or
                 dsx1AMI.

CRCのあるなしにかかわらず、1Eのリンクがdsx1HDB3かdsx1AMIを使用します。

                 dsx1AMI refers to a mode wherein no zero code
                 suppression is present and the line encoding does
                 not solve the problem directly.  In this
                 application, the higher layer must provide data
                 which meets or exceeds the pulse density
                 requirements, such as inverting HDLC data.

dsx1AMIはいいえゼロ、コード抑圧が存在していて、線コード化が直接問題を解決しないモードを示します。 このアプリケーションに、より高い層はパルス密度必要条件を満たすか、または超えているデータを提供しなければなりません、HDLCデータを逆にするのなどように。

                 dsx1B6ZS refers to the user of a specifed pattern
                 of normal bits and bipolar violations which are
                 used to replace a sequence of six zero bits.  Used
                 for DS2."

dsx1B6ZSは6ゼロ・ビットの系列を置き換えるのに使用される標準のビットとバイポーラ違反のspecifedパターンのユーザについて言及します。 「DS2において、中古です」。

          ::= { dsx1ConfigEntry 6 }

::= dsx1ConfigEntry6

     dsx1SendCode OBJECT-TYPE
          SYNTAX  INTEGER {
                    dsx1SendNoCode(1),
                    dsx1SendLineCode(2),
                    dsx1SendPayloadCode(3),
                    dsx1SendResetCode(4),
                    dsx1SendQRS(5),
                    dsx1Send511Pattern(6),
                    dsx1Send3in24Pattern(7),
                    dsx1SendOtherTestPattern(8)
                    }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION

dsx1SendCode OBJECT-TYPE SYNTAX INTEGER、dsx1SendNoCode(1)、dsx1SendLineCode(2)、dsx1SendPayloadCode(3)、dsx1SendResetCode(4)、dsx1SendQRS(5)、dsx1Send511Pattern(6)、dsx1Send3in24Pattern(7)、マックス-ACCESSがSTATUS現在の記述を読書して書くdsx1SendOtherTestPattern(8)

Fowler, Ed.                 Standards Track                    [Page 26]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[26ページ]RFC

                 "This variable indicates what type of code is
                 being sent across the DS1 interface by the device.
                 Setting this variable causes the interface to send
                 the code requested.  The values mean:
           dsx1SendNoCode
                sending looped or normal data

「この変数は、どんなタイプのコードがDS1インタフェースの向こう側に装置によって送られるかを示します。」 この変数を設定するのに、インタフェースは要求されたコードを送ります。 値は以下を意味します。 dsx1SendNoCodeの送付の輪にされたか正常なデータ

           dsx1SendLineCode
                sending a request for a line loopback

線ループバックを求める要求を送るdsx1SendLineCode

           dsx1SendPayloadCode
                sending a request for a payload loopback

ペイロードループバックを求める要求を送るdsx1SendPayloadCode

           dsx1SendResetCode
                sending a loopback termination request

ループバック終了要求を送るdsx1SendResetCode

           dsx1SendQRS
                sending a Quasi-Random Signal  (QRS)  test
                pattern

Quasi無作為のSignal(QRS)テストパターンを送るdsx1SendQRS

           dsx1Send511Pattern
                sending a 511 bit fixed test pattern

511ビット固定されたテストパターンを送るdsx1Send511Pattern

           dsx1Send3in24Pattern
                sending a fixed test pattern of 3 bits set
                in 24

3ビットの固定テストパターンを送るdsx1Send3in24Patternが24でセットしました。

           dsx1SendOtherTestPattern
                sending a test pattern  other  than  those
                described by this object"
::= { dsx1ConfigEntry 7 }

「この物によって説明されたものを除いて、テストを送るdsx1SendOtherTestPatternが型に基づいて作る」:、:= dsx1ConfigEntry7

     dsx1CircuitIdentifier OBJECT-TYPE
          SYNTAX  DisplayString (SIZE (0..255))
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
                 "This variable contains the transmission vendor's
                 circuit identifier, for the purpose of
                 facilitating troubleshooting."
          ::= { dsx1ConfigEntry 8 }

dsx1CircuitIdentifier OBJECT-TYPE SYNTAX DisplayString(SIZE(0 .255))マックス-ACCESSは「この変数がトランスミッション業者のサーキット識別子を含んでいます、障害調査するのを容易にする目的のために」STATUSの現在の記述に読書して書きます。 ::= dsx1ConfigEntry8

     dsx1LoopbackConfig OBJECT-TYPE
          SYNTAX  INTEGER {
                      dsx1NoLoop(1),
                      dsx1PayloadLoop(2),
                      dsx1LineLoop(3),
                      dsx1OtherLoop(4),

dsx1LoopbackConfigオブジェクト・タイプ構文整数、dsx1NoLoop(1)、dsx1PayloadLoop(2)、dsx1LineLoop(3)、dsx1OtherLoop(4)

Fowler, Ed.                 Standards Track                    [Page 27]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[27ページ]RFC

                      dsx1InwardLoop(5),
                      dsx1DualLoop(6)
                    }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
                 "This variable represents the desired loopback
                 configuration of the DS1 interface.  Agents
                 supporting read/write access should return
                 inconsistentValue in response to a requested
                 loopback state that the interface does not
                 support.  The values mean:

dsx1InwardLoop(5)、dsx1DualLoop(6) マックス-ACCESSは「この変数はDS1インタフェースの必要なループバック構成を表すこと」をSTATUSの現在の記述に読書して書きます。 支持がインタフェースが支持しない要求されたループバック状態に対応してinconsistentValueを返すべきであるとアクセスに読み込むか、または書くエージェント。 値は以下を意味します。

                 dsx1NoLoop
                  Not in the loopback state.  A device that is not
                 capable of performing a loopback on the interface
                 shall always return this as its value.

ループバック状態のdsx1NoLoop Not。 インタフェースにループバックを実行できない装置は値としていつもこれを返すものとします。

                 dsx1PayloadLoop
                  The received signal at this interface is looped
                 through the device.  Typically the received signal
                 is looped back for retransmission after it has
                 passed through the device's framing function.

これの受信された信号が連結するdsx1PayloadLoopは装置を通して輪にされます。 装置の縁どり機能を通り抜けた後に通常、受信された信号は「再-トランスミッション」のために輪にされます。

                 dsx1LineLoop
                  The received signal at this interface does not go
                 through the device (minimum penetration) but is
                 looped back out.

このインタフェースの受信された信号がするdsx1LineLoopは装置(最小の浸透)を通りませんが、輪にされた背中は出ていますか?

                 dsx1OtherLoop
                  Loopbacks that are not defined here.

ここで定義されないdsx1OtherLoop Loopbacks。

                 dsx1InwardLoop
                  The transmitted signal at this interface is
                 looped back and received by the same interface.
                 What is transmitted onto the line is product
                 dependent.

これの伝えられた信号が連結するdsx1InwardLoopを輪にし返して、同じインタフェースは受け取ります。 線に送られることは製品に依存しています。

                 dsx1DualLoop
                  Both dsx1LineLoop and dsx1InwardLoop will be
                 active simultaneously."
          ::= { dsx1ConfigEntry 9 }

「dsx1DualLoop Both dsx1LineLoopとdsx1InwardLoopは同時に、アクティブになるでしょう。」 ::= dsx1ConfigEntry9

     dsx1LineStatus OBJECT-TYPE
          SYNTAX  INTEGER (1..131071)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION

dsx1LineStatus OBJECT-TYPE SYNTAX INTEGER(1 .131071)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述

Fowler, Ed.                 Standards Track                    [Page 28]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[28ページ]RFC

                 "This variable indicates the Line Status of the
                 interface.  It contains loopback, failure,
                 received 'alarm' and transmitted 'alarms
                 information.

「この変数はインタフェースの線Statusを示します。」 それは、ループバック、失敗を含んで、'アラーム'を受けて、'アラーム情報'を伝えました。

                 The dsx1LineStatus is a bit map represented as a
                 sum, therefore, it can represent multiple failures
                 (alarms) and a LoopbackState simultaneously.

dsx1LineStatusが合計として表されたしばらく地図である、したがって、それは同時に、複数の失敗(アラーム)とLoopbackStateを表すことができます。

                 dsx1NoAlarm must be set if and only if no other
                 flag is set.

そして、dsx1NoAlarmが用意ができなければならない、他の旗が全く設定されない場合にだけ。

                 If the dsx1loopbackState bit is set, the loopback
                 in effect can be determined from the
                 dsx1loopbackConfig object.
       The various bit positions are:
      1     dsx1NoAlarm           No alarm present
      2     dsx1RcvFarEndLOF      Far end LOF (a.k.a., Yellow Alarm)
      4     dsx1XmtFarEndLOF      Near end sending LOF Indication
      8     dsx1RcvAIS            Far end sending AIS
     16     dsx1XmtAIS            Near end sending AIS
     32     dsx1LossOfFrame       Near end LOF (a.k.a., Red Alarm)
     64     dsx1LossOfSignal      Near end Loss Of Signal
    128     dsx1LoopbackState     Near end is looped
    256     dsx1T16AIS            E1 TS16 AIS
    512     dsx1RcvFarEndLOMF     Far End Sending TS16 LOMF
   1024     dsx1XmtFarEndLOMF     Near End Sending TS16 LOMF
   2048     dsx1RcvTestCode       Near End detects a test code
   4096     dsx1OtherFailure      any line status not defined here
   8192     dsx1UnavailSigState   Near End in Unavailable Signal
                                  State
  16384     dsx1NetEquipOOS       Carrier Equipment Out of Service
  32768     dsx1RcvPayloadAIS     DS2 Payload AIS
  65536     dsx1Ds2PerfThreshold  DS2 Performance Threshold
                                  Exceeded"
     ::= { dsx1ConfigEntry 10 }

dsx1loopbackStateビットが設定されるなら、事実上、ループバックはdsx1loopbackConfig物から決定できます。 様々なビット位置は以下の通りです。 1 現在の2dsx1RcvFarEndLOF Far終わりのLOF(通称Yellow Alarm)4dsx1XmtFarEndLOF Near終わりの送付LOF Indication8dsx1RcvAIS Far終わりの送付AIS16dsx1XmtAIS Near終わりの送付AIS32dsx1LossOfFrame Near終わりのLOF(通称Red Alarm)64dsx1LossOfSignal Near終わりのLoss Of Signal128dsx1LoopbackState Nearが終わらせるdsx1NoAlarmいいえアラームは256輪にされたdsx1T16AIS E1TS16 AIS512のdsx1RcvFarEndLOMF Far Endです; 「dsx1XmtFarEndLOMF Near End Sending TS16 LOMF2048dsx1RcvTestCode Near Endが検出するTS16 LOMF1024を送って、aテストが4096dsx1OtherFailureをコード化する、どんな線状態もここでService32768dsx1RcvPayloadAIS DS2有効搭載量AIS65536dsx1Ds2PerfThreshold DS2パフォーマンスThreshold ExceededのUnavailable Signal州16384dsx1NetEquipOOS Carrier Equipment Outで8192dsx1UnavailSigState Near Endを定義しなかった、」、:; := dsx1ConfigEntry10

     dsx1SignalMode OBJECT-TYPE
          SYNTAX  INTEGER {
                     none (1),
                     robbedBit (2),
                     bitOriented (3),
                     messageOriented (4),
                     other (5)
                 }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION

dsx1SignalMode OBJECT-TYPE SYNTAX INTEGER、なにも、(1)、robbedBit(2)、bitOriented(3)、messageOriented(4)、他の(5)、マックス-ACCESSは現在の記述をSTATUSに読書して書きます。

Fowler, Ed.                 Standards Track                    [Page 29]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[29ページ]RFC

            "'none' indicates that no bits are reserved for
            signaling on this channel.

「'なにも'は、ビットが全くこのチャンネルの上に合図するために予約されないのを示します。」

            'robbedBit' indicates that DS1 Robbed Bit  Sig-
            naling is in use.

'robbedBit'は、DS1 Robbed Bit Sig- nalingが使用中であることを示します。

            'bitOriented' indicates that E1 Channel  Asso-
            ciated Signaling is in use.

'bitOrientedされたこと'は、1EのChannel Asso- ciated Signalingが使用中であることを示します。

            'messageOriented' indicates that Common  Chan-
            nel Signaling is in use either on channel 16 of
            an E1 link or channel 24 of a DS1."
          ::= { dsx1ConfigEntry 11 }

「'messageOrientedされたこと'は、Commonチェンnel Signalingが1Eのリンクのチャンネル16かDS1のチャンネル24に使用中であることを示します。」 ::= dsx1ConfigEntry11

     dsx1TransmitClockSource OBJECT-TYPE
          SYNTAX  INTEGER {
                     loopTiming(1),
                     localTiming(2),
                     throughTiming(3)
                 }
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
            "The source of Transmit Clock.
             'loopTiming' indicates that the recovered re-
            ceive clock is used as the transmit clock.

dsx1TransmitClockSource OBJECT-TYPE SYNTAX INTEGER、loopTiming(1)、localTiming(2)、throughTiming(3)、マックス-ACCESSは「Transmit Clockの源」をSTATUSの現在の記述に読書して書きます。 'loopTiming'が、回復している再ceive時計が使用されているのを示す、時計を送ってください。

             'localTiming' indicates that a local clock
            source is used or when an external clock is
            attached to the box containing the interface.

使用されるか、または外部クロックがインタフェースを含む箱に付属しているとき、'localTiming'は、ローカルの時計ソースがそうであることを示します。

             'throughTiming' indicates that recovered re-
            ceive clock from another interface is used as
            the transmit clock."
          ::= { dsx1ConfigEntry 12 }

「'throughTiming'が、別のインタフェースからのその回復している再ceive時計が使用されるのを示す、時計を送ってください、」 ::= dsx1ConfigEntry12

     dsx1Fdl OBJECT-TYPE
          SYNTAX  INTEGER (1..15)
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
            "This bitmap describes the use of  the  facili-
            ties data link, and is the sum of the capabili-
            ties.  Set any bits that are appropriate:

dsx1Fdl OBJECT-TYPE SYNTAX INTEGER(1 .15)マックス-ACCESSは「このビットマップは、facili結びつきデータ・リンクの使用について説明して、capabili結びつきの合計です」をSTATUSの現在の記述に読書して書きます。 あらゆる適切なビットを設定してください:

            other(1),
            dsx1AnsiT1403(2),
            dsx1Att54016(4),

他の(1)、dsx1AnsiT1403(2)、dsx1Att54016(4)

Fowler, Ed.                 Standards Track                    [Page 30]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[30ページ]RFC

            dsx1FdlNone(8)

dsx1FdlNone(8)

             'other' indicates that a protocol  other  than
            one following is used.

'他'は、1つが続くのを除いたプロトコルが使用されているのを示します。

             'dsx1AnsiT1403' refers to the  FDL  exchange
            recommended by ANSI.

'dsx1AnsiT1403'はANSIによって推薦されたFDL交換について言及します。

             'dsx1Att54016' refers to ESF FDL exchanges.

'dsx1Att54016'はESF FDL交換について言及します。

             'dsx1FdlNone' indicates that the device  does
            not use the FDL."
          ::= { dsx1ConfigEntry 13 }

「'dsx1FdlNone'は、装置がFDLを使用しないのを示します。」 ::= dsx1ConfigEntry13

     dsx1InvalidIntervals OBJECT-TYPE
          SYNTAX  INTEGER (0..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of intervals in the range from 0 to
                 dsx1ValidIntervals for which no data is
                 available.  This object will typically be zero
                 except in cases where the data for some intervals
                 are not available (e.g., in proxy situations)."
          ::= { dsx1ConfigEntry 14 }

dsx1InvalidIntervals OBJECT-TYPE SYNTAX INTEGER(0 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「0〜データがないのが利用可能であるdsx1ValidIntervalsまでの範囲の間隔の数。」 「この物はいくつかの間隔の間のデータを得ることができない(例えば、プロキシ状況における)ケース以外の通常ゼロになるでしょう。」 ::= dsx1ConfigEntry14

     dsx1LineLength OBJECT-TYPE
          SYNTAX  INTEGER (0..64000)
          UNITS  "meters"
          MAX-ACCESS  read-write
          STATUS  current
          DESCRIPTION
                 "The length of the ds1 line in meters. This
                 objects provides information for line build out
                 circuitry.  This object is only useful if the
                 interface has configurable line build out
                 circuitry."

dsx1LineLength OBJECT-TYPE SYNTAX INTEGER(0 .64000)UNITS「メーター」マックス-ACCESSは「ds1線の長さは中で計量する」現在の記述をSTATUSに読書して書きます。 線が回路を建て増しするので、情報を提供しますこれが、反対する。 「構成可能な線がインタフェースで回路を建て増しする場合にだけ、この物は役に立ちます。」

          ::= { dsx1ConfigEntry 15 }

::= dsx1ConfigEntry15

     dsx1LineStatusLastChange OBJECT-TYPE
          SYNTAX  TimeStamp
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The value of MIB II's sysUpTime object at the
                 time this DS1 entered its current line status
                 state.  If the current state was entered prior to

「このDS1が現在行状態州に入ったとき、MIB IIのsysUpTimeの値は反対させる」dsx1LineStatusLastChange OBJECT-TYPE SYNTAX TimeStampのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 現状のときに入られる前なら

Fowler, Ed.                 Standards Track                    [Page 31]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[31ページ]RFC

                 the last re-initialization of the proxy-agent,
                 then this object contains a zero value."
          ::= { dsx1ConfigEntry 16 }

「プロキシ兼エージェントの最後の再初期化であり、そして、この物はaゼロ値を含んでいます。」 ::= dsx1ConfigEntry16

     dsx1LineStatusChangeTrapEnable  OBJECT-TYPE
          SYNTAX      INTEGER {
                         enabled(1),
                         disabled(2)
                      }
          MAX-ACCESS  read-write
          STATUS      current
          DESCRIPTION
                 "Indicates whether dsx1LineStatusChange traps
                 should be generated for this interface."
          DEFVAL { disabled }
          ::= { dsx1ConfigEntry 17 }

dsx1LineStatusChangeTrapEnable OBJECT-TYPE SYNTAX INTEGERは(1)、障害がある(2)を可能にしました。マックス-ACCESSは現在の記述が「dsx1LineStatusChange罠がこのインタフェースに発生するべきであるか否かに関係なく、示す」STATUSに読書して書きます。 DEFVAL身体障害者:、:= dsx1ConfigEntry17

     dsx1LoopbackStatus  OBJECT-TYPE
          SYNTAX      INTEGER (1..127)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION
                 "This variable represents the current state of the
                 loopback on the DS1 interface.  It contains
                 information about loopbacks established by a
                 manager and remotely from the far end.

dsx1LoopbackStatus OBJECT-TYPE SYNTAX INTEGER(1 .127)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「この変数はDS1インタフェースにループバックの現状を表します」。 それはマネージャによって確立されたループバックと離れて遠端からの情報を含んでいます。

                 The dsx1LoopbackStatus is a bit map represented as
                 a sum, therefore is can represent multiple
                 loopbacks simultaneously.

dsx1LoopbackStatusによるしたがって、合計として表された地図が少し、同時に複数のループバックを表すことができるということであるということです。

                 The various bit positions are:
                  1  dsx1NoLoopback
                  2  dsx1NearEndPayloadLoopback
                  4  dsx1NearEndLineLoopback
                  8  dsx1NearEndOtherLoopback
                 16  dsx1NearEndInwardLoopback
                 32  dsx1FarEndPayloadLoopback
                 64  dsx1FarEndLineLoopback"

様々なビット位置は以下の通りです。 「1dsx1NoLoopback2のdsx1NearEndPayloadLoopback4dsx1NearEndLineLoopback8dsx1NearEndOtherLoopback16dsx1NearEndInwardLoopback32dsx1FarEndPayloadLoopback64dsx1FarEndLineLoopback」

     ::= { dsx1ConfigEntry 18 }

::= dsx1ConfigEntry18

     dsx1Ds1ChannelNumber  OBJECT-TYPE
          SYNTAX      INTEGER (0..28)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION
                 "This variable represents the channel number of

「この変数は論理機番を表す」dsx1Ds1ChannelNumber OBJECT-TYPE SYNTAX INTEGER(0 .28)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述

Fowler, Ed.                 Standards Track                    [Page 32]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[32ページ]RFC

                 the DS1/E1 on its parent Ds2/E2 or DS3/E3.  A
                 value of 0 indicated this DS1/E1 does not have a
                 parent DS3/E3."

親Ds2/E2の上の1DS1/Eか3DS3/ユーロ。 「0の値は、この1DS1/Eには親が3DS3/Eいないのを示しました。」

     ::= { dsx1ConfigEntry 19 }

::= dsx1ConfigEntry19

     dsx1Channelization  OBJECT-TYPE
          SYNTAX      INTEGER {
                         disabled(1),
                         enabledDs0(2),
                         enabledDs1(3)
                      }
          MAX-ACCESS  read-write
          STATUS      current
          DESCRIPTION
                 "Indicates whether this ds1/e1 is channelized or
                 unchannelized.  The value of enabledDs0 indicates
                 that this is a DS1 channelized into DS0s.  The
                 value of enabledDs1 indicated that this is a DS2
                 channelized into DS1s.  Setting this value will
                 cause the creation or deletion of entries in the
                 ifTable for the DS0s that are within the DS1."
     ::= { dsx1ConfigEntry 20 }

dsx1Channelization OBJECT-TYPE SYNTAX INTEGERは(1)、enabledDs0(2)、enabledDs1(3)を無効にしました。マックス-ACCESSは現在の記述が「このds1/e1がchannelizedされるか、またはunchannelizedされることにかかわらず示す」STATUSに読書して書きます。 enabledDs0の値は、これがDS0sへのDS1 channelizedであることを示します。 enabledDs1の値は、これがDS1sへのDS2 channelizedであることを示しました。 「この値を設定すると、ifTableでのエントリーの創造か削除がDS1の中にあるDS0sのために引き起こされるでしょう。」 ::= dsx1ConfigEntry20

     -- The DS1 Current Table
     dsx1CurrentTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1CurrentEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 current table contains various statistics
                 being collected for the current 15 minute
                 interval."
          ::= { ds1 7 }

-- アクセスしやすくないDS1 Current Table dsx1CurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1CurrentEntryマックス-ACCESSのSTATUSの現在の記述、「DS1の現在のテーブルは15分の現在の間隔の間に集められる様々な統計を含んでいます」。 ::= ds1 7

     dsx1CurrentEntry OBJECT-TYPE
          SYNTAX  Dsx1CurrentEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Current table."
                      INDEX   { dsx1CurrentIndex }
                      ::= { dsx1CurrentTable 1 }

「DS1 Currentのエントリーはテーブルの上に置く」dsx1CurrentEntry OBJECT-TYPE SYNTAX Dsx1CurrentEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 dsx1CurrentIndexに索引をつけてください:、:= dsx1CurrentTable1

     Dsx1CurrentEntry ::=
          SEQUENCE {
              dsx1CurrentIndex            InterfaceIndex,
              dsx1CurrentESs              PerfCurrentCount,

Dsx1CurrentEntry:、:= 系列、dsx1CurrentIndex InterfaceIndex、dsx1CurrentESs PerfCurrentCount

Fowler, Ed.                 Standards Track                    [Page 33]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[33ページ]RFC

              dsx1CurrentSESs             PerfCurrentCount,
              dsx1CurrentSEFSs            PerfCurrentCount,
              dsx1CurrentUASs             PerfCurrentCount,
              dsx1CurrentCSSs             PerfCurrentCount,
              dsx1CurrentPCVs             PerfCurrentCount,
              dsx1CurrentLESs             PerfCurrentCount,
              dsx1CurrentBESs             PerfCurrentCount,
              dsx1CurrentDMs              PerfCurrentCount,
              dsx1CurrentLCVs             PerfCurrentCount
     }

dsx1CurrentSESs PerfCurrentCount、dsx1CurrentSEFSs PerfCurrentCount、dsx1CurrentUASs PerfCurrentCount、dsx1CurrentCSSs PerfCurrentCount、dsx1CurrentPCVs PerfCurrentCount、dsx1CurrentLESs PerfCurrentCount、dsx1CurrentBESs PerfCurrentCount、dsx1CurrentDMs PerfCurrentCount、dsx1CurrentLCVs PerfCurrentCount

     dsx1CurrentIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies  the
                 DS1 interface to which this entry is applicable.
                 The interface identified by a particular value of
                 this index is the same interface as identified by
                 the same value as a dsx1LineIndex object
                 instance."
          ::= { dsx1CurrentEntry 1 }

dsx1CurrentIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndex物の例と同じ値によって特定されるように同じインタフェースです。」 ::= dsx1CurrentEntry1

     dsx1CurrentESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Errored Seconds."
          ::= { dsx1CurrentEntry 2 }

dsx1CurrentESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Errored Secondsの数。」 ::= dsx1CurrentEntry2

     dsx1CurrentSESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Seconds."
          ::= { dsx1CurrentEntry 3 }

dsx1CurrentSESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Severely Errored Secondsの数。」 ::= dsx1CurrentEntry3

     dsx1CurrentSEFSs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Framing Seconds."
          ::= { dsx1CurrentEntry 4 }

dsx1CurrentSEFSs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Severely Errored Framing Secondsの数。」 ::= dsx1CurrentEntry4

Fowler, Ed.                 Standards Track                    [Page 34]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[34ページ]RFC

     dsx1CurrentUASs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds."
          ::= { dsx1CurrentEntry 5 }

dsx1CurrentUASs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Unavailable Secondsの数。」 ::= dsx1CurrentEntry5

     dsx1CurrentCSSs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Controlled Slip Seconds."
          ::= { dsx1CurrentEntry 6 }

dsx1CurrentCSSs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Controlled Slip Secondsの数。」 ::= dsx1CurrentEntry6

     dsx1CurrentPCVs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Path Coding Violations."
          ::= { dsx1CurrentEntry 7 }

dsx1CurrentPCVs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Path Coding Violationsの数。」 ::= dsx1CurrentEntry7

     dsx1CurrentLESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Line Errored Seconds."
          ::= { dsx1CurrentEntry 8 }

dsx1CurrentLESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「線Errored Secondsの数。」 ::= dsx1CurrentEntry8

     dsx1CurrentBESs OBJECT-TYPE
          SYNTAX PerfCurrentCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Bursty Errored Seconds."
          ::= { dsx1CurrentEntry 9 }

dsx1CurrentBESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Bursty Errored Secondsの数。」 ::= dsx1CurrentEntry9

     dsx1CurrentDMs OBJECT-TYPE
          SYNTAX PerfCurrentCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Degraded Minutes."
          ::= { dsx1CurrentEntry 10 }

dsx1CurrentDMs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Degraded Minutesの数。」 ::= dsx1CurrentEntry10

Fowler, Ed.                 Standards Track                    [Page 35]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[35ページ]RFC

     dsx1CurrentLCVs OBJECT-TYPE
          SYNTAX PerfCurrentCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Line Code Violations (LCVs)."
          ::= { dsx1CurrentEntry 11 }

dsx1CurrentLCVs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「線Code Violations(LCVs)の数。」 ::= dsx1CurrentEntry11

     -- The DS1 Interval Table
     dsx1IntervalTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1IntervalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Interval Table contains various
                 statistics collected by each DS1 Interface over
                 the previous 24 hours of operation.  The past 24
                 hours are broken into 96 completed 15 minute
                 intervals.  Each row in this table represents one
                 such interval (identified by dsx1IntervalNumber)
                 for one specific instance (identified by
                 dsx1IntervalIndex)."
          ::= { ds1 8 }

-- アクセスしやすくないDS1 Interval Table dsx1IntervalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1IntervalEntryマックス-ACCESSのSTATUSの現在の記述、「DS1 Interval Tableは各DS1 Interfaceによって前の24時間の操作の上に集められた様々な統計を含んでいます」。 15分の完成した96回の間隔が過去24時間に細かく分けられます。 「このテーブルの各列は1つの特定の例(dsx1IntervalIndexによって特定される)のために、そのような間隔の1つ(dsx1IntervalNumberによって特定される)を表します。」 ::= ds1 8

     dsx1IntervalEntry OBJECT-TYPE
          SYNTAX  Dsx1IntervalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Interval table."
          INDEX   { dsx1IntervalIndex, dsx1IntervalNumber }
          ::= { dsx1IntervalTable 1 }

「DS1 Intervalのエントリーはテーブルの上に置く」dsx1IntervalEntry OBJECT-TYPE SYNTAX Dsx1IntervalEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 dsx1IntervalIndex、dsx1IntervalNumberに索引をつけてください:、:= dsx1IntervalTable1

     Dsx1IntervalEntry ::=
          SEQUENCE {
              dsx1IntervalIndex             InterfaceIndex,
              dsx1IntervalNumber            INTEGER,
              dsx1IntervalESs               PerfIntervalCount,
              dsx1IntervalSESs              PerfIntervalCount,
              dsx1IntervalSEFSs             PerfIntervalCount,
              dsx1IntervalUASs              PerfIntervalCount,
              dsx1IntervalCSSs              PerfIntervalCount,
              dsx1IntervalPCVs              PerfIntervalCount,
              dsx1IntervalLESs              PerfIntervalCount,
              dsx1IntervalBESs              PerfIntervalCount,
              dsx1IntervalDMs               PerfIntervalCount,
              dsx1IntervalLCVs              PerfIntervalCount,

Dsx1IntervalEntry:、:= 系列、dsx1IntervalIndex InterfaceIndex、dsx1IntervalNumber整数、dsx1IntervalESs PerfIntervalCount、dsx1IntervalSESs PerfIntervalCount、dsx1IntervalSEFSs PerfIntervalCount、dsx1IntervalUASs PerfIntervalCount、dsx1IntervalCSSs PerfIntervalCount、dsx1IntervalPCVs PerfIntervalCount、dsx1IntervalLESs PerfIntervalCount、dsx1IntervalBESs PerfIntervalCount、dsx1IntervalDMs PerfIntervalCount、dsx1IntervalLCVs PerfIntervalCount

Fowler, Ed.                 Standards Track                    [Page 36]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[36ページ]RFC

              dsx1IntervalValidData         TruthValue
     }

dsx1IntervalValidData TruthValue

     dsx1IntervalIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies the DS1
                 interface to which this entry is applicable.  The
                 interface identified by a particular value of this
                 index is the same interface as identified by the
                 same value as a dsx1LineIndex object instance."
          ::= { dsx1IntervalEntry 1 }

dsx1IntervalIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndex物の例と同じ値によって特定されるように同じインタフェースです。」 ::= dsx1IntervalEntry1

     dsx1IntervalNumber OBJECT-TYPE
          SYNTAX  INTEGER (1..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "A number between 1 and 96, where 1 is the most
                 recently completed 15 minute interval and 96 is
                 the 15 minutes interval completed 23 hours and 45
                 minutes prior to interval 1."
          ::= { dsx1IntervalEntry 2 }

「1が最も最近完成した15微小な間隔であり、96が15分の間隔である1〜96の数は間隔1の23時間と45分前に完成した」dsx1IntervalNumber OBJECT-TYPE SYNTAX INTEGER(1 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 ::= dsx1IntervalEntry2

     dsx1IntervalESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Errored Seconds."
          ::= { dsx1IntervalEntry 3 }

dsx1IntervalESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Errored Secondsの数。」 ::= dsx1IntervalEntry3

     dsx1IntervalSESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Seconds."
          ::= { dsx1IntervalEntry 4 }

dsx1IntervalSESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Severely Errored Secondsの数。」 ::= dsx1IntervalEntry4

     dsx1IntervalSEFSs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Framing Seconds."

dsx1IntervalSEFSs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Severely Errored Framing Secondsの数。」

Fowler, Ed.                 Standards Track                    [Page 37]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[37ページ]RFC

          ::= { dsx1IntervalEntry 5 }

::= dsx1IntervalEntry5

     dsx1IntervalUASs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds.  This object
                 may decrease if the occurance of unavailable
                 seconds occurs across an inteval boundary."
          ::= { dsx1IntervalEntry 6 }

dsx1IntervalUASs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Unavailable Secondsの数。」 「入手できない秒のoccuranceがinteval境界の向こう側に現れるなら、この物は減少するかもしれません。」 ::= dsx1IntervalEntry6

     dsx1IntervalCSSs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Controlled Slip Seconds."
          ::= { dsx1IntervalEntry 7 }

dsx1IntervalCSSs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Controlled Slip Secondsの数。」 ::= dsx1IntervalEntry7

     dsx1IntervalPCVs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Path Coding Violations."
          ::= { dsx1IntervalEntry 8 }

dsx1IntervalPCVs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Path Coding Violationsの数。」 ::= dsx1IntervalEntry8

     dsx1IntervalLESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Line Errored Seconds."
          ::= { dsx1IntervalEntry 9 }

dsx1IntervalLESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「線Errored Secondsの数。」 ::= dsx1IntervalEntry9

     dsx1IntervalBESs OBJECT-TYPE
          SYNTAX PerfIntervalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Bursty Errored Seconds."
          ::= { dsx1IntervalEntry 10 }

dsx1IntervalBESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Bursty Errored Secondsの数。」 ::= dsx1IntervalEntry10

     dsx1IntervalDMs OBJECT-TYPE
          SYNTAX PerfIntervalCount
          MAX-ACCESS read-only
          STATUS current

dsx1IntervalDMs OBJECT-TYPE SYNTAX PerfIntervalCountマックス-ACCESS書き込み禁止STATUS海流

Fowler, Ed.                 Standards Track                    [Page 38]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[38ページ]RFC

          DESCRIPTION
                 "The number of Degraded Minutes."
          ::= { dsx1IntervalEntry 11 }

記述、「Degraded Minutesの数。」 ::= dsx1IntervalEntry11

     dsx1IntervalLCVs OBJECT-TYPE
          SYNTAX PerfIntervalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Line Code Violations."
          ::= { dsx1IntervalEntry 12 }

dsx1IntervalLCVs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「線Code Violationsの数。」 ::= dsx1IntervalEntry12

     dsx1IntervalValidData OBJECT-TYPE
          SYNTAX TruthValue
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "This variable indicates if the data for this
                 interval is valid."
          ::= { dsx1IntervalEntry 13 }

「この間隔の間のデータが有効であるなら、この変数は示す」dsx1IntervalValidData OBJECT-TYPE SYNTAX TruthValueのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 ::= dsx1IntervalEntry13

     -- The DS1 Total Table
     dsx1TotalTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1TotalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Total Table contains the cumulative sum
                 of the various statistics for the 24 hour period
                 preceding the current interval."
          ::= { ds1 9 }

-- アクセスしやすくないDS1 Total Table dsx1TotalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1TotalEntryマックス-ACCESSのSTATUSの現在の記述、「DS1 Total Tableは現在の間隔に先行しながら、24時間の期間のための様々な統計の累積合計を含んでいます」。 ::= ds1 9

     dsx1TotalEntry OBJECT-TYPE
          SYNTAX  Dsx1TotalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Total table."
          INDEX   { dsx1TotalIndex }
          ::= { dsx1TotalTable 1 }

「DS1 Totalのエントリーはテーブルの上に置く」dsx1TotalEntry OBJECT-TYPE SYNTAX Dsx1TotalEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 dsx1TotalIndexに索引をつけてください:、:= dsx1TotalTable1

     Dsx1TotalEntry ::=
          SEQUENCE {
              dsx1TotalIndex                InterfaceIndex,
              dsx1TotalESs                  PerfTotalCount,
              dsx1TotalSESs                 PerfTotalCount,
              dsx1TotalSEFSs                PerfTotalCount,
              dsx1TotalUASs                 PerfTotalCount,

Dsx1TotalEntry:、:= 系列、dsx1TotalIndex InterfaceIndex、dsx1TotalESs PerfTotalCount、dsx1TotalSESs PerfTotalCount、dsx1TotalSEFSs PerfTotalCount、dsx1TotalUASs PerfTotalCount

Fowler, Ed.                 Standards Track                    [Page 39]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[39ページ]RFC

              dsx1TotalCSSs                 PerfTotalCount,
              dsx1TotalPCVs                 PerfTotalCount,
              dsx1TotalLESs                 PerfTotalCount,
              dsx1TotalBESs                 PerfTotalCount,
              dsx1TotalDMs                  PerfTotalCount,
              dsx1TotalLCVs                 PerfTotalCount
     }

dsx1TotalCSSs PerfTotalCount、dsx1TotalPCVs PerfTotalCount、dsx1TotalLESs PerfTotalCount、dsx1TotalBESs PerfTotalCount、dsx1TotalDMs PerfTotalCount、dsx1TotalLCVs PerfTotalCount

     dsx1TotalIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies the DS1
                 interface to which this entry is applicable.  The
                 interface identified by a particular value of this
                 index is the same interface as identified by the
                 same value as a dsx1LineIndex object instance."

dsx1TotalIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndex物の例と同じ値によって特定されるように同じインタフェースです。」

          ::= { dsx1TotalEntry 1 }

::= dsx1TotalEntry1

     dsx1TotalESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The sum of Errored Seconds encountered by a DS1
                 interface in the previous 24 hour interval.
                 Invalid 15 minute intervals count as 0."
          ::= { dsx1TotalEntry 2 }

「Errored Secondsの合計は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry2

     dsx1TotalSESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Seconds
                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1TotalEntry 3 }

「Severely Errored Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalSESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry3

     dsx1TotalSEFSs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Severely Errored Framing Seconds

dsx1TotalSEFSs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述は「Severely Errored Framing Secondsの数」です。

Fowler, Ed.                 Standards Track                    [Page 40]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[40ページ]RFC

                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1TotalEntry 4 }

前の24時間の間隔のDS1インタフェースで、遭遇します。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry4

     dsx1TotalUASs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds encountered by
                 a DS1 interface in the previous 24 hour interval.
                 Invalid 15 minute intervals count as 0."
          ::= { dsx1TotalEntry 5 }

「Unavailable Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalUASs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry5

     dsx1TotalCSSs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Controlled Slip Seconds encountered
                 by a DS1 interface in the previous 24 hour
                 interval.  Invalid 15 minute intervals count as
                 0."
          ::= { dsx1TotalEntry 6 }

「Controlled Slip Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalCSSs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry6

     dsx1TotalPCVs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Path Coding Violations encountered
                 by a DS1 interface in the previous 24 hour
                 interval.  Invalid 15 minute intervals count as
                 0."
          ::= { dsx1TotalEntry 7 }

「Path Coding Violationsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalPCVs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry7

     dsx1TotalLESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Line Errored Seconds encountered by
                 a DS1 interface in the previous 24 hour interval.
                 Invalid 15 minute intervals count as 0."
          ::= { dsx1TotalEntry 8 }

「線Errored Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalLESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry8

     dsx1TotalBESs OBJECT-TYPE

dsx1TotalBESsオブジェクト・タイプ

Fowler, Ed.                 Standards Track                    [Page 41]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[41ページ]RFC

          SYNTAX PerfTotalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Bursty Errored Seconds (BESs)
                 encountered by a DS1 interface in the previous 24
                 hour interval. Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1TotalEntry 9 }

「Bursty Errored Seconds(BESs)の数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry9

     dsx1TotalDMs OBJECT-TYPE
          SYNTAX PerfTotalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Degraded Minutes (DMs) encountered
                 by a DS1 interface in the previous 24 hour
                 interval.  Invalid 15 minute intervals count as
                 0."
          ::= { dsx1TotalEntry 10 }

「Degraded Minutes(DMs)の数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalDMs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry10

     dsx1TotalLCVs OBJECT-TYPE
          SYNTAX PerfTotalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Line Code Violations (LCVs)
                 encountered by a DS1 interface in the current 15
                 minute interval.  Invalid 15 minute intervals
                 count as 0."
          ::= { dsx1TotalEntry 11 }

「線Code Violations(LCVs)の数は15分の現在の間隔のDS1インタフェースのそばで遭遇した」dsx1TotalLCVs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1TotalEntry11

     -- The DS1 Channel Table
     dsx1ChanMappingTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1ChanMappingEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Channel Mapping table.  This table maps a
                 DS1 channel number on a particular DS3 into an
                 ifIndex.  In the presence of DS2s, this table can
                 be used to map a DS2 channel number on a DS3 into
                 an ifIndex, or used to map a DS1 channel number on
                 a DS2 onto an ifIndex."
          ::= { ds1 16 }

-- 「DS1 Channel Mappingはテーブルの上に置く」アクセスしやすくないDS1 Channel Table dsx1ChanMappingTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1ChanMappingEntryマックス-ACCESSのSTATUSの現在の記述。 このテーブルは特定のDS3でDS1論理機番をifIndexに写像します。 「DS2sの面前で、このテーブルをDS3でDS2論理機番をifIndexに写像するのに使用するか、またはDS2でDS1論理機番をifIndexに写像するのに使用できます。」 ::= ds1 16

     dsx1ChanMappingEntry OBJECT-TYPE
          SYNTAX  Dsx1ChanMappingEntry

dsx1ChanMappingEntryオブジェクト・タイプ構文Dsx1ChanMappingEntry

Fowler, Ed.                 Standards Track                    [Page 42]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[42ページ]RFC

          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Channel Mapping table.  There
                 is an entry in this table corresponding to each
                 ds1 ifEntry within any interface that is
                 channelized to the individual ds1 ifEntry level.

「DS1 Channel Mappingのエントリーはテーブルの上に置く」マックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 個々のds1 ifEntryレベルにchannelizedされるどんなインタフェースの中にもエントリーが各ds1 ifEntryに対応するこのテーブルにあります。

                 This table is intended to facilitate mapping from
                 channelized interface / channel number to DS1
                 ifEntry.  (e.g. mapping (DS3 ifIndex, DS1 Channel
                 Number) -> ifIndex)

このテーブルが、channelizedインタフェース/論理機番からDS1 ifEntryまで写像するのを容易にすることを意図します。 (例えば、マッピング(DS3 ifIndex、DS1 Channel Number)->ifIndex)

                 While this table provides information that can
                 also be found in the ifStackTable and
                 dsx1ConfigTable, it provides this same information
                 with a single table lookup, rather than by walking
                 the ifStackTable to find the various constituent
                 ds1 ifTable entries, and testing various
                 dsx1ConfigTable entries to check for the entry
                 with the applicable DS1 channel number."
          INDEX   { ifIndex, dsx1Ds1ChannelNumber }
          ::= { dsx1ChanMappingTable 1 }

「このテーブルはまた、ifStackTableとdsx1ConfigTableで見つけることができる情報を提供しますが、様々な構成しているds1 ifTableエントリーを見つけるためにifStackTableを押して行くことによってというよりむしろただ一つの索表にこの同じ情報を提供して、適切なDS1論理機番でエントリーがないかどうかチェックするテストの様々なdsx1ConfigTableエントリーを提供します。」 ifIndex、dsx1Ds1ChannelNumberに索引をつけてください:、:= dsx1ChanMappingTable1

     Dsx1ChanMappingEntry ::=
          SEQUENCE {
              dsx1ChanMappedIfIndex  InterfaceIndex
     }

Dsx1ChanMappingEntry:、:= 系列dsx1ChanMappedIfIndex InterfaceIndex

     dsx1ChanMappedIfIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "This object indicates the ifIndex value assigned
                 by the agent for the individual ds1 ifEntry that
                 corresponds to the given DS1 channel number
                 (specified by the INDEX element
                 dsx1Ds1ChannelNumber) of the given channelized
                 interface (specified by INDEX element ifIndex)."
          ::= { dsx1ChanMappingEntry 1 }

「与えられたchannelizedインタフェース(INDEX要素ifIndexによって指定される)の与えられたDS1論理機番(INDEX要素dsx1Ds1ChannelNumberによって指定される)に対応する個々のds1 ifEntryのためにエージェントによって割り当てられて、評価この物がifIndexを示すす」dsx1ChanMappedIfIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 ::= dsx1ChanMappingEntry1

     -- The DS1 Far End Current Table

-- DS1の遠端の現在のテーブル

     dsx1FarEndCurrentTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1FarEndCurrentEntry
          MAX-ACCESS  not-accessible

アクセスしやすくないdsx1FarEndCurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1FarEndCurrentEntryマックス-ACCESS

Fowler, Ed.                 Standards Track                    [Page 43]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[43ページ]RFC

          STATUS  current
          DESCRIPTION
                 "The DS1 Far End Current table contains various
                 statistics being collected for the current 15
                 minute interval.  The statistics are collected
                 from the far end messages on the Facilities Data
                 Link.  The definitions are the same as described
                 for the near-end information."
          ::= { ds1 10 }

STATUSの現在の記述、「DS1 Far End Currentテーブルは15分の現在の間隔の間に集められる様々な統計を含んでいます」。 統計はFacilities Data Linkに関する遠端メッセージから集められます。 「定義は終わり頃の情報のために説明されるのと同じです。」 ::= ds1 10

     dsx1FarEndCurrentEntry OBJECT-TYPE
          SYNTAX  Dsx1FarEndCurrentEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Far End Current table."
          INDEX   { dsx1FarEndCurrentIndex }
          ::= { dsx1FarEndCurrentTable 1 }

「DS1 Far End Currentのエントリーはテーブルの上に置く」dsx1FarEndCurrentEntry OBJECT-TYPE SYNTAX Dsx1FarEndCurrentEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 dsx1FarEndCurrentIndexに索引をつけてください:、:= dsx1FarEndCurrentTable1

     Dsx1FarEndCurrentEntry ::=
          SEQUENCE {
              dsx1FarEndCurrentIndex      InterfaceIndex,
              dsx1FarEndTimeElapsed       INTEGER,
              dsx1FarEndValidIntervals    INTEGER,
              dsx1FarEndCurrentESs        PerfCurrentCount,
              dsx1FarEndCurrentSESs       PerfCurrentCount,
              dsx1FarEndCurrentSEFSs      PerfCurrentCount,
              dsx1FarEndCurrentUASs       PerfCurrentCount,
              dsx1FarEndCurrentCSSs       PerfCurrentCount,
              dsx1FarEndCurrentLESs       PerfCurrentCount,
              dsx1FarEndCurrentPCVs       PerfCurrentCount,
              dsx1FarEndCurrentBESs       PerfCurrentCount,
              dsx1FarEndCurrentDMs        PerfCurrentCount,
              dsx1FarEndInvalidIntervals  INTEGER
     }

Dsx1FarEndCurrentEntry:、:= 系列dsx1FarEndCurrentIndex InterfaceIndex、dsx1FarEndTimeElapsed整数、dsx1FarEndValidIntervals整数、dsx1FarEndCurrentESs PerfCurrentCount、dsx1FarEndCurrentSESs PerfCurrentCount、dsx1FarEndCurrentSEFSs PerfCurrentCount、dsx1FarEndCurrentUASs PerfCurrentCount、dsx1FarEndCurrentCSSs PerfCurrentCount、dsx1FarEndCurrentLESs PerfCurrentCount、dsx1FarEndCurrentPCVs PerfCurrentCount、dsx1FarEndCurrentBESs PerfCurrentCount、dsx1FarEndCurrentDMs PerfCurrentCount、dsx1FarEndInvalidIntervals整数

     dsx1FarEndCurrentIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies the DS1
                 interface to which this entry is applicable.  The
                 interface identified by a particular value of this
                 index is identical to the interface identified by
                 the same value of dsx1LineIndex."
          ::= { dsx1FarEndCurrentEntry 1 }

dsx1FarEndCurrentIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndexの同じ値によって特定されたインタフェースと同じです。」 ::= dsx1FarEndCurrentEntry1

Fowler, Ed.                 Standards Track                    [Page 44]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[44ページ]RFC

     dsx1FarEndTimeElapsed OBJECT-TYPE
          SYNTAX  INTEGER (0..899)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                      "The number of seconds that have elapsed since the
                 beginning of the far end current error-measurement
                 period.  If, for some reason, such as an
                 adjustment in the system's time-of-day clock, the
                 current interval exceeds the maximum value, the
                 agent will return the maximum value."
          ::= { dsx1FarEndCurrentEntry 2 }

dsx1FarEndTimeElapsed OBJECT-TYPE SYNTAX INTEGER(0 .899)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「遠端電流誤り測定の期間の初め以来経過している秒数。」 「現在の間隔がシステムの時刻時計での調整などの何らかの理由で最大値を超えていると、エージェントは最大値を返すでしょう。」 ::= dsx1FarEndCurrentEntry2

     dsx1FarEndValidIntervals OBJECT-TYPE
          SYNTAX  INTEGER (0..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                      "The number of previous far end intervals for
                 which data was collected.  The value will be
                 96 unless the interface was brought online within
                 the last 24 hours, in which case the value will be
                 the number of complete 15 minute far end intervals
                 since the interface has been online."
          ::= { dsx1FarEndCurrentEntry 3 }

dsx1FarEndValidIntervals OBJECT-TYPE SYNTAX INTEGER(0 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「データが集められた前の遠端間隔の数。」 「インタフェースがオンラインでここ24時間の範囲内に収められなかったなら値が96になる、その場合、インタフェースがオンラインであったので、値は遠端間隔完全な15分の数になるでしょう。」 ::= dsx1FarEndCurrentEntry3

     dsx1FarEndCurrentESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Errored Seconds."
          ::= { dsx1FarEndCurrentEntry 4 }

dsx1FarEndCurrentESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Errored Secondsの数。」 ::= dsx1FarEndCurrentEntry4

     dsx1FarEndCurrentSESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Severely Errored Seconds."

dsx1FarEndCurrentSESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Severely Errored Secondsの数。」

          ::= { dsx1FarEndCurrentEntry 5 }

::= dsx1FarEndCurrentEntry5

     dsx1FarEndCurrentSEFSs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION

dsx1FarEndCurrentSEFSs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述

Fowler, Ed.                 Standards Track                    [Page 45]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[45ページ]RFC

                 "The number of Far End Severely Errored Framing
                 Seconds."
          ::= { dsx1FarEndCurrentEntry 6 }

「Far End Severely Errored Framing Secondsの数。」 ::= dsx1FarEndCurrentEntry6

     dsx1FarEndCurrentUASs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds."
          ::= { dsx1FarEndCurrentEntry 7 }

dsx1FarEndCurrentUASs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Unavailable Secondsの数。」 ::= dsx1FarEndCurrentEntry7

     dsx1FarEndCurrentCSSs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Controlled Slip Seconds."
          ::= { dsx1FarEndCurrentEntry 8 }

dsx1FarEndCurrentCSSs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Controlled Slip Secondsの数。」 ::= dsx1FarEndCurrentEntry8

     dsx1FarEndCurrentLESs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Line Errored Seconds."
          ::= { dsx1FarEndCurrentEntry 9 }

dsx1FarEndCurrentLESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End線Errored Secondsの数。」 ::= dsx1FarEndCurrentEntry9

     dsx1FarEndCurrentPCVs OBJECT-TYPE
          SYNTAX  PerfCurrentCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Path Coding Violations."
          ::= { dsx1FarEndCurrentEntry 10 }

dsx1FarEndCurrentPCVs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Path Coding Violationsの数。」 ::= dsx1FarEndCurrentEntry10

     dsx1FarEndCurrentBESs OBJECT-TYPE
          SYNTAX PerfCurrentCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Far End Bursty Errored Seconds."
          ::= { dsx1FarEndCurrentEntry 11 }

dsx1FarEndCurrentBESs OBJECT-TYPE SYNTAX PerfCurrentCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Bursty Errored Secondsの数。」 ::= dsx1FarEndCurrentEntry11

     dsx1FarEndCurrentDMs OBJECT-TYPE
          SYNTAX PerfCurrentCount
          MAX-ACCESS read-only
          STATUS current

dsx1FarEndCurrentDMs OBJECT-TYPE SYNTAX PerfCurrentCountマックス-ACCESS書き込み禁止STATUS海流

Fowler, Ed.                 Standards Track                    [Page 46]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[46ページ]RFC

          DESCRIPTION
                 "The number of Far End Degraded Minutes."
          ::= { dsx1FarEndCurrentEntry 12 }

記述、「Far End Degraded Minutesの数。」 ::= dsx1FarEndCurrentEntry12

     dsx1FarEndInvalidIntervals OBJECT-TYPE
          SYNTAX  INTEGER (0..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of intervals in the range from 0 to
                 dsx1FarEndValidIntervals for which no data is
                 available.  This object will typically be zero
                 except in cases where the data for some intervals
                 are not available (e.g., in proxy situations)."
          ::= { dsx1FarEndCurrentEntry 13 }

dsx1FarEndInvalidIntervals OBJECT-TYPE SYNTAX INTEGER(0 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「0〜データがないのが利用可能であるdsx1FarEndValidIntervalsまでの範囲の間隔の数。」 「この物はいくつかの間隔の間のデータを得ることができない(例えば、プロキシ状況における)ケース以外の通常ゼロになるでしょう。」 ::= dsx1FarEndCurrentEntry13

     -- The DS1 Far End Interval Table
     dsx1FarEndIntervalTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1FarEndIntervalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Far End Interval Table contains various
                 statistics collected by each DS1 interface over
                 the previous 24 hours of operation.  The past 24
                 hours are broken into 96 completed 15 minute
                 intervals. Each row in this table represents one
                 such interval (identified by
                 dsx1FarEndIntervalNumber) for one specific
                 instance (identified by dsx1FarEndIntervalIndex)."
          ::= { ds1 11 }

-- アクセスしやすくないDS1 Far End Interval Table dsx1FarEndIntervalTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1FarEndIntervalEntryマックス-ACCESSのSTATUSの現在の記述、「DS1 Far End Interval TableはそれぞれのDS1インタフェースによって前の24時間の操作の上に集められた様々な統計を含んでいます」。 15分の完成した96回の間隔が過去24時間に細かく分けられます。 「このテーブルの各列は1つの特定の例(dsx1FarEndIntervalIndexによって特定される)のために、そのような間隔の1つ(dsx1FarEndIntervalNumberによって特定される)を表します。」 ::= ds1 11

     dsx1FarEndIntervalEntry OBJECT-TYPE
          SYNTAX  Dsx1FarEndIntervalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Far End Interval table."

「DS1 Far End Intervalのエントリーはテーブルの上に置く」dsx1FarEndIntervalEntry OBJECT-TYPE SYNTAX Dsx1FarEndIntervalEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。

          INDEX   { dsx1FarEndIntervalIndex,
                    dsx1FarEndIntervalNumber }
          ::= { dsx1FarEndIntervalTable 1 }

dsx1FarEndIntervalIndex、dsx1FarEndIntervalNumberに索引をつけてください:、:= dsx1FarEndIntervalTable1

     Dsx1FarEndIntervalEntry ::=
          SEQUENCE {
              dsx1FarEndIntervalIndex       InterfaceIndex,
              dsx1FarEndIntervalNumber      INTEGER,
              dsx1FarEndIntervalESs         PerfIntervalCount,

Dsx1FarEndIntervalEntry:、:= 系列、dsx1FarEndIntervalIndex InterfaceIndex、dsx1FarEndIntervalNumber整数、dsx1FarEndIntervalESs PerfIntervalCount

Fowler, Ed.                 Standards Track                    [Page 47]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[47ページ]RFC

              dsx1FarEndIntervalSESs        PerfIntervalCount,
              dsx1FarEndIntervalSEFSs       PerfIntervalCount,
              dsx1FarEndIntervalUASs        PerfIntervalCount,
              dsx1FarEndIntervalCSSs        PerfIntervalCount,
              dsx1FarEndIntervalLESs        PerfIntervalCount,
              dsx1FarEndIntervalPCVs        PerfIntervalCount,
              dsx1FarEndIntervalBESs        PerfIntervalCount,
              dsx1FarEndIntervalDMs         PerfIntervalCount,
              dsx1FarEndIntervalValidData   TruthValue
     }

dsx1FarEndIntervalSESs PerfIntervalCount、dsx1FarEndIntervalSEFSs PerfIntervalCount、dsx1FarEndIntervalUASs PerfIntervalCount、dsx1FarEndIntervalCSSs PerfIntervalCount、dsx1FarEndIntervalLESs PerfIntervalCount、dsx1FarEndIntervalPCVs PerfIntervalCount、dsx1FarEndIntervalBESs PerfIntervalCount、dsx1FarEndIntervalDMs PerfIntervalCount、dsx1FarEndIntervalValidData TruthValue

     dsx1FarEndIntervalIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies the DS1
                 interface to which this entry is applicable.  The
                 interface identified by a particular value of this
                 index is identical to the interface identified by
                 the same value of dsx1LineIndex."
          ::= { dsx1FarEndIntervalEntry 1 }

dsx1FarEndIntervalIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndexの同じ値によって特定されたインタフェースと同じです。」 ::= dsx1FarEndIntervalEntry1

     dsx1FarEndIntervalNumber OBJECT-TYPE
          SYNTAX  INTEGER (1..96)
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "A number between 1 and 96, where 1 is the most
                 recently completed 15 minute interval and 96 is
                 the 15 minutes interval completed 23 hours and 45
                 minutes prior to interval 1."
          ::= { dsx1FarEndIntervalEntry 2 }

「1が最も最近完成した15微小な間隔であり、96が15分の間隔である1〜96の数は間隔1の23時間と45分前に完成した」dsx1FarEndIntervalNumber OBJECT-TYPE SYNTAX INTEGER(1 .96)のマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 ::= dsx1FarEndIntervalEntry2

     dsx1FarEndIntervalESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Errored Seconds."
          ::= { dsx1FarEndIntervalEntry 3 }

dsx1FarEndIntervalESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Errored Secondsの数。」 ::= dsx1FarEndIntervalEntry3

     dsx1FarEndIntervalSESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Severely Errored Seconds."

dsx1FarEndIntervalSESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Severely Errored Secondsの数。」

Fowler, Ed.                 Standards Track                    [Page 48]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[48ページ]RFC

          ::= { dsx1FarEndIntervalEntry 4 }

::= dsx1FarEndIntervalEntry4

     dsx1FarEndIntervalSEFSs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Severely Errored Framing
                 Seconds."
          ::= { dsx1FarEndIntervalEntry 5 }

dsx1FarEndIntervalSEFSs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Severely Errored Framing Secondsの数。」 ::= dsx1FarEndIntervalEntry5

     dsx1FarEndIntervalUASs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds."
          ::= { dsx1FarEndIntervalEntry 6 }

dsx1FarEndIntervalUASs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Unavailable Secondsの数。」 ::= dsx1FarEndIntervalEntry6

     dsx1FarEndIntervalCSSs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Controlled Slip Seconds."
          ::= { dsx1FarEndIntervalEntry 7 }

dsx1FarEndIntervalCSSs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Controlled Slip Secondsの数。」 ::= dsx1FarEndIntervalEntry7

     dsx1FarEndIntervalLESs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Line Errored Seconds."

dsx1FarEndIntervalLESs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End線Errored Secondsの数。」

          ::= { dsx1FarEndIntervalEntry 8 }

::= dsx1FarEndIntervalEntry8

     dsx1FarEndIntervalPCVs OBJECT-TYPE
          SYNTAX  PerfIntervalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Path Coding Violations."
          ::= { dsx1FarEndIntervalEntry 9 }

dsx1FarEndIntervalPCVs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Path Coding Violationsの数。」 ::= dsx1FarEndIntervalEntry9

     dsx1FarEndIntervalBESs OBJECT-TYPE
          SYNTAX PerfIntervalCount
          MAX-ACCESS read-only
          STATUS current

dsx1FarEndIntervalBESs OBJECT-TYPE SYNTAX PerfIntervalCountマックス-ACCESS書き込み禁止STATUS海流

Fowler, Ed.                 Standards Track                    [Page 49]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[49ページ]RFC

          DESCRIPTION
                 "The number of Far End Bursty Errored Seconds."
          ::= { dsx1FarEndIntervalEntry 10 }

記述、「Far End Bursty Errored Secondsの数。」 ::= dsx1FarEndIntervalEntry10

     dsx1FarEndIntervalDMs OBJECT-TYPE
          SYNTAX PerfIntervalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Far End Degraded Minutes."
          ::= { dsx1FarEndIntervalEntry 11 }

dsx1FarEndIntervalDMs OBJECT-TYPE SYNTAX PerfIntervalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「Far End Degraded Minutesの数。」 ::= dsx1FarEndIntervalEntry11

     dsx1FarEndIntervalValidData OBJECT-TYPE
          SYNTAX TruthValue
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                      "This variable indicates if the data for this
                 interval is valid."
          ::= { dsx1FarEndIntervalEntry 12 }

「この間隔の間のデータが有効であるなら、この変数は示す」dsx1FarEndIntervalValidData OBJECT-TYPE SYNTAX TruthValueのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 ::= dsx1FarEndIntervalEntry12

     -- The DS1 Far End Total Table

-- DS1遠端合計テーブル

     dsx1FarEndTotalTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1FarEndTotalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "The DS1 Far End Total Table contains the
                 cumulative sum of the various statistics for the
                 24 hour period preceding the current interval."
          ::= { ds1 12 }

dsx1FarEndTotalTable OBJECT-TYPEのSYNTAX SEQUENCE OF Dsx1FarEndTotalEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述、「DS1 Far End Total Tableは現在の間隔に先行しながら、24時間の期間のための様々な統計の累積合計を含んでいます」。 ::= ds1 12

     dsx1FarEndTotalEntry OBJECT-TYPE
          SYNTAX  Dsx1FarEndTotalEntry
          MAX-ACCESS  not-accessible
          STATUS  current
          DESCRIPTION
                 "An entry in the DS1 Far End Total table."
          INDEX   { dsx1FarEndTotalIndex }
          ::= { dsx1FarEndTotalTable 1 }

「DS1 Far End Totalのエントリーはテーブルの上に置く」dsx1FarEndTotalEntry OBJECT-TYPE SYNTAX Dsx1FarEndTotalEntryのマックス-ACCESSのアクセスしやすくないSTATUS現在の記述。 dsx1FarEndTotalIndexに索引をつけてください:、:= dsx1FarEndTotalTable1

     Dsx1FarEndTotalEntry ::=
          SEQUENCE {
              dsx1FarEndTotalIndex          InterfaceIndex,
              dsx1FarEndTotalESs            PerfTotalCount,
              dsx1FarEndTotalSESs           PerfTotalCount,
              dsx1FarEndTotalSEFSs          PerfTotalCount,

Dsx1FarEndTotalEntry:、:= 系列、dsx1FarEndTotalIndex InterfaceIndex、dsx1FarEndTotalESs PerfTotalCount、dsx1FarEndTotalSESs PerfTotalCount、dsx1FarEndTotalSEFSs PerfTotalCount

Fowler, Ed.                 Standards Track                    [Page 50]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[50ページ]RFC

              dsx1FarEndTotalUASs           PerfTotalCount,
              dsx1FarEndTotalCSSs           PerfTotalCount,
              dsx1FarEndTotalLESs           PerfTotalCount,
              dsx1FarEndTotalPCVs           PerfTotalCount,
              dsx1FarEndTotalBESs           PerfTotalCount,
              dsx1FarEndTotalDMs            PerfTotalCount
     }

dsx1FarEndTotalUASs PerfTotalCount、dsx1FarEndTotalCSSs PerfTotalCount、dsx1FarEndTotalLESs PerfTotalCount、dsx1FarEndTotalPCVs PerfTotalCount、dsx1FarEndTotalBESs PerfTotalCount、dsx1FarEndTotalDMs PerfTotalCount

     dsx1FarEndTotalIndex OBJECT-TYPE
          SYNTAX  InterfaceIndex
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The index value which uniquely identifies the DS1
                 interface to which this entry is applicable.  The
                 interface identified by a particular value of this
                 index is identical to the interface identified by
                 the same value of dsx1LineIndex."

dsx1FarEndTotalIndex OBJECT-TYPE SYNTAX InterfaceIndexのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値。」 「このインデックスの特定の値によって特定されたインタフェースはdsx1LineIndexの同じ値によって特定されたインタフェースと同じです。」

          ::= { dsx1FarEndTotalEntry 1 }

::= dsx1FarEndTotalEntry1

     dsx1FarEndTotalESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Errored Seconds encountered
                 by a DS1 interface in the previous 24 hour
                 interval.  Invalid 15 minute intervals count as
                 0."
          ::= { dsx1FarEndTotalEntry 2 }

「Far End Errored Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry2

     dsx1FarEndTotalSESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Severely Errored Seconds
                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1FarEndTotalEntry 3 }

「Far End Severely Errored Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalSESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry3

     dsx1FarEndTotalSEFSs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION

dsx1FarEndTotalSEFSs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述

Fowler, Ed.                 Standards Track                    [Page 51]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[51ページ]RFC

                 "The number of Far End Severely Errored Framing
                 Seconds encountered by a DS1 interface in the
                 previous 24 hour interval. Invalid 15 minute
                 intervals count as 0."
          ::= { dsx1FarEndTotalEntry 4 }

「DS1によって遭遇されたFar End Severely Errored Framing Secondsの数は前の24時間の間隔で連結します。」 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry4

     dsx1FarEndTotalUASs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Unavailable Seconds encountered by
                 a DS1 interface in the previous 24 hour interval.
                 Invalid 15 minute intervals count as 0."
          ::= { dsx1FarEndTotalEntry 5 }

「Unavailable Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalUASs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry5

     dsx1FarEndTotalCSSs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Controlled Slip Seconds
                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1FarEndTotalEntry 6 }

「Far End Controlled Slip Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalCSSs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry6

     dsx1FarEndTotalLESs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Line Errored Seconds
                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1FarEndTotalEntry 7 }

「Far End線Errored Secondsの数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalLESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry7

     dsx1FarEndTotalPCVs OBJECT-TYPE
          SYNTAX  PerfTotalCount
          MAX-ACCESS  read-only
          STATUS  current
          DESCRIPTION
                 "The number of Far End Path Coding Violations
                 reported via the far end block error count
                 encountered by a DS1 interface in the previous 24
                 hour interval.  Invalid 15 minute intervals count
                 as 0."

「Far End Path Coding Violationsの数は前の24時間の間隔でDS1インタフェースで遭遇する遠端ブロック誤り件数で報告した」dsx1FarEndTotalPCVs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」

Fowler, Ed.                 Standards Track                    [Page 52]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[52ページ]RFC

          ::= { dsx1FarEndTotalEntry 8 }

::= dsx1FarEndTotalEntry8

     dsx1FarEndTotalBESs OBJECT-TYPE
          SYNTAX PerfTotalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Bursty Errored Seconds (BESs)
                 encountered by a DS1 interface in the previous 24
                 hour interval. Invalid 15 minute intervals count
                 as 0."
          ::= { dsx1FarEndTotalEntry 9 }

「Bursty Errored Seconds(BESs)の数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalBESs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry9

     dsx1FarEndTotalDMs OBJECT-TYPE
          SYNTAX PerfTotalCount
          MAX-ACCESS read-only
          STATUS current
          DESCRIPTION
                 "The number of Degraded Minutes (DMs) encountered
                 by a DS1 interface in the previous 24 hour
                 interval.  Invalid 15 minute intervals count as
                 0."
          ::= { dsx1FarEndTotalEntry 10 }

「Degraded Minutes(DMs)の数は前の24時間の間隔のDS1インタフェースのそばで遭遇した」dsx1FarEndTotalDMs OBJECT-TYPE SYNTAX PerfTotalCountのマックス-ACCESSの書き込み禁止のSTATUSの現在の記述。 「15分の無効の間隔は0にみなします。」 ::= dsx1FarEndTotalEntry10

     -- The DS1 Fractional Table
     dsx1FracTable OBJECT-TYPE
          SYNTAX  SEQUENCE OF Dsx1FracEntry
          MAX-ACCESS  not-accessible
          STATUS  deprecated
          DESCRIPTION
                 "This table is deprecated in favour of using
                 ifStackTable.

-- アクセスしやすくないDS1 Fractional Table dsx1FracTable OBJECT-TYPE SYNTAX SEQUENCE OF Dsx1FracEntryマックス-ACCESS STATUSは記述を非難しました。「ifStackTableを使用することを支持してこのテーブルは非難されます」。

                 The table was mandatory for systems dividing a DS1
                 into channels containing different data streams
                 that are of local interest.  Systems which are
                 indifferent to data content, such as CSUs, need
                 not implement it.

テーブルはDS1を地方におもしろい異なったデータ・ストリームを含むチャンネルに分割するシステムに義務的でした。 CSUsなどのデータ内容にありきたりのシステムはそれを実行する必要はありません。

                 The DS1 fractional table identifies which DS1
                 channels associated with a CSU are being used to
                 support a logical interface, i.e., an entry in the
                 interfaces table from the Internet-standard MIB.

DS1の断片的なテーブルは、CSUに関連づけられたどのDS1チャンネルが論理的なインタフェースを支持するのに使用されているかを特定して、すなわち、インタフェースのエントリーはインターネット標準MIBからのテーブルです。

                 For example, consider an application managing a
                 North American ISDN Primary Rate link whose
                 division is a 384 kbit/s H1 _B_ Channel for Video,

例えば、Videoのために、分割が384kbit/s H1_B_Channelである北米のISDN Primary Rateリンクを管理するアプリケーションを考えてください。

Fowler, Ed.                 Standards Track                    [Page 53]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[53ページ]RFC

                 a second H1 for data to a primary routing peer,
                 and 12 64 kbit/s H0 _B_ Channels. Consider that
                 some subset of the H0 channels are used for voice
                 and the remainder are available for dynamic data
                 calls.

第一のルーティング同輩、および12 64kbit/s H0_B_Channelsへのデータのための第2のH1。 H0チャンネルの何らかの部分集合が声に使用されて、残りがダイナミックなデータ呼び出しに利用可能であると考えてください。

                 We count a total of 14 interfaces multiplexed onto
                 the DS1 interface. Six DS1 channels (for the sake
                 of the example, channels 1..6) are used for Video,
                 six more (7..11 and 13) are used for data, and the
                 remaining 12 are are in channels 12 and 14..24.

私たちはDS1インタフェースに多重送信された合計14のインタフェースを数えます。 6個のDS1チャンネル(例のためにチャンネル1.6)がVideoに使用されます、そして、もう6(7 .11と13)はデータに使用されます、そして、残っている12は使用されます。チャンネル12と14には、あります。24.

                 Let us further imagine that ifIndex 2 is of type
                 DS1 and refers to the DS1 interface, and that the
                 interfaces layered onto it are numbered 3..16.

さらに、ifIndex2がタイプDS1にはあって、DS1インタフェースについて言及して、それに層にされたインタフェースが番号付の3であると想像しましょう。16.

                 We might describe the allocation of channels, in
                 the dsx1FracTable, as follows:
               dsx1FracIfIndex.2. 1 = 3  dsx1FracIfIndex.2.13 = 4
               dsx1FracIfIndex.2. 2 = 3  dsx1FracIfIndex.2.14 = 6
               dsx1FracIfIndex.2. 3 = 3  dsx1FracIfIndex.2.15 = 7
               dsx1FracIfIndex.2. 4 = 3  dsx1FracIfIndex.2.16 = 8
               dsx1FracIfIndex.2. 5 = 3  dsx1FracIfIndex.2.17 = 9
               dsx1FracIfIndex.2. 6 = 3  dsx1FracIfIndex.2.18 = 10
               dsx1FracIfIndex.2. 7 = 4  dsx1FracIfIndex.2.19 = 11
               dsx1FracIfIndex.2. 8 = 4  dsx1FracIfIndex.2.20 = 12
               dsx1FracIfIndex.2. 9 = 4  dsx1FracIfIndex.2.21 = 13
               dsx1FracIfIndex.2.10 = 4  dsx1FracIfIndex.2.22 = 14
               dsx1FracIfIndex.2.11 = 4  dsx1FracIfIndex.2.23 = 15
               dsx1FracIfIndex.2.12 = 5  dsx1FracIfIndex.2.24 = 16

私たちは以下の通りdsx1FracTableでのチャンネルの配分について説明するかもしれません: dsx1FracIfIndex.2。 1 = 3 dsx1FracIfIndex.2.13は4dsx1FracIfIndex.2と等しいです。 2 = 3 dsx1FracIfIndex.2.14は6dsx1FracIfIndex.2と等しいです。 3 = 3 dsx1FracIfIndex.2.15は7dsx1FracIfIndex.2と等しいです。 4 = 3 dsx1FracIfIndex.2.16は8dsx1FracIfIndex.2と等しいです。 5 = 3 dsx1FracIfIndex.2.17は9dsx1FracIfIndex.2と等しいです。 6 = 3 dsx1FracIfIndex.2.18は10dsx1FracIfIndex.2と等しいです。 7 = 4 dsx1FracIfIndex.2.19は11dsx1FracIfIndex.2と等しいです。 8 = 4 dsx1FracIfIndex.2.20は12dsx1FracIfIndex.2と等しいです。 9 = 4 dsx1FracIfIndex、.2、.21、=13dsx1FracIfIndex、.2、.10、=4dsx1FracIfIndex、.2、.22、=14dsx1FracIfIndex、.2、.11、=4dsx1FracIfIndex、.2、.23、=15dsx1FracIfIndex、.2、.12、=5dsx1FracIfIndex、.2、.24、=16

                 For North American (DS1) interfaces, there are 24
                 legal channels, numbered 1 through 24.

北米の(DS1)インタフェースには、1〜24に付番された24の法的手段があります。

                 For G.704 interfaces, there are 31 legal channels,
                 numbered 1 through 31.  The channels (1..31)
                 correspond directly to the equivalently numbered
                 time-slots."
          ::= { ds1 13 }

G.704インタフェースには、1〜31に付番された31の法的手段があります。 「チャンネル(1 .31)は直接同等に番号付の時間帯に文通しています。」 ::= ds1 13

     dsx1FracEntry OBJECT-TYPE
          SYNTAX  Dsx1FracEntry
          MAX-ACCESS  not-accessible
          STATUS  deprecated
          DESCRIPTION
             "An entry in the DS1 Fractional table."
         INDEX   { dsx1FracIndex, dsx1FracNumber }
         ::= { dsx1FracTable 1 }

dsx1FracEntry OBJECT-TYPE SYNTAX Dsx1FracEntryのマックス-ACCESSのアクセスしやすくないSTATUSは「DS1 Fractionalのエントリーはテーブルの上に置く」記述を非難しました。 dsx1FracIndex、dsx1FracNumberに索引をつけてください:、:= dsx1FracTable1

Fowler, Ed.                 Standards Track                    [Page 54]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[54ページ]RFC

     Dsx1FracEntry ::=
         SEQUENCE {
             dsx1FracIndex        INTEGER,
             dsx1FracNumber       INTEGER,
             dsx1FracIfIndex      INTEGER
         }

Dsx1FracEntry:、:= 系列dsx1FracIndex整数、dsx1FracNumber整数、dsx1FracIfIndex整数

     dsx1FracIndex OBJECT-TYPE
         SYNTAX  INTEGER (1..'7fffffff'h)
         MAX-ACCESS  read-only
         STATUS  deprecated
         DESCRIPTION
            "The index value which uniquely identifies  the
            DS1  interface  to which this entry is applicable
            The interface identified by a  particular
            value  of  this  index is the same interface as
            identified by the same value  an  dsx1LineIndex
            object instance."
        ::= { dsx1FracEntry 1 }

dsx1FracIndex OBJECT-TYPE SYNTAX INTEGER(1'7fffffff'h)マックス-ACCESS書き込み禁止STATUSが記述を非難した、「唯一、このエントリーが適切であるDS1インタフェースを特定するインデックス値、同じ値によるdsx1LineIndex物の例を特定するのでこのインデックスの特定の値によって特定されたインタフェースが同じインタフェースである、」、' ::= dsx1FracEntry1

     dsx1FracNumber OBJECT-TYPE
         SYNTAX  INTEGER (1..31)
         MAX-ACCESS  read-only
         STATUS  deprecated
         DESCRIPTION
            "The channel number for this entry."
        ::= { dsx1FracEntry 2 }

dsx1FracNumber OBJECT-TYPE SYNTAX INTEGER(1 .31)マックス-ACCESS書き込み禁止STATUSは記述を非難しました。「このエントリーへの論理機番。」 ::= dsx1FracEntry2

     dsx1FracIfIndex OBJECT-TYPE
         SYNTAX  INTEGER (1..'7fffffff'h)
         MAX-ACCESS  read-write
         STATUS  deprecated
         DESCRIPTION
            "An index value that uniquely identifies an
            interface.  The interface identified by a particular
            value of this index is the same  interface
            as  identified by the same value an ifIndex
            object instance. If no interface is currently using
            a channel, the value should be zero.  If a
            single interface occupies more  than  one  time
            slot,  that ifIndex value will be found in multiple
            time slots."
        ::= { dsx1FracEntry 3 }

dsx1FracIfIndex OBJECT-TYPE SYNTAX INTEGER(1'7fffffff'h)マックス-ACCESSが「唯一インタフェースを特定するインデックス値」をSTATUSの推奨しない記述に読書して書く、' 同じ値によるifIndex物の例を特定するので、このインデックスの特定の値によって特定されたインタフェースは同じインタフェースです。 どんなインタフェースも現在チャンネルを使用していないなら、値はゼロであるべきです。 「単一のインタフェースが1つ以上の時間帯を占領すると、そのifIndex値は複数の時間帯で見つけられるでしょう。」 ::= dsx1FracEntry3

      -- Ds1 TRAPS

-- Ds1罠

     ds1Traps OBJECT IDENTIFIER ::= { ds1 15 }

ds1Traps物の識別子:、:= ds1 15

Fowler, Ed.                 Standards Track                    [Page 55]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[55ページ]RFC

     dsx1LineStatusChange NOTIFICATION-TYPE
         OBJECTS { dsx1LineStatus,
                   dsx1LineStatusLastChange }
         STATUS  current
         DESCRIPTION
                 "A dsx1LineStatusChange trap is sent when the
                 value of an instance dsx1LineStatus changes. It
                 can be utilized by an NMS to trigger polls.  When
                 the line status change results from a higher level
                 line status change (i.e. ds3), then no traps for
                 the ds1 are sent."
          ::= { ds1Traps 0 1 }

dsx1LineStatusChange NOTIFICATION-TYPE OBJECTS、dsx1LineStatus、dsx1LineStatusLastChange、「dsx1LineStatusが変える例の値であるときにdsx1LineStatusChange罠を送る」STATUSの現在の記述。 NMSは、投票の引き金となるのにそれを利用できます。 「そして、より高い水準線状態からの線状態変化結果が(すなわち、ds3)を変えるとき、ds1のための罠を全く送りません。」 ::= ds1Traps0 1

     -- conformance information
     ds1Conformance OBJECT IDENTIFIER ::= { ds1 14 }

-- 順応情報ds1Conformance OBJECT IDENTIFIER:、:= ds1 14

     ds1Groups      OBJECT IDENTIFIER ::= { ds1Conformance 1 }
     ds1Compliances OBJECT IDENTIFIER ::= { ds1Conformance 2 }

ds1Groups物の識別子:、:= ds1Conformance1ds1Compliances物の識別子:、:= ds1Conformance2

     -- compliance statements

-- 承諾声明

     ds1Compliance MODULE-COMPLIANCE
         STATUS  current
         DESCRIPTION
                 "The compliance statement for T1 and E1
                 interfaces."
         MODULE  -- this module
             MANDATORY-GROUPS { ds1NearEndConfigGroup,
                                ds1NearEndStatisticsGroup }

「T1と1Eの承諾声明は連結する」ds1Compliance MODULE-COMPLIANCE STATUSの現在の記述。 MODULE--このモジュールMANDATORY-GROUPSds1NearEndConfigGroup、ds1NearEndStatisticsGroup

             GROUP       ds1FarEndGroup
             DESCRIPTION
                 "Implementation of this group is optional for all
                 systems that attach to a DS1 Interface."

GROUP ds1FarEndGroup記述、「DS1 Interfaceに付くすべてのシステムに、このグループの実現は任意です」。

             GROUP       ds1NearEndOptionalConfigGroup
             DESCRIPTION
                 "Implementation of this group is optional for all
                 systems that attach to a DS1 Interface."

GROUP ds1NearEndOptionalConfigGroup記述、「DS1 Interfaceに付くすべてのシステムに、このグループの実現は任意です」。

             GROUP       ds1DS2Group
             DESCRIPTION
                 "Implementation of this group is mandatory for all
                 systems that attach to a DS2 Interface."

GROUP ds1DS2Group記述、「このグループの実現はDS2 Interfaceに付くすべてのシステムに義務的です」。

             GROUP       ds1TransStatsGroup

グループds1TransStatsGroup

Fowler, Ed.                 Standards Track                    [Page 56]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[56ページ]RFC

             DESCRIPTION
                 "This group is the set of statistics appropriate
                 for all systems which attach to a DS1 Interface
                 running transparent or unFramed lineType."

「このグループは、DS1 Interface走行に透明な状態で付くすべてのシステムに、適切な統計のセットかunFramed lineType記述です」。

             GROUP       ds1ChanMappingGroup
             DESCRIPTION
                 "This group is the set of objects for mapping a
                 DS3 Channel (ds1ChannelNumber) to ifIndex.

GROUP ds1ChanMappingGroup記述、「このグループはDS3 Channel(ds1ChannelNumber)をifIndexに写像するための物のセットです」。

                 Implementation of this group is mandatory for
                 systems which support the channelization of DS3s
                 into DS1s."

「このグループの実現はDS3sのチャネル化をDS1s.に支持するシステムに義務的です」

             OBJECT dsx1LineType
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the line type is not
                 required."

OBJECT dsx1LineType MIN-ACCESS書き込み禁止記述、「線タイプを設定する能力は必要ではありません」。

             OBJECT dsx1LineCoding
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the line coding is not
                 required."

OBJECT dsx1LineCoding MIN-ACCESS書き込み禁止記述、「ラインコード方式を設定する能力は必要ではありません」。

             OBJECT dsx1SendCode
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the send code is not
                 required."

OBJECT dsx1SendCode MIN-ACCESS書き込み禁止記述、「セットする能力、発信、コードは必要でない、」

             OBJECT dsx1LoopbackConfig
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set loopbacks is not required."

OBJECT dsx1LoopbackConfig MIN-ACCESS書き込み禁止記述、「ループバックを設定する能力は必要ではありません」。

             OBJECT dsx1SignalMode
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the signal mode is not
                 required."

OBJECT dsx1SignalMode MIN-ACCESS書き込み禁止記述、「信号モードを設定する能力は必要ではありません」。

             OBJECT dsx1TransmitClockSource
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the transmit clock source is

OBJECT dsx1TransmitClockSource MIN-ACCESS書き込み禁止記述、「セットする能力、伝える、時計ソースがそうである、」

Fowler, Ed.                 Standards Track                    [Page 57]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[57ページ]RFC

                 not required."

「必要ではありません。」

             OBJECT dsx1Fdl
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the FDL is not required."

OBJECT dsx1Fdl MIN-ACCESS書き込み禁止記述、「FDLを設定する能力は必要ではありません」。

             OBJECT dsx1LineLength
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the line length is not
                 required."

OBJECT dsx1LineLength MIN-ACCESS書き込み禁止記述、「行長を設定する能力は必要ではありません」。

             OBJECT dsx1Channelization
             MIN-ACCESS read-only
             DESCRIPTION
                 "The ability to set the channelization is not
                 required."
         ::= { ds1Compliances 1 }

OBJECT dsx1Channelization MIN-ACCESS書き込み禁止記述、「チャネル化を設定する能力は必要ではありません」。 ::= ds1Compliances1

     ds1MibT1PriCompliance MODULE-COMPLIANCE
         STATUS current
         DESCRIPTION
                 "Compliance statement for using this MIB for ISDN
                 Primary Rate interfaces on T1 lines."
         MODULE
             MANDATORY-GROUPS { ds1NearEndConfigGroup,
                                ds1NearEndStatisticsGroup }
             OBJECT dsx1LineType
                 SYNTAX INTEGER {
                     dsx1ESF(2)   -- Intl Spec would be G704(2)
                                  -- or I.431(4)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Line type for T1 ISDN Primary Rate
                      interfaces."

「ISDN Primary RateにこのMIBを使用するための承諾声明はT1線に連結する」ds1MibT1PriCompliance MODULE-COMPLIANCE STATUSの現在の記述。 MODULE MANDATORY-GROUPS、ds1NearEndConfigGroup、ds1NearEndStatisticsGroup、OBJECT dsx1LineType SYNTAX INTEGER、Intl SpecがG704(2)であるだろうというdsx1ESF(2)かI.431(4)、MIN-ACCESS読書だけ記述は「T1 ISDN Primary Rateインタフェースへのタイプを裏打ちします」。

             OBJECT dsx1LineCoding
                 SYNTAX INTEGER {
                     dsx1B8ZS(2)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Type of Zero Code Suppression for
                      T1 ISDN Primary Rate interfaces."

OBJECT dsx1LineCoding SYNTAX INTEGER dsx1B8ZS(2)、MIN-ACCESSの読書唯一の記述「T1 ISDN Primary RateインタフェースへのタイプのZero Code Suppression。」

             OBJECT dsx1SignalMode

物のdsx1SignalMode

Fowler, Ed.                 Standards Track                    [Page 58]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[58ページ]RFC

                 SYNTAX INTEGER {
                     none(1), -- if there is no signaling channel
                     messageOriented(4)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Possible signaling modes for
                      T1 ISDN Primary Rate interfaces."

SYNTAX INTEGER、なにも、(1)、チャンネルmessageOriented(4)に合図してはいけない、「T1 ISDN Primary Rateのためにモードに合図するのが連結するのが可能な」MIN-ACCESS書き込み禁止記述。

             OBJECT dsx1TransmitClockSource
                 SYNTAX INTEGER {
                     loopTiming(1)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "The transmit clock is derived from
                      received clock on ISDN Primary Rate
                      interfaces."

OBJECT dsx1TransmitClockSource SYNTAX INTEGER loopTiming(1)、MIN-ACCESS書き込み禁止記述、「ISDN Primary Rateインタフェースで容認された時計から派生していた状態で時計を送ってください、」

             OBJECT dsx1Fdl
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Facilities Data Link usage on T1 ISDN
                      Primary Rate interfaces.
                      Note: Eventually dsx1Att-54016(4) is to be
                            used here since the line type is ESF."

「T1 ISDN Primary Rateの上の施設Data Link用法は連結する」OBJECT dsx1Fdl MIN-ACCESS書き込み禁止記述。 以下に注意してください。 「結局、dsx1Att-54016(4)は線タイプがESFであるので、ここで使用されることになっています。」

             OBJECT dsx1Channelization
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "The ability to set the channelization
                      is not required."
         ::= { ds1Compliances 2 }

OBJECT dsx1Channelization MIN-ACCESS書き込み禁止記述、「チャネル化を設定する能力は必要ではありません」。 ::= ds1Compliances2

     ds1MibE1PriCompliance MODULE-COMPLIANCE
         STATUS current
         DESCRIPTION
                 "Compliance statement for using this MIB for ISDN
                 Primary Rate interfaces on E1 lines."
         MODULE
             MANDATORY-GROUPS { ds1NearEndConfigGroup,
                                ds1NearEndStatisticsGroup }
             OBJECT dsx1LineType
                 SYNTAX INTEGER {
                     dsx1E1CRC(5)
                 }
                 MIN-ACCESS read-only

「ISDN Primary RateにこのMIBを使用するための承諾声明は1Eの線に連結する」ds1MibE1PriCompliance MODULE-COMPLIANCE STATUSの現在の記述。 MODULE MANDATORY-GROUPS、ds1NearEndConfigGroup、ds1NearEndStatisticsGroup、OBJECT dsx1LineType SYNTAX INTEGER dsx1E1CRC(5)、MIN-ACCESS書き込み禁止

Fowler, Ed.                 Standards Track                    [Page 59]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[59ページ]RFC

                 DESCRIPTION
                     "Line type for E1 ISDN Primary Rate
                      interfaces."

記述は「1EのISDN Primary Rateインタフェースへのタイプを裏打ちします」。

             OBJECT dsx1LineCoding
                 SYNTAX INTEGER {
                     dsx1HDB3(3)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Type of Zero Code Suppression for
                      E1 ISDN Primary Rate interfaces."

OBJECT dsx1LineCoding SYNTAX INTEGER dsx1HDB3(3)、MIN-ACCESSの読書唯一の記述「1EのISDN Primary RateインタフェースへのタイプのZero Code Suppression。」

             OBJECT dsx1SignalMode
                 SYNTAX INTEGER {
                     messageOriented(4)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Signaling on E1 ISDN Primary Rate interfaces
                      is always message oriented."

OBJECT dsx1SignalMode SYNTAX INTEGER messageOriented(4)、MIN-ACCESS書き込み禁止記述、「1EのISDN Primary Rateインタフェースで合図して、いつもメッセージは適応しますか?」

             OBJECT dsx1TransmitClockSource
                 SYNTAX INTEGER {
                     loopTiming(1)
                 }
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "The transmit clock is derived from received
                      clock on ISDN Primary Rate interfaces."

OBJECT dsx1TransmitClockSource SYNTAX INTEGER loopTiming(1)、MIN-ACCESS書き込み禁止記述、「ISDN Primary Rateインタフェースで容認された時計から派生していた状態で時計を送ってください、」

             OBJECT dsx1Fdl
                 MIN-ACCESS read-only
                 DESCRIPTION
                     "Facilities Data Link usage on E1 ISDN
                      Primary Rate interfaces.
                      Note: There is a 'M-Channel' in E1,
                            using National Bit Sa4 (G704,
                            Table 4a). It is used to implement
                            management features between ET
                            and NT.  This is different to
                            FDL in T1, which is used to carry
                            control signals and performance
                            data.  In E1, control and status
                            signals are carried using National
                            Bits Sa5, Sa6 and A (RAI Ind.).
                      This indicates that only the other(1) or
                      eventually the dsx1Fdl-none(8) bits should

「1EのISDN Primary Rateの上の施設Data Link用法は連結する」OBJECT dsx1Fdl MIN-ACCESS書き込み禁止記述。 以下に注意してください。 National Bit Sa4を使用して、1Eには'Mチャンネル'があります。(G704、Table 4a)。 それは、ETとNTの間の管理機能を実行するのに使用されます。 これはT1でFDLに異なっています。(T1は、制御信号と性能データを運ぶのに使用されます)。 1Eでは、コントロールとステータス信号は、National Bits Sa5、Sa6、およびA(RAIインディアナ州)を使用することで運ばれます。 これがそれを示す、他の(1)だけか結局なにもの(8)ビットがそうするべきであるdsx1Fdl

Fowler, Ed.                 Standards Track                    [Page 60]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[60ページ]RFC

                      be set in this object for E1 PRI."

「この物に1EのPRIに設定されてください。」

             OBJECT dsx1Channelization
                 MIN-ACCESS read-only
                 DESCRIPTION
                 "The ability to set the channelization is not
                 required."
         ::= { ds1Compliances 3 }

OBJECT dsx1Channelization MIN-ACCESS書き込み禁止記述、「チャネル化を設定する能力は必要ではありません」。 ::= ds1Compliances3

     ds1Ds2Compliance MODULE-COMPLIANCE
         STATUS current
         DESCRIPTION
                 "Compliance statement for using this MIB for DS2
                 interfaces."
         MODULE
             MANDATORY-GROUPS { ds1DS2Group }

「DS2にこのMIBを使用するための承諾声明は連結する」ds1Ds2Compliance MODULE-COMPLIANCE STATUSの現在の記述。 モジュールの義務的なグループds1DS2Group

             OBJECT dsx1Channelization
                 MIN-ACCESS read-only
                 DESCRIPTION
                 "The ability to set the channelization is not
                 required."
         ::= { ds1Compliances 4 }

OBJECT dsx1Channelization MIN-ACCESS書き込み禁止記述、「チャネル化を設定する能力は必要ではありません」。 ::= ds1Compliances4

     -- units of conformance

-- ユニットの順応

     ds1NearEndConfigGroup  OBJECT-GROUP
         OBJECTS { dsx1LineIndex,
                   dsx1TimeElapsed,
                   dsx1ValidIntervals,
                   dsx1LineType,
                   dsx1LineCoding,
                   dsx1SendCode,
                   dsx1CircuitIdentifier,
                   dsx1LoopbackConfig,
                   dsx1LineStatus,
                   dsx1SignalMode,
                   dsx1TransmitClockSource,
                   dsx1Fdl,
                   dsx1InvalidIntervals,
                   dsx1LineLength,
                   dsx1LoopbackStatus,
                   dsx1Ds1ChannelNumber,
                   dsx1Channelization }
         STATUS  current
         DESCRIPTION
                 "A collection of objects providing configuration

ds1NearEndConfigGroup OBJECT-GROUP OBJECTS、dsx1LineIndex、dsx1TimeElapsed、dsx1ValidIntervals、dsx1LineType、dsx1LineCoding、dsx1SendCode、dsx1CircuitIdentifier、dsx1LoopbackConfig、dsx1LineStatus、dsx1SignalMode、dsx1TransmitClockSource、dsx1Fdl、dsx1InvalidIntervals、dsx1LineLength、dsx1LoopbackStatus、dsx1Ds1ChannelNumber、dsx1Channelization、STATUSの現在の記述、「構成を提供する物の収集」

Fowler, Ed.                 Standards Track                    [Page 61]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[61ページ]RFC

                 information applicable to all DS1 interfaces."
         ::= { ds1Groups 1 }

「すべてのDS1に適切な情報は連結します。」 ::= ds1Groups1

     ds1NearEndStatisticsGroup OBJECT-GROUP
         OBJECTS { dsx1CurrentIndex,
                   dsx1CurrentESs,
                   dsx1CurrentSESs,
                   dsx1CurrentSEFSs,
                   dsx1CurrentUASs,
                   dsx1CurrentCSSs,
                   dsx1CurrentPCVs,
                   dsx1CurrentLESs,
                   dsx1CurrentBESs,
                   dsx1CurrentDMs,
                   dsx1CurrentLCVs,
                   dsx1IntervalIndex,
                   dsx1IntervalNumber,
                   dsx1IntervalESs,
                   dsx1IntervalSESs,
                   dsx1IntervalSEFSs,
                   dsx1IntervalUASs,
                   dsx1IntervalCSSs,
                   dsx1IntervalPCVs,
                   dsx1IntervalLESs,
                   dsx1IntervalBESs,
                   dsx1IntervalDMs,
                   dsx1IntervalLCVs,
                   dsx1IntervalValidData,
                   dsx1TotalIndex,
                   dsx1TotalESs,
                   dsx1TotalSESs,
                   dsx1TotalSEFSs,
                   dsx1TotalUASs,
                   dsx1TotalCSSs,
                   dsx1TotalPCVs,
                   dsx1TotalLESs,
                   dsx1TotalBESs,
                   dsx1TotalDMs,
                   dsx1TotalLCVs }
         STATUS  current
         DESCRIPTION
                 "A collection of objects providing statistics
                 information applicable to all DS1 interfaces."
         ::= { ds1Groups 2 }

ds1NearEndStatisticsGroup物群対象; { dsx1CurrentIndex、dsx1CurrentESs、dsx1CurrentSESs、dsx1CurrentSEFSs、dsx1CurrentUASs、dsx1CurrentCSSs、dsx1CurrentPCVs、dsx1CurrentLESs、dsx1CurrentBESs、dsx1CurrentDMs、dsx1CurrentLCVs、dsx1IntervalIndex、dsx1IntervalNumber、dsx1IntervalESs、dsx1IntervalSESs、dsx1IntervalSEFSs、dsx1IntervalUASs; dsx1IntervalCSSs、dsx1IntervalPCVs、dsx1IntervalLESs、dsx1IntervalBESs、dsx1IntervalDMs、dsx1IntervalLCVs、dsx1IntervalValidData、dsx1TotalIndex、dsx1TotalESs、dsx1TotalSESs、dsx1TotalSEFSs、dsx1TotalUASs、dsx1TotalCSSs、dsx1TotalPCVs、dsx1TotalLESs、dsx1TotalBESs、dsx1TotalDMs、dsx1TotalLCVs; } 「物がすべてのDS1に適切な統計情報を提供する収集は連結する」STATUSの現在の記述。 ::= ds1Groups2

     ds1FarEndGroup  OBJECT-GROUP
         OBJECTS { dsx1FarEndCurrentIndex,
                   dsx1FarEndTimeElapsed,

ds1FarEndGroup物群対象、dsx1FarEndCurrentIndex、dsx1FarEndTimeElapsed

Fowler, Ed.                 Standards Track                    [Page 62]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[62ページ]RFC

                   dsx1FarEndValidIntervals,
                   dsx1FarEndCurrentESs,
                   dsx1FarEndCurrentSESs,
                   dsx1FarEndCurrentSEFSs,
                   dsx1FarEndCurrentUASs,
                   dsx1FarEndCurrentCSSs,
                   dsx1FarEndCurrentLESs,
                   dsx1FarEndCurrentPCVs,
                   dsx1FarEndCurrentBESs,
                   dsx1FarEndCurrentDMs,
                   dsx1FarEndInvalidIntervals,
                   dsx1FarEndIntervalIndex,
                   dsx1FarEndIntervalNumber,
                   dsx1FarEndIntervalESs,
                   dsx1FarEndIntervalSESs,
                   dsx1FarEndIntervalSEFSs,
                   dsx1FarEndIntervalUASs,
                   dsx1FarEndIntervalCSSs,
                   dsx1FarEndIntervalLESs,
                   dsx1FarEndIntervalPCVs,
                   dsx1FarEndIntervalBESs,
                   dsx1FarEndIntervalDMs,
                   dsx1FarEndIntervalValidData,
                   dsx1FarEndTotalIndex,
                   dsx1FarEndTotalESs,
                   dsx1FarEndTotalSESs,
                   dsx1FarEndTotalSEFSs,
                   dsx1FarEndTotalUASs,
                   dsx1FarEndTotalCSSs,
                   dsx1FarEndTotalLESs,
                   dsx1FarEndTotalPCVs,
                   dsx1FarEndTotalBESs,
                   dsx1FarEndTotalDMs }
         STATUS  current
         DESCRIPTION
                 "A collection of objects providing remote
                 configuration and statistics information."
         ::= { ds1Groups 3 }

dsx1FarEndValidIntervals、dsx1FarEndCurrentESs、dsx1FarEndCurrentSESs、dsx1FarEndCurrentSEFSs、dsx1FarEndCurrentUASs、dsx1FarEndCurrentCSSs、dsx1FarEndCurrentLESs、dsx1FarEndCurrentPCVs、dsx1FarEndCurrentBESs、dsx1FarEndCurrentDMs、dsx1FarEndInvalidIntervals、dsx1FarEndIntervalIndex、dsx1FarEndIntervalNumber、dsx1FarEndIntervalESs、dsx1FarEndIntervalSESs、dsx1FarEndIntervalSEFSs; dsx1FarEndIntervalUASs、dsx1FarEndIntervalCSSs、dsx1FarEndIntervalLESs、dsx1FarEndIntervalPCVs、dsx1FarEndIntervalBESs、dsx1FarEndIntervalDMs、dsx1FarEndIntervalValidData、dsx1FarEndTotalIndex、dsx1FarEndTotalESs、dsx1FarEndTotalSESs、dsx1FarEndTotalSEFSs、dsx1FarEndTotalUASs、dsx1FarEndTotalCSSs、dsx1FarEndTotalLESs、dsx1FarEndTotalPCVs、dsx1FarEndTotalBESs、dsx1FarEndTotalDMs STATUSの現在の記述、「リモート構成と統計情報を提供する物の収集。」 ::= ds1Groups3

     ds1DeprecatedGroup OBJECT-GROUP
         OBJECTS { dsx1IfIndex,
                   dsx1FracIndex,
                   dsx1FracNumber,
                   dsx1FracIfIndex }
         STATUS  deprecated
         DESCRIPTION
                 "A collection of obsolete objects that may be
                 implemented for backwards compatibility."

STATUSは記述を非難しました。ds1DeprecatedGroup OBJECT-GROUP OBJECTS、dsx1IfIndex、dsx1FracIndex、dsx1FracNumber、dsx1FracIfIndex、「遅れている互換性のために実行されるかもしれない時代遅れの物の収集。」

Fowler, Ed.                 Standards Track                    [Page 63]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[63ページ]RFC

         ::= { ds1Groups 4 }

::= ds1Groups4

     ds1NearEndOptionalConfigGroup OBJECT-GROUP
         OBJECTS { dsx1LineStatusLastChange,
                   dsx1LineStatusChangeTrapEnable }

ds1NearEndOptionalConfigGroup物群対象dsx1LineStatusLastChange、dsx1LineStatusChangeTrapEnable

         STATUS    current
         DESCRIPTION
                 "A collection of objects that may be implemented
                 on DS1 and DS2 interfaces."
         ::= { ds1Groups 5 }

「DS1で実行されるかもしれない物とDS2の収集は連結する」STATUSの現在の記述。 ::= ds1Groups5

     ds1DS2Group OBJECT-GROUP
         OBJECTS { dsx1LineIndex,
                   dsx1LineType,
                   dsx1LineCoding,
                   dsx1SendCode,
                   dsx1LineStatus,
                   dsx1SignalMode,
                   dsx1TransmitClockSource,
                   dsx1Channelization }
         STATUS   current
         DESCRIPTION
                 "A collection of objects providing information
                 about DS2 (6,312 kbps) and E2 (8,448 kbps)
                 systems."
         ::= { ds1Groups 6 }

ds1DS2Group OBJECT-GROUP OBJECTS、dsx1LineIndex、dsx1LineType、dsx1LineCoding、dsx1SendCode、dsx1LineStatus、dsx1SignalMode、dsx1TransmitClockSource、dsx1Channelization、STATUSの現在の記述、「DS2(6,312キロビット毎秒)と情報のおよそ2E(8,448キロビット毎秒)のシステムを提供する物の収集」、:、:= ds1Groups6

     ds1TransStatsGroup OBJECT-GROUP
         OBJECTS { dsx1CurrentESs,
                   dsx1CurrentSESs,
                   dsx1CurrentUASs,
                   dsx1IntervalESs,
                   dsx1IntervalSESs,
                   dsx1IntervalUASs,
                   dsx1TotalESs,
                   dsx1TotalSESs,
                   dsx1TotalUASs }
         STATUS   current
         DESCRIPTION
                      "A collection of objects which are the
                 statistics which can be collected from a ds1
                 interface that is running transparent or unframed
                 lineType.  Statistics not in this list should
                 return noSuchInstance."
         ::= { ds1Groups 7 }

ds1TransStatsGroup OBJECT-GROUP OBJECTS、dsx1CurrentESs、dsx1CurrentSESs、dsx1CurrentUASs、dsx1IntervalESs、dsx1IntervalSESs、dsx1IntervalUASs、dsx1TotalESs、dsx1TotalSESs、dsx1TotalUASs、STATUSの現在の記述、「透明な状態で走っているds1インタフェースから集めることができる統計である物かunframed lineTypeの収集。」 「統計はこのリストでnoSuchInstanceを返すべきではありません。」 ::= ds1Groups7

     ds1NearEndOptionalTrapGroup NOTIFICATION-GROUP

ds1NearEndOptionalTrapGroup通知グループ

Fowler, Ed.                 Standards Track                    [Page 64]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[64ページ]RFC

         NOTIFICATIONS { dsx1LineStatusChange }
         STATUS    current
         DESCRIPTION
                 "A collection of notifications that may be
                 implemented on DS1 and DS2 interfaces."
         ::= { ds1Groups 8 }

NOTIFICATIONS dsx1LineStatusChange、「DS1で実行されるかもしれない通知とDS2の収集は連結する」STATUSの現在の記述。 ::= ds1Groups8

     ds1ChanMappingGroup OBJECT-GROUP
         OBJECTS { dsx1ChanMappedIfIndex }
         STATUS    current
         DESCRIPTION
                 "A collection of objects that give an mapping of
                 DS3 Channel (ds1ChannelNumber) to ifIndex."
         ::= { ds1Groups 9 }

ds1ChanMappingGroup OBJECT-GROUP OBJECTS dsx1ChanMappedIfIndex、STATUSの現在の記述、「DS3 Channel(ds1ChannelNumber)に関するマッピングをifIndexに与える物の収集。」 ::= ds1Groups9

     END

終わり

Fowler, Ed.                 Standards Track                    [Page 65]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[65ページ]RFC

4.  Appendix A - Use of dsx1IfIndex and dsx1LineIndex

4. 付録A--dsx1IfIndexとdsx1LineIndexの使用

   This Appendix exists to document the previous use if dsx1IfIndex and
   dsx1LineIndex and to clarify the relationship of dsx1LineIndex as
   defined in rfc1406 with the dsx1LineIndex as defined in this
   document.

このAppendixは、dsx1IfIndexとdsx1LineIndexであるなら以前の使用を記録して、dsx1LineIndexと共にrfc1406で定義されるようにdsx1LineIndexの関係をはっきりさせるために本書では定義されるように存在しています。

   The following shows the old and new definitions and the relationship:

以下は古くて新しい定義と関係を示しています:

   [New Definition]: "This object should be made equal to ifIndex.  The
   next paragraph describes its previous usage.  Making the object equal
   to ifIndex allows proper use of ifStackTable and ds0/ds0bundle mibs.

[新しい定義]: 「この物をifIndexと等しくするべきです。」 次のパラグラフは前の用法を説明します。 物をifIndexと等しくすると、ifStackTableとds0/ds0bundle mibsの適切な使用は許容されます。

   [Old Definition]: "This object is the identifier of a DS1 Interface
   on a managed device.  If there is an ifEntry that is directly
   associated with this and only this DS1 interface, it should have the
   same value as ifIndex.  Otherwise, number the dsx1LineIndices with an
   unique identifier following the rules of choosing a number that is
   greater than ifNumber and numbering the inside interfaces (e.g.,
   equipment side) with even numbers and outside interfaces (e.g,
   network side) with odd numbers."

[古い定義]: 「この物は管理された装置の上のDS1 Interfaceに関する識別子です。」 直接これに関連しているifEntryとこのDS1インタフェースしかなければ、それには、ifIndexと同じ値があるべきです。 「さもなければ、ユニークな識別子がifNumberより大きい数を選んで、内部に付番する規則に従っているdsx1LineIndicesが偶数と外部に連結する(例えば、設備側)数は(e.g、ネットワーク側)を奇数に連結します。」

   When the "Old Definition" was created, it was described this way to
   allow a manager to treat the value _as if_ it were and ifIndex, i.e.
   the value would either be:  1) an ifIndex value or 2) a value that
   was guaranteed to be different from all valid ifIndex values.

「古い定義」が作成されたとき、_まるでそれが_であってすなわち、ifIndex、値は以下の通りであるだろうかのように、それがマネージャが値を扱うのを許容するためにこのように説明されました。 1) ifIndex値か2) すべての有効なifIndex値と異なるように保証された値。

   The new definition is a subset of that definition, i.e. the value is
   always an ifIndex value.

新しい定義がその定義の部分集合である、すなわち、いつも値はifIndex値です。

   The following is Section 3.1 from rfc1406:

↓これはrfc1406からのセクション3.1です:

   Different physical configurations for the support of SNMP with DS1
   equipment exist. To accommodate these scenarios, two different
   indices for DS1 interfaces are introduced in this MIB.  These indices
   are dsx1IfIndex and dsx1LineIndex.

DS1設備によるSNMPのサポートのための異なった物理的な構成は存在しています。 これらのシナリオに対応するために、DS1インタフェースへの2つの異なったインデックスリストがこのMIBで紹介されます。 これらのインデックスリストは、dsx1IfIndexとdsx1LineIndexです。

   External interface scenario: the SNMP Agent represents all managed
   DS1 lines as external interfaces (for example, an Agent residing on
   the device supporting DS1 interfaces directly):

外部のインタフェースシナリオ: SNMPエージェントは外部のインタフェースとしてすべての管理されたDS1台詞を表します(例えば、DS1を支持しながら装置に住んでいるエージェントは直接連結します):

   For this scenario, all interfaces are assigned an integer value equal
   to ifIndex, and the following applies:

このシナリオにおいて、ifIndex、および以下と等しい値が適用する整数はすべてのインタフェースに割り当てられます:

      ifIndex=dsx1IfIndex=dsx1LineIndex for all interfaces.

すべてのためのifIndex=dsx1IfIndex=dsx1LineIndexは連結します。

Fowler, Ed.                 Standards Track                    [Page 66]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[66ページ]RFC

   The dsx1IfIndex column of the DS1 Configuration table relates each
   DS1 interface to its corresponding interface (ifIndex) in the
   Internet-standard MIB (MIB-II STD 17, RFC1213).

DS1 Configurationテーブルに関するdsx1IfIndexコラムはインターネット標準MIB(MIB-II STD17、RFC1213)で対応するインタフェース(ifIndex)にそれぞれのDS1インタフェースに関連します。

   External&Internal interface scenario: the SNMP Agents resides on an
   host external from the device supporting DS1 interfaces (e.g., a
   router). The Agent represents both the host and the DS1 device.  The
   index dsx1LineIndex is used to not only represent the DS1 interfaces
   external from the host/DS1-device combination, but also the DS1
   interfaces connecting the host and the DS1 device.  The index
   dsx1IfIndex is always equal to ifIndex.

外部とInternalインタフェースシナリオ: SNMPエージェントはDS1インタフェース(例えば、ルータ)を支持する装置からの外部のホストの上に住んでいます。 エージェントはホストとDS1装置の両方を表します。 インデックスdsx1LineIndexは、DS1ホスト/装置組み合わせによる外部のDS1インタフェースだけではなく、ホストに接するDS1インタフェースとDS1装置も表すのに使用されます。 インデックスdsx1IfIndexはいつもifIndexと等しいです。

   Example:

例:

   A shelf full of CSUs connected to a Router. An SNMP Agent residing on
   the router proxies for itself and the CSU. The router has also an
   Ethernet interface:

CSUsでいっぱいの棚はRouterに接続しました。 それ自体のためのルータプロキシとCSUに住んでいるSNMPエージェント。 また、ルータには、イーサネットインタフェースがあります:

         +-----+
   |     |     |
   |     |     |               +---------------------+
   |E    |     |  1.544  MBPS  |              Line#A | DS1 Link
   |t    |  R  |---------------+ - - - - -  - - -  - +------>
   |h    |     |               |                     |
   |e    |  O  |  1.544  MBPS  |              Line#B | DS1 Link
   |r    |     |---------------+ - - - - - - - - - - +------>
   |n    |  U  |               |  CSU Shelf          |
   |e    |     |  1.544  MBPS  |              Line#C | DS1 Link
   |t    |  T  |---------------+ - - - -- -- - - - - +------>
   |     |     |               |                     |
   |-----|  E  |  1.544  MBPS  |              Line#D | DS1 Link
   |     |     |---------------+ -  - - - -- - - - - +------>
   |     |  R  |               |_____________________|
   |     |     |
   |     +-----+

+-----+ | | | | | | +---------------------+ |E| | 1.544 MBPS| 線#A| DS1リンク|t| R|---------------+ - - - - - - - - - +------>| h| | | | |e| O| 1.544 MBPS| 線#B| DS1リンク|r| |---------------+ - - - - - - - - - - +------>| n| U| | CSU棚| |e| | 1.544 MBPS| 線#C| DS1リンク|t| T|---------------+ - - - -- -- - - - - +------>|、|、|、|、| |-----| E| 1.544 MBPS| 線#D| DS1リンク| | |---------------+ - - - - -- - - - - +------>|、| R| |_____________________| | | | | +-----+

   The assignment of the index values could for example be:

例えば、インデックス値の課題は以下の通りであるかもしれません。

           ifIndex (= dsx1IfIndex)                     dsx1LineIndex
                   1                   NA                  NA (Ethernet)
                   2      Line#A   Router Side             6
                   2      Line#A   Network Side            7
                   3      Line#B   Router Side             8
                   3      Line#B   Network Side            9
                   4      Line#C   Router Side            10

ifIndex(dsx1IfIndexと等しい)dsx1LineIndex1Na Na(イーサネット)2線#Aルータサイド6 2線#Aネットワークサイド7 3線#Bルータサイド8 3線#Bネットワークサイド9 4線#Cルータ側10

Fowler, Ed.                 Standards Track                    [Page 67]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[67ページ]RFC

                   4      Line#C   Network Side           11
                   5      Line#D   Router Side            12
                   5      Line#D   Network Side           13

4 線#Cネットワークサイド11 5線#Dルータサイド12 5線#Dネットワーク側13

   For this example, ifNumber is equal to 5.  Note the following
   description of dsx1LineIndex:  the dsx1LineIndex identifies a DS1
   Interface on a managed device.  If there is an ifEntry that is
   directly associated with this and only this DS1 interface, it should
   have the same value as ifIndex.  Otherwise, number the
   dsx1LineIndices with an unique identifier following the rules of
   choosing a number greater than ifNumber and numbering inside
   interfaces (e.g., equipment side) with even numbers and outside
   interfaces (e.g., network side) with odd numbers.

この例に関しては、ifNumberは5と等しいです。 dsx1LineIndexの以下の記述に注意してください: dsx1LineIndexは管理された装置でDS1 Interfaceを特定します。 直接これに関連しているifEntryとこのDS1インタフェースしかなければ、それには、ifIndexと同じ値があるべきです。 さもなければ、ユニークな識別子が中でifNumberと付番より大きい数を選ぶ規則に従っているdsx1LineIndicesが偶数と外部に連結する(例えば、設備側)数は(例えば、ネットワーク側)を奇数に連結します。

   If the CSU shelf is managed by itself by a local SNMP Agent, the
   situation would be:

CSU棚が地元のSNMPエージェント自身によって管理されるなら、状況は以下の通りでしょう。

           ifIndex (= dsx1IfIndex)                      dsx1LineIndex
                   1      Line#A     Network Side            1
                   2      Line#A     RouterSide              2
                   3      Line#B     Network Side            3
                   4      Line#B     RouterSide              4
                   5      Line#C     Network Side            5
                   6      Line#C     Router Side             6
                   7      Line#D     Network Side            7
                   8      Line#D     Router Side             8

ifIndex(dsx1IfIndexと等しい)dsx1LineIndex1が立ち並んでいる、#RouterSide2 3線#Bネットワークサイド3 4線#B RouterSide4 5線#、がCネットワークでつなぐネットワークサイド1 2線#は5 6線#Cルータサイド6 7線#Dネットワークサイド7 8線#Dルータ側8に面があります。

Fowler, Ed.                 Standards Track                    [Page 68]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[68ページ]RFC

5.  Appendix B - The delay approach to Unavialable Seconds.

5. 付録B--Unavialable Secondsへの遅れアプローチ。

   This procedure is illustrated below for a DS1 ESF interface.  Similar
   rules would apply for other DS1, DS2, and E1 interface variants.  The
   procedure guarantees that the statistical counters are correctly
   updated at all times, although they lag real time by 10 seconds.  At
   the end of each 15 minutes interval the current interval counts are
   transferred to the  most recent interval entry and each interval is
   shifted up by one position, with the oldest being discarded if
   necessary in order to make room.  The current interval counts then
   start over from zero.  Note, however, that the signal state
   calculation does not start afresh at each interval boundary;  rather,
   signal state information is retained across interval boundaries.

この手順は以下でDS1 ESFインタフェースに例証されます。 同様の規則は他のDS1、DS2、および1Eのインタフェース異形に申し込むでしょう。 手順は、いつも正しく統計的なカウンタをアップデートするのを保証します、10秒までにリアルタイムを遅れさせますが。 それぞれの15分の間隔の終わりに、現在の間隔カウントを最新の間隔エントリーに移します、そして、1つの位置が各間隔を移行させます、必要なら、場所を作るために捨てられる中で最も古い存在と共に。 そして、現在の間隔カウントはゼロからやり直されます。 しかしながら、信号州の計算がそれぞれの間隔境界で最初からやり直さないことに注意してください。 むしろ、信号州の情報は間隔境界の向こう側に保有されます。

+---------------------------------------------------------------------+
|               READ COUNTERS & STATUS INFO FROM HARDWARE             |
|                                                                     |
| BPV EXZ LOS FE CRC CS AIS SEF OOF LOF       RAI G1-G6 SE FE LV SL   |
+---------------------------------------------------------------------+
   |   |   |   |  |   |  |   |   |   |         |    |    |  |  |  |
   |   |   |   |  |   |  |   |   |   |         |    |    |  |  |  |
   V   V   V   V  V   V  V   V   V   V         V    V    V  V  V  V
+---------------------------------------------------------------------+
|    ACCUM ONE-SEC STATS, CHK ERR THRESHOLDS, & UPDT SIGNAL STATE     |
|                                                                     |
|  |<---------- NEAR END ----------->|    |<-------- FAR END ------>| |
|                                                                     |
|  LCV LES PCV ES CSS BES SES SEFS A/U    PCV ES CSS BES SES SEFS A/U |
+---------------------------------------------------------------------+
    |   |   |  |   |   |   |   |    |      |  |   |   |   |   |    |
    |   |   |  |   |   |   |   |    |      |  |   |   |   |   |    |
    V   V   V  V   V   V   V   V    |      V  V   V   V   V   V    |
 +------------------------------+   |    +----------------------+  |
 |         ONE-SEC DELAY        |   |    |    ONE-SEC DELAY     |  |
 |           (1 OF 10)          |   |    |      (1 OF 10)       |  |
 +------------------------------+   |    +----------------------+  |
   |   |   |  |   |   |   |   |     |      |  |   |   |   |   |    |
   /   /   /  /   /   /   /   /     /      /  /   /   /   /   /    /
   |   |   |  |   |   |   |   |     |      |  |   |   |   |   |    |
   V   V   V  V   V   V   V   V     |      V  V   V   V   V   V    |
 +------------------------------+   |    +----------------------+  |
 |         ONE-SEC DELAY        |   |    |    ONE-SEC DELAY     |  |
 |           (10 OF 10)         |   |    |      (10 OF 10)      |  |
 +------------------------------+   |    +----------------------+  |
   |   |   |  |   |   |   |   |     |      |  |   |   |   |   |    |
   V   V   V  V   V   V   V   V     V      V  V   V   V   V   V    V

+---------------------------------------------------------------------+ | インフォメーションをハードウェアからカウンタと状態に読み込んでください。| | | | BPV EXZロスFE CRC Cs AIS SEF金のLOFライG1-G6 SE FE LV SL| +---------------------------------------------------------------------+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +に対するV V V V V V V V V V V V V V V---------------------------------------------------------------------+ | アックム統計、CHKが間違える1秒の敷居、およびUPDT信号状態| | | | | <、-、-、-、-、-、-、-、-、-- ほぼ終わりで----------->| | <、-、-、-、-、-、-、-- 遠端------>|、|、|、|、| LCVレスPCV ES CSSビーSES SEFS A/U PCV ES CSSビーSES SEFS A/U| +---------------------------------------------------------------------+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | V V V V V V V V| V V V V V V| +------------------------------+ | +----------------------+ | | 1秒の遅れ| | | 1秒の遅れ| | | (10の1つ) | | | (10の1つ) | | +------------------------------+ | +----------------------+ | | | | | | | | | | | | | | | | | / / / / / / / / / / / / / / / / | | | | | | | | | | | | | | | | V V V V V V V V| V V V V V V| +------------------------------+ | +----------------------+ | | 1秒の遅れ| | | 1秒の遅れ| | | (10の10) | | | (10の10) | | +------------------------------+ | +----------------------+ | | | | | | | | | | | | | | | | | V V V V V V V V V V V V V V V V

Fowler, Ed.                 Standards Track                    [Page 69]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[69ページ]RFC

+---------------------------------------------------------------------+
|                    UPDATE STATISTICS COUNTERS                       |
|                                                                     |
|<-------------- NEAR END ----------->| |<--------- FAR END --------->|
|                                                                     |
|LCV LES PCV ES CSS BES SES SEFS UAS DM PCV ES CSS BES SES SEFS UAS DM|
+---------------------------------------------------------------------+

+---------------------------------------------------------------------+ | アップデート統計カウンタ| | | | <、-、-、-、-、-、-、-、-、-、-、-、-、-- ほぼ終わりで----------->| | <、-、-、-、-、-、-、-、-- 遠端--------->|、|、| |LCVレスPCV ES CSSビーSES SEFS UAS DM PCV ES CSSビーSES SEFS UAS DM| +---------------------------------------------------------------------+

   Note that if such a procedure is adopted there is no current interval
   data for the first ten seconds after a system comes up.
   noSuchInstance must be returned if a management station attempts to
   access the current interval counters during this time.

そのような手順がそこで取り入れられるならそれがシステムが来た10秒後に1番目のための現在の間隔データでないことに注意してください。管理局が、この間に現在の間隔カウンタにアクセスするのを試みるなら、noSuchInstanceを返さなければなりません。

   It is an implementation-specific matter whether an agent assumes that
   the initial state of the interface is available or unavailable.

エージェントが、インタフェースの初期状態が利用可能であるか、または入手できないと仮定するかどうかが、実現特有の問題です。

6.  Intellectual Property

6. 知的所有権

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

IETFはどんな知的所有権の正当性か範囲、実現に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 どちらも、それはそれを表しません。いずれもどんなそのような権利も特定するための努力にしました。 BCP-11で標準化過程の権利と規格関連のドキュメンテーションに関するIETFの手順に関する情報を見つけることができます。 権利のクレームのコピーで利用可能に作られるべきライセンスの保証、または一般的なライセンスか許可が作成者によるそのような所有権の使用に得させられた試みの結果が公表といずれにも利用可能になったか、またはIETF事務局からこの仕様のユーザを得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.

IETFはこの規格を練習するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 IETF専務に情報を記述してください。

7.  Acknowledgments

7. 承認

   This document was produced by the Trunk MIB Working Group.

このドキュメントはTrunk MIB作業部会によって製作されました。

Fowler, Ed.                 Standards Track                    [Page 70]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[70ページ]RFC

8.  References

8. 参照

   [1]  Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
        Describing SNMP Management Frameworks", RFC 2271, January 1998.

[1] ハリントンとD.とPresuhnとR.とB.Wijnen、「SNMP管理枠組みについて説明するための構造」、RFC2271、1998年1月。

   [2]  Rose, M. and K. McCloghrie, "Structure and Identification of
        Management Information for TCP/IP-based Internets", STD 16, RFC
        1155, May 1990.

[2] ローズ、M.、およびK.McCloghrie、「TCP/IPベースのインターネットのための経営情報の構造と識別」(STD16、RFC1155)は1990がそうするかもしれません。

   [3]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
        RFC 1212, March 1991.

[3] ローズとM.とK.McCloghrie、「簡潔なMIB定義」、STD16、RFC1212、1991年3月。

   [4]  Rose, M., "A Convention for Defining Traps for use with the
        SNMP", RFC 1215, March 1991.

[4] ローズ、1991年3月、M.、「SNMPとの使用のためのDefining TrapsのためのConvention」RFC1215。

   [5]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure
        of Management Information for Version 2 of the Simple Network
        Management Protocol (SNMPv2)", RFC 1902, January 1996.

[5]ケース、J.、McCloghrie、K.、ローズ、M.、およびS.Waldbusser、「簡単なネットワーク管理プロトコル(SNMPv2)のバージョン2のための経営情報の構造」、RFC1902(1996年1月)。

   [6]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual
        Conventions for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1903, January 1996.

[6]ケース、J.、McCloghrie、K.、ローズ、M.、およびS.Waldbusser、「簡単なネットワークマネージメントのバージョン2のための原文のコンベンションは(SNMPv2)について議定書の中で述べます」、RFC1903、1996年1月。

   [7]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Conformance Statements for Version 2 of the Simple Network
        Management Protocol (SNMPv2)", RFC 1904, January 1996.

[7]ケース、J.、McCloghrie、K.、ローズ、M.、およびS.Waldbusser、「簡単なネットワークマネージメントのバージョン2のための順応声明は(SNMPv2)について議定書の中で述べます」、RFC1904、1996年1月。

   [8]  Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
        Network Management Protocol", STD 15, RFC 1157, May 1990.

[8] ケース、J.、ヒョードル、M.、Schoffstall、M.、およびJ.デーヴィン(「簡単なネットワーク管理プロトコル」、STD15、RFC1157)は1990がそうするかもしれません。

   [9]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Introduction to Community-based SNMPv2", RFC 1901, January
        1996.

[9]ケース、J.、McCloghrie、K.、ローズ、M.、およびS.Waldbusser、「地域密着型のSNMPv2"への紹介、RFC1901、1996年1月。」

   [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
        Mappings for Version 2 of the Simple Network Management Protocol
        (SNMPv2)", RFC 1906, January 1996.

[10]ケース、J.、McCloghrie、K.、ローズ、M.、およびS.Waldbusser、「簡単なネットワークマネージメントのバージョン2のための輸送マッピングは(SNMPv2)について議定書の中で述べます」、RFC1906、1996年1月。

   [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
        Processing and Dispatching for the Simple Network Management
        Protocol (SNMP)", RFC 2272, January 1998.

[11]ケース、J.、ハリントンD.、Presuhn R.、およびB.Wijnen、「メッセージ処理と簡単なネットワークマネージメントのために急いでいるのは(SNMP)について議定書の中で述べます」、RFC2272、1998年1月。

   [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
        for version 3 of the Simple Network Management Protocol
        (SNMPv3)", RFC 2274, January 1998.

[12] ブルーメンソルとU.とB.Wijnen、「Simple Network Managementプロトコル(SNMPv3)のバージョン3のためのユーザベースのSecurity Model(USM)」、RFC2274、1998年1月。

Fowler, Ed.                 Standards Track                    [Page 71]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[71ページ]RFC

   [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
        Operations for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1905, January 1996.

[13] ケース、J.、McCloghrie(K.、ローズ、M.、およびS.Waldbusser)は「簡単なネットワーク管理プロトコル(SNMPv2)のバージョン2のための操作について議定書の中で述べます」、RFC1905、1996年1月。

   [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
        2273, January 1998.

[14] レビとD.とマイヤーとP.とB.スチュワート、「SNMPv3アプリケーション」、RFC2273、1998年1月。

   [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
        Control Model (VACM) for the Simple Network Management Protocol
        (SNMP)", RFC 2275, January 1998.

[15] Wijnen、B.、Presuhn、R.、およびK.McCloghrie、「簡単なネットワークマネージメントのための視点ベースのアクセス制御モデル(VACM)は(SNMP)について議定書の中で述べます」、RFC2275、1998年1月。

   [16] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
        using SMIv2", RFC 2233, November 1997.

[16] McCloghrie、K.、およびF.Kastenholz、「インタフェースは1997年11月にSMIv2"、RFC2233を使用するMIBを分類します」。

   [17] AT&T Information Systems, AT&T ESF DS1 Channel Service Unit
        User's Manual, 999-100-305, February 1988.

[17] AT&Tインフォメーション・システムズ社、AT&T ESF DS1は1988年2月にサービスユニットユーザマニュアル、999-100-305にチャネルを開設します。

   [18] AT&T Technical Reference, Requirements for Interfacing Digital
        Terminal Equipment to Services Employing the Extended Superframe
        Format, Publication 54016, May 1988.

[18] AT&Tの技術的な参照、拡張Superframe形式を使うサービスにデジタル端末装置を連結するための要件(公表54016)は1988がそうするかもしれません。

   [19] American National Standard for Telecommunications -- Carrier-to-
        Customer Installation - DS1 Metallic Interface, T1.403, February
        1989.

[19] テレコミュニケーションのための米国標準規格--キャリヤーから顧客へのインストール--DS1の金属インタフェース、T1.403、2月1989日。

   [20] CCITT Specifications Volume III, Recommendation G.703,
        Physical/Electrical Characteristics of Hierarchical Digital
        Interfaces, April 1991.

[20] CCITT仕様巻III、推薦G.703、階層的なデジタルインタフェース、1991年4月の物理的であるか電気の特性。

   [21] ITU-T G.704: Synchronous frame structures used at 1544, 6312,
        2048, 8488 and 44 736 kbit/s Hierarchical Levels, July 1995.

[21] ITU-T G.704: 同期枠組構造は1544、6312、2048、8488、および44歳のときに736kbit/s Hierarchical Levels、1995年7月を使用しました。

   [22] American National Standard for Telecommunications -- Digital
        Hierarchy -- Layer 1 In-Service Digital Transmission Performace
        Monitoring, T1.231, Sept 1993.

[22] テレコミュニケーションのための米国標準規格(デジタル階層構造)は1の稼働中のデジタルトランスミッションPerformaceモニター、T1.231、1993年9月に層にします。

   [23] CCITT Specifications Volume IV, Recommendation O.162, Equipment
        To Perform In Service Monitoring On 2048 kbit/s Signals, July
        1988.

[23] CCITT Specifications Volume IV、Recommendation O.162、Equipment To Perform In Service Monitoring On2048kbit/s Signals、1988年7月。

   [24] CCITT Specifications Volume III, Recommendation G.821, Error
        Performance Of An International Digital Connection Forming Part
        Of An Integrated Services Digital Network, July 1988.

[24] CCITT仕様巻III、推薦G.821、サービス統合ディジタル網(1988年7月)の一部を形成する国際デジタル接続に関する誤り実績。

   [25] AT&T Technical Reference, Technical Reference 62411, ACCUNET
        T1.5 Service Description And Interface Specification, December
        1990.

[25] AT&Tの技術的な参照と技術的な参照62411とACCUNET T1.5サービス記述とインターフェース仕様、1990年12月。

Fowler, Ed.                 Standards Track                    [Page 72]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[72ページ]RFC

   [26] CCITT Specifications Volume III, Recommendation G.706, Frame
        Alignment and Cyclic Redundancy Check (CRC) Procedures Relating
        to Basic Frame Structures Defined in Recommendation G.704, July
        1988.

[26] 基本枠構造に関連するCCITT仕様巻III、推薦G.706、フレーム整列、および周期冗長検査(CRC)手順が推薦でG.704(1988年7月)を定義しました。

   [27] CCITT Specifications Volume III, Recommendation G.732,
        Characteristics Of Primary PCM Multiplex Equipment Operating at
        2048 kbit/s, July 1988.

[27] CCITT Specifications Volume III、Recommendation G.732、2048kbit/s、1988年7月のCharacteristics Of Primary PCM Multiplex Equipment Operating。

   [28] Fowler, D., "Definitions of Managed Objects for the DS3/E3
        Interface Types", RFC 2496, Janaury 1999.

[28] 野鳥捕獲者、D.、「3DS3/Eのインターフェース型のための管理オブジェクトの定義」、RFC2496、Janaury1999。

   [29] Brown, T., and Tesink, K., "Definitions of Managed Objects for
        the SONET/SDH Interface Type", Work in Progress.

[29] ブラウン、T.、およびTesink、K.、「Sonet/SDHインターフェース型のための管理オブジェクトの定義」が進行中で働いています。

   [30] Fowler, D., "Definitions of Managed Objects for the Ds0 and
        DS0Bundle Interface Types", RFC 2494, January 1999.

[30] 野鳥捕獲者、D.、「Ds0とDS0Bundleインターフェース型のための管理オブジェクトの定義」、RFC2494、1999年1月。

   [31] ITU-T G.775: Loss of signal (LOS) and alarm indication signal
        (AIS) defect detection and clearance criteria, May 1995.

[31] ITU-T G.775: 信号の損失(LOS)と警報指示は1995年5月に(AIS)欠陥検出とクリアランス評価基準を示します。

   [32] ITU-T G.826: Error performance parameters and objectives for
        international, constant bit rate digital paths at or above the
        primary rate, November 1993.

[32] ITU-T G.826: 予備選挙における、または、予備選挙を超えた国際的で、一定のビット伝送速度デジタル経路への誤り性能パラメタと目的は1993年11月に評価します。

   [33] American National Standard for Telecommunications -- Digital
        Hierarchy - Electrical Interfaces, T1.102, December 1993.

[33] テレコミュニケーションのための米国標準規格--デジタル階層構造--電気インタフェース、T1.102、12月1993日。

   [34] American National Standard for Telecommunications -- Digital
        Hierarchy - Format Specifications, T1.107, August 1988.

[34] テレコミュニケーションのための米国標準規格--デジタル階層構造--書式仕様、T1.107、8月1988日。

   [35] Tesink, K., "Textual Conventions for MIB Modules Using
        Performance History Based on 15 Minute Intervals", RFC XXXX,
        January 1999.

[35]Tesink、K.、「MIBモジュールのための15分の間隔に基づくパフォーマンス歴史を使用する原文のコンベンション」、RFC XXXX、1999年1月。

9.  Security Considerations

9. セキュリティ問題

   SNMPv1 by itself is such an insecure environment.  Even if the
   network itself is secure (for example by using IPSec), even then,
   there is no control as to who on the secure network is allowed to
   access and GET (read) the objects in this MIB.

それ自体でSNMPv1はそのように不安定な環境です。 ネットワーク自体が安全であっても(例えば、IPSecを使用するのによる)、その時でさえ、アクセスとGET(読む)へのオブジェクトがこのMIBに安全なネットワークにだれに許容されているかに関してコントロールが全くありません。

   It is recommended that the implementors consider the security
   features as provided by the SNMPv3 framework.  Specifically, the use
   of the User-based Security Model RFC 2274 [12] and the View-based
   Access Control Model RFC 2275 [15] is recommended.

作成者がSNMPv3フレームワークで提供するようにセキュリティ機能を考えるのは、お勧めです。 明確に、UserベースのSecurity Model RFC2274[12]とViewベースのAccess Control Model RFC2275[15]の使用はお勧めです。

Fowler, Ed.                 Standards Track                    [Page 73]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[73ページ]RFC

   It is then a customer/user responsibility to ensure that the SNMP
   entity giving access to an instance of this MIB, is properly
   configured to give access to those objects only to those principals
   (users) that have legitimate rights to access them.

そして、それらにアクセスする正当な権利を持っているそれらの校長だけ(ユーザ)にそれらのオブジェクトへのアクセスを与えるために構成されて、それはこのMIBのインスタンスへのアクセスを与えるSNMP実体が適切にそうであることを保証する顧客/ユーザ責任です。

   Setting any of the following objects to an inappropriate value can
   cause loss of traffic.  The definition of inappropriate varies for
   each object.  In the case of dsx1LineType, for example, both ends of
   a ds1/e1 must have the same value in order for traffic to flow.  In
   the case of dsx1SendCode and dsx1LoopbackConfig, for another example,
   traffic may stop transmitting when particular loopbacks are applied.

以下のオブジェクトのどれかを不適当な値に設定するのが、トラフィックの損失をもたらすことができます。 不適当の定義は各オブジェクトのために異なります。 dsx1LineTypeの場合では、例えば、ds1/e1の両端は、トラフィックが流れるように同じ値を持たなければなりません。 dsx1SendCodeに関するケースと別の例のためのdsx1LoopbackConfigでは、トラフィックは、特定のループバックが適用されているとき、伝わるのを止めるかもしれません。

      dsx1LineType
      dsx1LineCoding
      dsx1SendCode
      dsx1LoopbackConfig
      dsx1SignalMode
      dsx1TransmitClockSource
      dsx1Fdl
      dsx1LineLength
      dsx1Channelization

dsx1LineType dsx1LineCoding dsx1SendCode dsx1LoopbackConfig dsx1SignalMode dsx1TransmitClockSource dsx1Fdl dsx1LineLength dsx1Channelization

   Setting the following object is mischevious, but not harmful to
   traffic.

以下のオブジェクトを設定するのは、mischeviousにもかかわらず、トラフィックに有害ではありません。

      dsx1CircuitIdentifier

dsx1CircuitIdentifier

   Setting the following object can cause an increase in the number of
   traps received by the network management station.

以下のオブジェクトを設定すると、ネットワークマネージメントステーションによって受け取られた罠の数の増加は引き起こされる場合があります。

      dsx1LineStatusChangeTrabEnable

dsx1LineStatusChangeTrabEnable

10.  Author's Address

10. 作者のアドレス

   David Fowler
   Newbridge Networks
   600 March Road
   Kanata, Ontario, Canada K2K 2E6

デヴィッド野鳥捕獲者ニューブリッジネットワークス600 3月の道路Kanata、オンタリオ(カナダ)K2K2E6

   Phone: (613) 599-3600, ext 6559
   EMail: davef@newbridge.com

以下に電話をしてください。 (613) 599-3600、ext6559EMail: davef@newbridge.com

Fowler, Ed.                 Standards Track                    [Page 74]

RFC 2495                   DS1/E1/DS2/E2 MIB                January 1999

野鳥捕獲者、MIB1999年1月の2 1/DS2/E2495DS1/Eのエド標準化過程[74ページ]RFC

11.  Full Copyright Statement

11. 完全な著作権宣言文

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Copyright(C)インターネット協会(1999)。 All rights reserved。

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部分配された実装を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsプロセスで定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

上に承諾された限られた許容は、永久であり、インターネット協会、後継者または案配によって取り消されないでしょう。

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Fowler, Ed.                 Standards Track                    [Page 75]

エド野鳥捕獲者、標準化過程[75ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

FLOOR関数 最大の整数値(小数点以下の切捨て)

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る