RFC2643 日本語訳

2643 Cabletron's SecureFast VLAN Operational Model. D. Ruffen, T. Len,J. Yanacek. August 1999. (Format: TXT=121786 bytes) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                          D. Ruffen
Request for Comments: 2643                                        T. Len
Category: Informational                                       J. Yanacek
                                          Cabletron Systems Incorporated
                                                             August 1999

Network Working Group D. Ruffen Request for Comments: 2643 T. Len Category: Informational J. Yanacek Cabletron Systems Incorporated August 1999

             Cabletron's SecureFast VLAN Operational Model
                              Version 1.8

Cabletron's SecureFast VLAN Operational Model Version 1.8

Status of this Memo

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

Abstract

   Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
   connection-oriented switching protocol that provides fast forwarding
   of data packets at the MAC layer.  The product uses the concept of
   virtual LANs (VLANs) to determine the validity of call connection
   requests and to scope the broadcast of certain flooded messages.

Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed connection-oriented switching protocol that provides fast forwarding of data packets at the MAC layer. The product uses the concept of virtual LANs (VLANs) to determine the validity of call connection requests and to scope the broadcast of certain flooded messages.

Table of Contents

Table of Contents

   1. Introduction.............................................  3
      1.1 Data Conventions.....................................  3
      1.2 Definitions of Commonly Used Terms...................  4
   2. SFVLAN Overview..........................................  6
      2.1 Features.............................................  7
      2.2 VLAN Principles......................................  8
          2.2.1 Default, Base and Inherited VLANs..............  8
          2.2.2 VLAN Configuration Modes.......................  8
                2.2.2.1 Endstations............................  8
                2.2.2.2 Ports..................................  9
                2.2.2.3 Order of Precedence....................  9
          2.2.3 Ports with Multiple VLAN Membership............ 10
      2.3 Tag/Length/Value Method of Addressing................ 10
      2.4 Architectural Overview............................... 11
   3. Base Services............................................ 13
   4. Call Processing.......................................... 14
      4.1 Directory Service Center............................. 14
          4.1.1 Local Add Server............................... 15

1. Introduction............................................. 3 1.1 Data Conventions..................................... 3 1.2 Definitions of Commonly Used Terms................... 4 2. SFVLAN Overview.......................................... 6 2.1 Features............................................. 7 2.2 VLAN Principles...................................... 8 2.2.1 Default, Base and Inherited VLANs.............. 8 2.2.2 VLAN Configuration Modes....................... 8 2.2.2.1 Endstations............................ 8 2.2.2.2 Ports.................................. 9 2.2.2.3 Order of Precedence.................... 9 2.2.3 Ports with Multiple VLAN Membership............ 10 2.3 Tag/Length/Value Method of Addressing................ 10 2.4 Architectural Overview............................... 11 3. Base Services............................................ 13 4. Call Processing.......................................... 14 4.1 Directory Service Center............................. 14 4.1.1 Local Add Server............................... 15

Ruffen, et al.               Informational                      [Page 1]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 1] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

          4.1.2 Inverse Resolve Server......................... 15
          4.1.3 Local Delete Server............................ 18
      4.2 Topology Service Center.............................. 18
          4.2.1 Neighbor Discovery Server...................... 18
          4.2.2 Spanning Tree Server........................... 18
                4.2.2.1 Creating and Maintaining
                                   the Spanning Tree........... 19
                4.2.2.2 Remote Blocking........................ 19
          4.2.3 Link State Server.............................. 20
      4.3 Resolve Service Center............................... 21
          4.3.1 Table Server................................... 22
          4.3.2 Local Server................................... 22
          4.3.3 Subnet Server.................................. 22
          4.3.4 Interswitch Resolve Server..................... 22
          4.3.5 Unresolvable Server............................ 23
          4.3.6 Block Server................................... 23
      4.4 Policy Service Center................................ 24
          4.4.1 Unicast Rules Server........................... 24
      4.5 Connect Service Center............................... 25
          4.5.1 Local Server................................... 25
          4.5.2 Link State Server.............................. 25
          4.5.3 Directory Server............................... 26
      4.6 Filter Service Center................................ 26
      4.7 Path Service Center.................................. 26
          4.7.1 Link State Server.............................. 26
          4.7.2 Spanning Tree Server........................... 27
      4.8 Flood Service Center................................. 27
          4.8.1 Tag-Based Flood Server......................... 27
   5. Monitoring Call Connections.............................. 27
      5.1 Definitions.......................................... 27
      5.2 Tapping a Connection................................. 28
          5.2.1 Types of Tap Connections....................... 28
          5.2.2 Locating the Probe and Establishing
                                   the Tap Connection.......... 29
          5.2.3 Status Field................................... 30
      5.3 Untapping a Connection............................... 31
   6. Interswitch Message Protocol (ISMP)...................... 32
      6.1 General Packet Structure............................. 32
          6.1.1 Frame Header................................... 32
          6.1.2 ISMP Packet Header............................. 33
                6.1.2.1 Version 2.............................. 33
                6.1.2.2 Version 3.............................. 34
          6.1.3 ISMP Message Body.............................. 35
      6.2 Interswitch BPDU Message............................. 35
      6.3 Interswitch Remote Blocking Message.................. 36
      6.4 Interswitch Resolve Message.......................... 37
          6.4.1 Prior to Version 1.8........................... 37
          6.4.2 Version 1.8.................................... 41

4.1.2 Inverse Resolve Server......................... 15 4.1.3 Local Delete Server............................ 18 4.2 Topology Service Center.............................. 18 4.2.1 Neighbor Discovery Server...................... 18 4.2.2 Spanning Tree Server........................... 18 4.2.2.1 Creating and Maintaining the Spanning Tree........... 19 4.2.2.2 Remote Blocking........................ 19 4.2.3 Link State Server.............................. 20 4.3 Resolve Service Center............................... 21 4.3.1 Table Server................................... 22 4.3.2 Local Server................................... 22 4.3.3 Subnet Server.................................. 22 4.3.4 Interswitch Resolve Server..................... 22 4.3.5 Unresolvable Server............................ 23 4.3.6 Block Server................................... 23 4.4 Policy Service Center................................ 24 4.4.1 Unicast Rules Server........................... 24 4.5 Connect Service Center............................... 25 4.5.1 Local Server................................... 25 4.5.2 Link State Server.............................. 25 4.5.3 Directory Server............................... 26 4.6 Filter Service Center................................ 26 4.7 Path Service Center.................................. 26 4.7.1 Link State Server.............................. 26 4.7.2 Spanning Tree Server........................... 27 4.8 Flood Service Center................................. 27 4.8.1 Tag-Based Flood Server......................... 27 5. Monitoring Call Connections.............................. 27 5.1 Definitions.......................................... 27 5.2 Tapping a Connection................................. 28 5.2.1 Types of Tap Connections....................... 28 5.2.2 Locating the Probe and Establishing the Tap Connection.......... 29 5.2.3 Status Field................................... 30 5.3 Untapping a Connection............................... 31 6. Interswitch Message Protocol (ISMP)...................... 32 6.1 General Packet Structure............................. 32 6.1.1 Frame Header................................... 32 6.1.2 ISMP Packet Header............................. 33 6.1.2.1 Version 2.............................. 33 6.1.2.2 Version 3.............................. 34 6.1.3 ISMP Message Body.............................. 35 6.2 Interswitch BPDU Message............................. 35 6.3 Interswitch Remote Blocking Message.................. 36 6.4 Interswitch Resolve Message.......................... 37 6.4.1 Prior to Version 1.8........................... 37 6.4.2 Version 1.8.................................... 41

Ruffen, et al.               Informational                      [Page 2]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 2] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

      6.5 Interswitch New User Message......................... 46
      6.6 Interswitch Tag-Based Flood Message.................. 49
          6.6.1 Prior to Version 1.8........................... 49
          6.6.2 Version 1.8.................................... 52
      6.7 Interswitch Tap/Untap Message........................ 55
   7. Security Considerations.................................. 58
   8. References............................................... 58
   9. Authors' Addresses....................................... 59
   10. Full Copyright Statement................................ 60

6.5 Interswitch New User Message......................... 46 6.6 Interswitch Tag-Based Flood Message.................. 49 6.6.1 Prior to Version 1.8........................... 49 6.6.2 Version 1.8.................................... 52 6.7 Interswitch Tap/Untap Message........................ 55 7. Security Considerations.................................. 58 8. References............................................... 58 9. Authors' Addresses....................................... 59 10. Full Copyright Statement................................ 60

1. Introduction

1. Introduction

   This memo is being distributed to members of the Internet community
   in order to solicit reactions to the proposals contained herein.
   While the specification discussed here may not be directly relevant
   to the research problems of the Internet, it may be of interest to
   researchers and implementers.

This memo is being distributed to members of the Internet community in order to solicit reactions to the proposals contained herein. While the specification discussed here may not be directly relevant to the research problems of the Internet, it may be of interest to researchers and implementers.

1.1 Data Conventions

1.1 Data Conventions

   The methods used in this memo to describe and picture data adhere to
   the standards of Internet Protocol documentation [RFC1700].  In
   particular:

The methods used in this memo to describe and picture data adhere to the standards of Internet Protocol documentation [RFC1700]. In particular:

      The convention in the documentation of Internet Protocols is to
      express numbers in decimal and to picture data in "big-endian"
      order.  That is, fields are described left to right, with the most
      significant octet on the left and the least significant octet on
      the right.

The convention in the documentation of Internet Protocols is to express numbers in decimal and to picture data in "big-endian" order. That is, fields are described left to right, with the most significant octet on the left and the least significant octet on the right.

      The order of transmission of the header and data described in this
      document is resolved to the octet level.  Whenever a diagram shows
      a group of octets, the order of transmission of those octets is
      the normal order in which they are read in English.

The order of transmission of the header and data described in this document is resolved to the octet level. Whenever a diagram shows a group of octets, the order of transmission of those octets is the normal order in which they are read in English.

      Whenever an octet represents a numeric quantity the left most bit
      in the diagram is the high order or most significant bit.  That
      is, the bit labeled 0 is the most significant bit.

Whenever an octet represents a numeric quantity the left most bit in the diagram is the high order or most significant bit. That is, the bit labeled 0 is the most significant bit.

Ruffen, et al.               Informational                      [Page 3]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 3] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

      Similarly, whenever a multi-octet field represents a numeric
      quantity the left most bit of the whole field is the most
      significant bit.  When a multi-octet quantity is transmitted the
      most significant octet is transmitted first.

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the whole field is the most significant bit. When a multi-octet quantity is transmitted the most significant octet is transmitted first.

1.2 Definitions of Commonly Used Terms

1.2 Definitions of Commonly Used Terms

   This section contains a collection of definitions for terms that have
   a specific meaning for the SFVLAN product and that are used
   throughout the text.

This section contains a collection of definitions for terms that have a specific meaning for the SFVLAN product and that are used throughout the text.

   Switch ID

Switch ID

      A 10-octet value that uniquely identifies an SFVLAN switch within
      the switch fabric.  The value consists of the 6-octet base MAC
      address of the switch, followed by 4 octets of zeroes.

A 10-octet value that uniquely identifies an SFVLAN switch within the switch fabric. The value consists of the 6-octet base MAC address of the switch, followed by 4 octets of zeroes.

   Network link

Network link

      The physical connection between two switches.  A network link is
      associated with a network interface (or port) of a switch.

The physical connection between two switches. A network link is associated with a network interface (or port) of a switch.

   Network port

Network port

      An interface on a switch that attaches to another switch.

An interface on a switch that attaches to another switch.

   Access port

Access port

      An interface on a switch that attaches to a user endstation.

An interface on a switch that attaches to a user endstation.

   Port ID

Port ID

      A 10-octet value that uniquely identifies an interface of a
      switch.  The value consists of the 6-octet base MAC address of the
      switch, followed by the 4-octet local port number of the
      interface.

A 10-octet value that uniquely identifies an interface of a switch. The value consists of the 6-octet base MAC address of the switch, followed by the 4-octet local port number of the interface.

   Neighboring switches

Neighboring switches

      Two switches attached to a common (network) link.

Two switches attached to a common (network) link.

   Call connection

Call connection

      A mapping of user traffic through a switch that correlates the
      source and destination address pair specified within the packet to
      an inport and outport pair on the switch.

A mapping of user traffic through a switch that correlates the source and destination address pair specified within the packet to an inport and outport pair on the switch.

Ruffen, et al.               Informational                      [Page 4]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 4] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   Call connection path

Call connection path

      A set of 0 to 7 network links over which user traffic travels
      between the source and destination endstations.  Call connection
      paths are selected from a list of alternate equal cost paths
      calculated by the VLS protocol [IDvlsp], and are chosen to load
      balance traffic across the fabric.

A set of 0 to 7 network links over which user traffic travels between the source and destination endstations. Call connection paths are selected from a list of alternate equal cost paths calculated by the VLS protocol [IDvlsp], and are chosen to load balance traffic across the fabric.

   Ingress switch

Ingress switch

      The owner switch of the source endstation of a call connection.
      That is, the source endstation is attached to one of the local
      access ports of the switch.

The owner switch of the source endstation of a call connection. That is, the source endstation is attached to one of the local access ports of the switch.

   Egress switch

Egress switch

      The owner switch of the destination endstation of a call
      connection.  That is, the destination endstation is attached to
      one of the local access ports of the switch.

The owner switch of the destination endstation of a call connection. That is, the destination endstation is attached to one of the local access ports of the switch.

   Intermediate switches

Intermediate switches

      Any switch along the call connection path on which user traffic
      enters and leaves over network links.  Note that the following
      types of connections have no intermediate switches:

Any switch along the call connection path on which user traffic enters and leaves over network links. Note that the following types of connections have no intermediate switches:

      -  Call connections between source and destination endstations
         that are attached to the same switch -- that is, the ingress
         switch is the same as the egress switch.  Note also that the
         path for this type of connection consists of 0 network links.

- Call connections between source and destination endstations that are attached to the same switch -- that is, the ingress switch is the same as the egress switch. Note also that the path for this type of connection consists of 0 network links.

      -  Call connections where the ingress and egress switches are
         physical neighbors connected by a single network link.  The
         path for this type of connection consists of a single network
         link.

- Call connections where the ingress and egress switches are physical neighbors connected by a single network link. The path for this type of connection consists of a single network link.

   InterSwitch Message protocol (ISMP)

InterSwitch Message protocol (ISMP)

      The protocol used for interswitch communication between SFVLAN
      switches.

The protocol used for interswitch communication between SFVLAN switches.

   Undirected messages

Undirected messages

      Messages that are (potentially) sent to all SFVLAN switches in the
      switch fabric -- that is, they are not directed to any particular
      switch.  ISMP messages with a message type of 5, 7 or 8 are
      undirected messages.

Messages that are (potentially) sent to all SFVLAN switches in the switch fabric -- that is, they are not directed to any particular switch. ISMP messages with a message type of 5, 7 or 8 are undirected messages.

Ruffen, et al.               Informational                      [Page 5]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 5] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   Switch flood path

Switch flood path

      The path used to send undirected messages throughout the switch
      fabric.  The switch flood path is formed using a spanning tree
      algorithm that provides a single path through the switch fabric
      that guarantees loop-free delivery to every other SFVLAN switch in
      the fabric.

The path used to send undirected messages throughout the switch fabric. The switch flood path is formed using a spanning tree algorithm that provides a single path through the switch fabric that guarantees loop-free delivery to every other SFVLAN switch in the fabric.

   Upstream Neighbor

Upstream Neighbor

      That switch attached to the inport of the switch flood path --
      that is, the switch from which undirected messages are received.
      Note that each switch receiving an undirected message has, at
      most, one upstream neighbor, and the originator of any undirected
      ISMP message has no upstream neighbors.

That switch attached to the inport of the switch flood path -- that is, the switch from which undirected messages are received. Note that each switch receiving an undirected message has, at most, one upstream neighbor, and the originator of any undirected ISMP message has no upstream neighbors.

   Downstream Neighbors

Downstream Neighbors

      Those switches attached to all outports of the switch flood path
      except the port on which the undirected message was received.
      Note that for each undirected message some number of switches have
      no downstream neighbors.

Those switches attached to all outports of the switch flood path except the port on which the undirected message was received. Note that for each undirected message some number of switches have no downstream neighbors.

   Virtual LAN (VLAN) identifier

Virtual LAN (VLAN) identifier

      A VLAN is a logical grouping of ports and endstations such that
      all ports and endstations in the VLAN appear to be on the same
      physical (or extended) LAN segment even though they may be
      geographically separated.

A VLAN is a logical grouping of ports and endstations such that all ports and endstations in the VLAN appear to be on the same physical (or extended) LAN segment even though they may be geographically separated.

      A VLAN identifier consists of a variable-length string of octets.
      The first octet in the string contains the number of octets in the
      remainder of the string -- the actual VLAN identifier value.  A
      VLAN identifier can be from 1 to 16 octets long.

A VLAN identifier consists of a variable-length string of octets. The first octet in the string contains the number of octets in the remainder of the string -- the actual VLAN identifier value. A VLAN identifier can be from 1 to 16 octets long.

   VLAN policy

VLAN policy

      Each VLAN has an assigned policy value used to determine whether a
      particular call connection can be established. SFVLAN recognizes
      two policy values:  Open and Secure.

Each VLAN has an assigned policy value used to determine whether a particular call connection can be established. SFVLAN recognizes two policy values: Open and Secure.

2. SFVLAN Overview

2. SFVLAN Overview

   Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
   connection-oriented switching protocol that provides fast forwarding
   of data packets at the MAC layer.

Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed connection-oriented switching protocol that provides fast forwarding of data packets at the MAC layer.

Ruffen, et al.               Informational                      [Page 6]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 6] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

2.1 Features

2.1 Features

   Within a connection-oriented switching network, user traffic is
   routed through the switch fabric based on the source and destination
   address (SA/DA) pair found in the arriving packet. For each SA/DA
   pair encountered by a switch, a "connection" is programmed into the
   switch hardware.  This connection maps the SA/DA pair and the port on
   which the packet was received to a specific outport over which the
   packet is to be forwarded.  Thus, once a connection has been
   established, all packets with a particular SA/DA pair arriving on a
   particular inport are automatically forwarded by the switch hardware
   out the specified outport.

Within a connection-oriented switching network, user traffic is routed through the switch fabric based on the source and destination address (SA/DA) pair found in the arriving packet. For each SA/DA pair encountered by a switch, a "connection" is programmed into the switch hardware. This connection maps the SA/DA pair and the port on which the packet was received to a specific outport over which the packet is to be forwarded. Thus, once a connection has been established, all packets with a particular SA/DA pair arriving on a particular inport are automatically forwarded by the switch hardware out the specified outport.

   A distributed switching environment requires that each switch be
   capable of processing all aspects of the call processing and
   switching functionality.  Thus, each switch must synchronize its
   various databases with all other switches in the fabric or be capable
   of querying other switches for information it does not have locally.

A distributed switching environment requires that each switch be capable of processing all aspects of the call processing and switching functionality. Thus, each switch must synchronize its various databases with all other switches in the fabric or be capable of querying other switches for information it does not have locally.

   SFVLAN accomplishes the above objectives by providing the following
   features:

SFVLAN accomplishes the above objectives by providing the following features:

   -  A virtual directory of the entire switch fabric.

- A virtual directory of the entire switch fabric.

   -  Call processing for IP, IPX and MAC protocols.

- Call processing for IP, IPX and MAC protocols.

   -  Automatic call connection, based on VLAN policy.

- Automatic call connection, based on VLAN policy.

   -  Automatic call rerouting around failed switches and links.

- Automatic call rerouting around failed switches and links.

   In addition, SFVLAN optimizes traffic flow across the switch fabric
   by providing the following features:

In addition, SFVLAN optimizes traffic flow across the switch fabric by providing the following features:

   -  Broadcast interception and address resolution at the ingress port.

- Broadcast interception and address resolution at the ingress port.

   -  Broadcast scoping, restricting the flooding of broadcast packets
      to only those ports that belong to the same VLAN as the packet
      source.

- Broadcast scoping, restricting the flooding of broadcast packets to only those ports that belong to the same VLAN as the packet source.

   -  A single loop-free path (spanning tree) used for the flooding of
      undirected interswitch control messages.  Only switches running
      the SFVLAN switching protocol are included in this spanning tree
      calculation -- that is, traditional bridges or routers configured
      for bridging are not included.

- A single loop-free path (spanning tree) used for the flooding of undirected interswitch control messages. Only switches running the SFVLAN switching protocol are included in this spanning tree calculation -- that is, traditional bridges or routers configured for bridging are not included.

   -  Interception of both service and route advertisements with
      readvertisement sourced from the MAC address of the original
      advertiser.

- Interception of both service and route advertisements with readvertisement sourced from the MAC address of the original advertiser.

Ruffen, et al.               Informational                      [Page 7]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 7] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

2.2 VLAN Principles

2.2 VLAN Principles

   Each SFVLAN switch port, along with its attached endstations, belongs
   to one or more virtual LANs (VLANs).  A VLAN is a logical grouping of
   ports and endstations such that all ports and endstations in the VLAN
   appear to be on the same physical (or extended) LAN segment even
   though they may be geographically separated.

Each SFVLAN switch port, along with its attached endstations, belongs to one or more virtual LANs (VLANs). A VLAN is a logical grouping of ports and endstations such that all ports and endstations in the VLAN appear to be on the same physical (or extended) LAN segment even though they may be geographically separated.

   VLAN assignments are used to determine the validity of call
   connection requests and to scope the broadcast of certain flooded
   messages.

VLAN assignments are used to determine the validity of call connection requests and to scope the broadcast of certain flooded messages.

2.2.1 Default, Base and Inherited VLANs

2.2.1 Default, Base and Inherited VLANs

   Each port is explicitly assigned to a default VLAN.  At start-up, the
   default VLAN to which all ports are assigned is the base VLAN -- a
   permanent, non-deletable VLAN to which all ports belong at all times.

Each port is explicitly assigned to a default VLAN. At start-up, the default VLAN to which all ports are assigned is the base VLAN -- a permanent, non-deletable VLAN to which all ports belong at all times.

   The network administrator can change the default VLAN of a port from
   the base VLAN to any other unique VLAN by using a management
   application known here as the VLAN Manager.  A port's default VLAN is
   persistent -- that is, it is preserved across a switch reset.

The network administrator can change the default VLAN of a port from the base VLAN to any other unique VLAN by using a management application known here as the VLAN Manager. A port's default VLAN is persistent -- that is, it is preserved across a switch reset.

   When an endstation attaches to a port for the first time, it inherits
   the default VLAN of the port.  Using the VLAN Manager, the network
   administrator can reassign an endstation to another VLAN.

When an endstation attaches to a port for the first time, it inherits the default VLAN of the port. Using the VLAN Manager, the network administrator can reassign an endstation to another VLAN.

      Note:

Note:

         When all ports and all endstations belong to the base VLAN, the
         switch fabric behaves like an 802.1D bridging system.

When all ports and all endstations belong to the base VLAN, the switch fabric behaves like an 802.1D bridging system.

2.2.2 VLAN Configuration Modes

2.2.2 VLAN Configuration Modes

   For both ports and endstations, there are a variety of VLAN
   configuration types, or modes.

For both ports and endstations, there are a variety of VLAN configuration types, or modes.

2.2.2.1 Endstations

2.2.2.1 Endstations

   For endstations, there are two VLAN configuration modes: inherited
   and static.

For endstations, there are two VLAN configuration modes: inherited and static.

   -  Inherited

- Inherited

      An inherited endstation becomes a member of its port's default
      VLAN.

An inherited endstation becomes a member of its port's default VLAN.

Ruffen, et al.               Informational                      [Page 8]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 8] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   -  Static

- Static

      A static port becomes a member of the VLAN to which it has been
      assigned by the VLAN Manager.

A static port becomes a member of the VLAN to which it has been assigned by the VLAN Manager.

   The default configuration mode for an endstation is inherited.

The default configuration mode for an endstation is inherited.

2.2.2.2 Ports

2.2.2.2 Ports

   For ports, there are two VLAN configuration modes:  normal and
   locked.

For ports, there are two VLAN configuration modes: normal and locked.

   -  Normal

- Normal

      All inherited endstations on a normal port become members of the
      port's default VLAN.  All static endstations are members of the
      VLAN to which they were mapped by the VLAN Manager.

All inherited endstations on a normal port become members of the port's default VLAN. All static endstations are members of the VLAN to which they were mapped by the VLAN Manager.

      If the VLAN Manager reassigns the default VLAN of a normal port,
      the VLAN(s) for the attached endstations may or may not change,
      depending on the VLAN configuration mode of each endstation.  All
      inherited endstations will become members of the new default VLAN.
      All others will retain membership in their previously mapped
      VLANs.

If the VLAN Manager reassigns the default VLAN of a normal port, the VLAN(s) for the attached endstations may or may not change, depending on the VLAN configuration mode of each endstation. All inherited endstations will become members of the new default VLAN. All others will retain membership in their previously mapped VLANs.

   -  Locked

- Locked

      All endstations attached to a locked port can be members only of
      the port's default VLAN.

All endstations attached to a locked port can be members only of the port's default VLAN.

      If the VLAN Manager reconfigures a normal port to be a locked
      port, all endstations attached to the port become members of the
      port's default VLAN, regardless of any previous VLAN membership.

If the VLAN Manager reconfigures a normal port to be a locked port, all endstations attached to the port become members of the port's default VLAN, regardless of any previous VLAN membership.

   The default configuration mode for ports is normal.

The default configuration mode for ports is normal.

2.2.2.3 Order of Precedence

2.2.2.3 Order of Precedence

   On a normal port, static VLAN membership prevails over inherited
   membership.

On a normal port, static VLAN membership prevails over inherited membership.

   On a locked port, default VLAN membership prevails over any static
   VLAN membership.

On a locked port, default VLAN membership prevails over any static VLAN membership.

   If a statically assigned endstation moves from a locked port back to
   a normal port, the endstation's static VLAN membership must be
   preserved.

If a statically assigned endstation moves from a locked port back to a normal port, the endstation's static VLAN membership must be preserved.

Ruffen, et al.               Informational                      [Page 9]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 9] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

2.2.3 Ports with Multiple VLAN Membership

2.2.3 Ports with Multiple VLAN Membership

   A port can belong to multiple VLANs, based on the VLAN membership of
   its attached endstations.

A port can belong to multiple VLANs, based on the VLAN membership of its attached endstations.

   For example, consider a port with three endstations, a default VLAN
   of "blue" and the following endstation VLAN assignments:

For example, consider a port with three endstations, a default VLAN of "blue" and the following endstation VLAN assignments:

   -  One of the endstations is statically assigned to VLAN "red."
   -  Another endstation is statically assigned to VLAN "green."
   -  The third endstation inherits the default VLAN of "blue."

- One of the endstations is statically assigned to VLAN "red." - Another endstation is statically assigned to VLAN "green." - The third endstation inherits the default VLAN of "blue."

   In this instance, the port is explicitly a member of VLAN "blue." But
   note that it is also implicitly a member of VLAN "red" and VLAN
   "green."  Any tag-based flooding (Section 4.8) directed to any one of
   the three VLANs ("red," "green," or "blue") will be forwarded out the
   port.

In this instance, the port is explicitly a member of VLAN "blue." But note that it is also implicitly a member of VLAN "red" and VLAN "green." Any tag-based flooding (Section 4.8) directed to any one of the three VLANs ("red," "green," or "blue") will be forwarded out the port.

2.3 Tag/Length/Value Method of Addressing

2.3 Tag/Length/Value Method of Addressing

   Within most computer networks, the concept of "address" is somewhat
   elusive because different protocols can (and do) use different
   addressing schemes and formats.  For example, Ethernet (physical
   layer) addresses are six octets long, while IP (network layer)
   addresses are only four octets long.

Within most computer networks, the concept of "address" is somewhat elusive because different protocols can (and do) use different addressing schemes and formats. For example, Ethernet (physical layer) addresses are six octets long, while IP (network layer) addresses are only four octets long.

   To distinguish between the various protocol-specific forms of
   addressing, many software modules within the SFVLAN product specify
   addresses in a format known as Tag/Length/Value (TLV). This format
   uses a variable-length construct as shown below:

To distinguish between the various protocol-specific forms of addressing, many software modules within the SFVLAN product specify addresses in a format known as Tag/Length/Value (TLV). This format uses a variable-length construct as shown below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Tag                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Value length  |                                               |
   +-+-+-+-+-+-+-+-+                                               +
   |                          Address value                        |
   :                                                               :
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tag | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value length | | +-+-+-+-+-+-+-+-+ + | Address value | : : | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Tag

Tag

      This 4-octet field specifies the type of address contained in the
      structure.  The following address types are currently supported:

This 4-octet field specifies the type of address contained in the structure. The following address types are currently supported:

Ruffen, et al.               Informational                     [Page 10]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 10] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

         Tag name        Value    Address type

Tag name Value Address type

         aoMacDx         1        DX ethernet dst/src/type
         aoIpxSap        2        Sap
         aoIpxRIP        3        RIP
         aoInstYP        4        YP (YP name and version)
         aoInstUDP       5        UDP (Port #)
         aoIpxIpx        6        Ipx
         aoInetIP        7        IP (Net address)
         aoInetRPC       8        RPC (Program #)
         aoInetRIP       9        INET RIP
         aoMacDXMcast    10       Multicast unknown type
         aoAtDDP         11       AppleTalk DDP
         aoEmpty         12       (no address type specified)
         aoVlan          13       VLAN identifier
         aoHostName      14       Host name
         aoNetBiosName   15       NetBIOS name
         aoNBT           16       NetBIOS on TCP name
         aoInetIPMask    17       IP Subnet Mask
         aoIpxSap8022    18       Sap 8022 type service
         aoIpxSapSnap    19       Sap Snap type service
         aoIpxSapEnet    20       Sap Enet type service
         aoDHCPXID       21       DHCP Transaction ID
         aoIpMcastRx     22       IP class D receiver
         aoIpMcastTx     23       IP class D sender
         aoIpxRip8022    24       Ipx Rip 8022 type service
         aoIpxRipSnap    25       Ipx Rip type service
         aoIpxRipEnet    26       Ipx Rip Enet service
         aoATM           27       ATM
         aoATMELAN       28       ATM LAN Emulation Name

aoMacDx 1 DX ethernet dst/src/type aoIpxSap 2 Sap aoIpxRIP 3 RIP aoInstYP 4 YP (YP name and version) aoInstUDP 5 UDP (Port #) aoIpxIpx 6 Ipx aoInetIP 7 IP (Net address) aoInetRPC 8 RPC (Program #) aoInetRIP 9 INET RIP aoMacDXMcast 10 Multicast unknown type aoAtDDP 11 AppleTalk DDP aoEmpty 12 (no address type specified) aoVlan 13 VLAN identifier aoHostName 14 Host name aoNetBiosName 15 NetBIOS name aoNBT 16 NetBIOS on TCP name aoInetIPMask 17 IP Subnet Mask aoIpxSap8022 18 Sap 8022 type service aoIpxSapSnap 19 Sap Snap type service aoIpxSapEnet 20 Sap Enet type service aoDHCPXID 21 DHCP Transaction ID aoIpMcastRx 22 IP class D receiver aoIpMcastTx 23 IP class D sender aoIpxRip8022 24 Ipx Rip 8022 type service aoIpxRipSnap 25 Ipx Rip type service aoIpxRipEnet 26 Ipx Rip Enet service aoATM 27 ATM aoATMELAN 28 ATM LAN Emulation Name

   Value length

Value length

      This 1-octet field contains the length of the value of the
      address.  The value here depends on the address type and actual
      value.

This 1-octet field contains the length of the value of the address. The value here depends on the address type and actual value.

   Address value

Address value

      This variable-length field contains the value of the address. The
      length of this field is stored in the Value length field.

This variable-length field contains the value of the address. The length of this field is stored in the Value length field.

2.4 Architectural Overview

2.4 Architectural Overview

   The SFVLAN software executes in the switch CPU and consists of the
   following elements as shown in Figure 1:

The SFVLAN software executes in the switch CPU and consists of the following elements as shown in Figure 1:

Ruffen, et al.               Informational                     [Page 11]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 11] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   -  The SFVLAN base services that handles traffic intercepted by the
      switch hardware.  The base services are described in Section 3.

- The SFVLAN base services that handles traffic intercepted by the switch hardware. The base services are described in Section 3.

   +------------------------------------------------------+
   |                                              +-----+ |
   |                         +------------+       |  I  | |
   |                         |  CALL TAP  <--(8)-->  N  | |
   |                         +------------+       |  T  | |
   |                                              |  E  | |
   |      +-----------+      +------------+       |  R  | |
   |      |   PATH    |      |  TOPOLOGY  |       |  S  | |
   |      |           |      |            |       |  W  | |
   |      | Lnk state <------>  Lnk state <--(3)-->  I  | | Flood path
   |      |           |      |            |       |  T  <----(5,7,8)-->
   |      | Span tree <------>  Span tree <--(4)-->  C  | |
   |      +--^--------+      |            |       |  H  | |
   |         |               |  Discovery <--(2)-->     | |
   |         |               +------------+       |  M  | |
   |         |                                    |  E  | |
   |  +------^--+            +--------+           |  S  | |
   |  | CONNECT >---------+--> FILTER |           |  S  | |
   |  +--^------+         |  +--------+           |  A  | |  specific
   |     |                |                       |  G  | | netwrk lnks
   |     |       +--------^-+     +-------+       |  E  <----(2,3,4)-->
   |     +-------<  POLICY  |     | FLOOD >--(7)-->     | |
   |             +------^---+     +-^-----+       |  P  | |
   |                    |           |             |  R  | |
   | +-----------+    +-^-----------V-+           |  O  | |
   | | DIRECTORY <---->    RESOLVE    <------(5)-->  T  | |
   | +-----^-----+    +---^-----------+           |  O  | |
   |       |              |                       |  C  | |
   |       |    +---------^-----------+           |  O  | |
   |       +----<    Base Services    |           |  L  | |
   |            +-----^---------------+           +-----+ |
   +------------------|-----------------------------------+
    Switch CPU        |
                      | Host control port
                +-----O----------------+
                |     ^ no cnx         |
      Layer 2   |     |                |
     ---------->O-----+--------------->O----------->
      SA/DA pr  |          known cnx   |
                +----------------------+
                 Switch hardware

+------------------------------------------------------+ | +-----+ | | +------------+ | I| | | | 蛇口<((8))を>Nと呼んでください。| | | +------------+ | T| | | | E| | | +-----------+ +------------+ | R| | | | 経路| | トポロジー| | S| | | | | | | | W| | | | Lnk州の<。------>Lnk州の<--(3)-->I| | 洪水経路| | | | | | T<。----(5,7,8)-->|、| 長さ木の<。------>長さ木の<--(4)-->C| | | +--^--------+ | | | H| | | | | 発見<--(2)-->。| | | | +------------+ | M| | | | | E| | | +------^--+ +--------+ | S| | | | >を接続してください。---------+-->フィルタ| | S| | | +--^------+ | +--------+ | A| | 特定| | | | G| | netwrk lnks| | +--------^-+ +-------+ | E<。----(2,3,4)-->| +-------<方針| | 洪水>--(7)-->。| | | +------^---+ +-^-----+ | P| | | | | | R| | | +-----------+ +-^-----------V-+| O| | | | ディレクトリ<。---->決心<。------(5)-->T| | | +-----^-----+ +---^-----------+ | O| | | | | | C| | | | +---------^-----------+ | O| | | +----<基地のサービス| | L| | | +-----^---------------+ +-----+ | +------------------|-----------------------------------+ スイッチCPU| | ホスト制御ポート+-----O----------------+ | ^cnxがありません。| 層2| | | ---------->O-----+--------------->O----------->SA/DA pr| 知られているcnx| +----------------------+ スイッチハードウェア

                   Figure 1:  SFVLAN Architectural Overview

図1: SFVLANの建築概要

Ruffen, et al.               Informational                     [Page 12]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[12ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   -  Eight call processing service centers that provide the essential
      services required to process call connections.  The call
      processing service centers are described in Section 4.

- 処理するのに必要である重要負荷を提供する8つの呼び出し整理業務センターが、接続に電話をします。 呼び出し整理業務センターはセクション4で説明されます。

   -  A Call Tap module that supports the monitoring of call
      connections.  The Call Tap module is described in Section 5.

- 呼び出し接続のモニターをサポートするCall Tapモジュール。 Call Tapモジュールはセクション5で説明されます。

   -  The InterSwitch Message Protocol (ISMP) that provides a consistent
      method of encapsulating and transmitting control messages
      exchanged between SFVLAN switches.  (Note that ISMP is not a
      discrete software module.  Instead, its functionality is
      distributed among those service centers and software modules that
      need to communicate with other switches in the fabric.) The
      Interswitch Message Protocol and the formats of the individual
      interswitch messages are described in Section 6.

- 要約する一貫したメソッドを提供するInterSwitch Messageプロトコル(ISMP)と伝えるのはSFVLANスイッチの間で交換されたメッセージを制御します。 (ISMPが離散的なソフトウェア・モジュールでないことに注意してください。 代わりに、機能性は骨組みで他のスイッチとコミュニケートする必要があるそれらのサービスセンターとソフトウェア・モジュールの中で分配されます。) 個々のinterswitchメッセージのInterswitch Messageプロトコルと形式はセクション6で説明されます。

3. Base Services

3. 基地のサービス

   The SFVLAN base services act as the interface between the switch
   hardware and the SFVLAN service centers running on the switch CPU.
   This relationship is shown in Figure 2.  This figure is a replication
   of the bottom portion of Figure 1.

スイッチハードウェアとSFVLANサービスとのインタフェースがスイッチCPUの上の稼働を中心に置くとき、SFVLANベースサービスは行動します。 この関係は図2に示されます。 この図は図1の下部一部の模写です。

            |    Directory       Resolve                   |
            |        ^              ^                      |
            |        |              |                      |
            |        |    +---------^-----------+          |
            |        +----<    Base Services    |          |
            |             +-----^---------------+          |
            +-------------------|--------------------------+
             Switch CPU         |
                                | Host control port
                          +-----O----------------+
                          |     ^ no cnx         |
                Layer 2   |     |                |
               ---------->O-----+--------------->O----------->
                SA/DA pr  |          known cnx   |
                          +----------------------+
                           Switch hardware

| ディレクトリ決心| | ^ ^ | | | | | | | +---------^-----------+ | | +----<基地のサービス| | | +-----^---------------+ | +-------------------|--------------------------+ スイッチCPU| | ホスト制御ポート+-----O----------------+ | ^cnxがありません。| 層2| | | ---------->O-----+--------------->O----------->SA/DA pr| 知られているcnx| +----------------------+ スイッチハードウェア

                        Figure 2:  Base Services

図2: 基地のサービス

Ruffen, et al.               Informational                     [Page 13]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[13ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   During normal operation of the switch, data packets arriving at
   any one of the local switch ports are examined in the switch
   hardware.  If the packet's source and destination address (SA/DA)
   pair match a known connection, the hardware simply forwards the
   packet out the outport specified by the connection.

スイッチの通常の操作の間、地方のスイッチポートのいずれにも到着するデータ・パケットはスイッチハードウェアで調べられます。 パケットのソースと送付先アドレス(SA/DA)組が知られている接続に合っているなら、ハードウェアは接続によって指定された外港からパケットを単に進めます。

   If the SA/DA pair do not match any known connection, the hardware
   diverts the packet to the host control port where it is picked up
   by the SFVLAN base services.  The base services generate a
   structure known as a state box that tracks the progress of the
   call connection request as the request moves through the call
   processing service centers.

SA/DA組が少しの知られている接続にも合っていないなら、ハードウェアはそれがSFVLANベースサービスで拾われるホスト制御ポートにパケットを逸らします。 ベースサービスは要求が呼び出し整理業務センターを通して移行するとき呼び出し接続要求の進歩を追跡する州の箱として知られている構造を生成します。

   After creating the call's state box, the base services check to
   determine if the call is a duplicate of a call already being
   processed.  If not, a request is issued to the Directory Service
   Center (Section 4.1) to add the call's source address to the local
   Node and Alias Tables.  The base services then hand the call off to
   the Resolve Service Center (Section 4.3) for further processing.

呼び出しの州の箱を作成した後に、ベースサービスは、呼び出しが既に処理される呼び出しの写しであるかどうか決定するためにチェックします。 そうでなければ、要求は、地方のNodeとアリアTablesに呼び出しのソースアドレスを加えるためにディレクトリサービスセンター(セクション4.1)に出されます。 そして、ベースサービスはさらなる処理のためにResolve Serviceセンター(セクション4.3)に呼び出しを渡します。

4. Call Processing

4. 処理に電話をしてください。

   Call connection processing is handled by a set of eight service
   centers, each with one or more servers.  The servers within a
   service center are called in a particular sequence.  Each server
   records the results of its processing in the call connection
   request state box and passes the state box to the next server in
   the sequence.

呼び出し接続処理は8つのサービスセンターと、それぞれ1つ以上のサーバでセットによって扱われます。 サービスセンターの中のサーバは特定の系列で呼ばれます。 各サーバは、呼び出し接続要求州の箱の中の処理の結果を記録して、系列の次のサーバに州の箱を渡します。

   In the sections that follow, servers are listed in the order in
   which they are called.

従うセクションで、サーバは指名順に記載されています。

4.1 Directory Service Center

4.1 ディレクトリサービスセンター

   The Directory Service Center is responsible for cataloging the MAC
   addresses and alias information for both local and remote
   endstations.  The information is stored in two tables -- the Node
   Table and the Alias Table.

ディレクトリサービスセンターは地方のものと同様にリモートなendstationsのためのMACアドレスと別名情報をカタログに載せるのに責任があります。 情報は2個のテーブルに保存されます--Node TableとアリアTable。

   -  The Node Table contains the MAC addresses of endstations
      attached to the local switch.  It also contains a cache of
      remote endstations detected by the Resolve Service Center
      (Section 4.3).   Every entry in the Node Table has one or more
      corresponding entries in the Alias Table.

- Node Tableは地方のスイッチに取り付けられたendstationsのMACアドレスを含んでいます。 また、それはResolve Serviceセンター(セクション4.3)によって検出されたリモートendstationsのキャッシュを含んでいます。 Node TableのあらゆるエントリーがアリアTableに1つ以上の対応するエントリーを持っています。

Ruffen, et al.               Informational                     [Page 14]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[14ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   -  The Alias Table contains protocol alias information for each
      endstation.  An endstation alias can be a network address (such
      as an IP or IPX address), a VLAN identifier, or any other
      protocol identifier.  Since every endstation is a member of at
      least one VLAN (the default VLAN for the port), there is always
      at least one entry in the Alias Table for each entry in the
      Node Table.

- アリアTableは各endstationのためのプロトコル別名情報を含んでいます。 endstation別名は、ネットワーク・アドレス(IPかIPXアドレスなどの)、VLAN識別子、またはいかなる他のプロトコル識別子であるかもしれません。 あらゆるendstationが少なくとも1VLAN(ポートへのデフォルトVLAN)のメンバーであるので、少なくとも1つのエントリーがNode Tableの各エントリーへのアリアTableにいつもあります。

      Note:

以下に注意してください。

         The Node and Alias Tables must remain synchronized.
         That is, when an endstation's final alias is removed
         from the Alias Table, the endstation entry is removed
         from the Node Table.

NodeとアリアTablesは連動したままで残らなければなりません。 すなわち、アリアTableからendstationの最終的な別名を取り除くとき、Node Tableからendstationエントリーを取り除きます。

   Note that the total collection of all Node Tables and Alias Tables
   across all switches is known as the "virtual" directory of the
   switch fabric.  The virtual directory contains address mappings of
   all known endstations in the fabric.

すべてのスイッチの向こう側のすべてのNode TablesとアリアTablesの総収集がスイッチ骨組みの「仮想」のディレクトリとして知られていることに注意してください。 仮想ディレクトリは骨組みにすべての知られているendstationsに関するアドレス・マッピングを含んでいます。

4.1.1 Local Add Server

4.1.1 ローカルはサーバを加えます。

   The Directory Local Add server adds entries to the local Node or
   Alias Tables.  It is called by the base services (Section 3) to
   add a local endstation and by the Interswitch Resolve (Section
   4.3.4) server to add an endstation discovered on a remote switch.

ディレクトリLocal Addサーバは地方のNodeかアリアTablesにエントリーを加えます。 それは地方のendstationを加えるベースサービス(セクション3)とInterswitch Resolve(セクション4.3.4)サーバによって呼ばれて、リモート・スイッチの上で発見されたendstationを加えます。

4.1.2 Inverse Resolve Server

4.1.2 逆さの決心サーバ

   The Directory Inverse Resolve server is invoked when a new
   endstation has been discovered on the local switch (that is, when
   the Local Add server was successful in adding the endstation).
   The server provides two functions:

新しいendstationが地方のスイッチの上に発見されたとき(すなわち、Local Addサーバはいつendstationを加えるのに成功していましたか)、ディレクトリInverse Resolveサーバは呼び出されます。 サーバは2つの機能を提供します:

   -  It populates the Node and Alias Tables with local entries
      during switch initialization.

- それはスイッチ初期化の間、地方のエントリーがあるNodeとアリアTablesに居住します。

   -  It processes a new endstation discovered after the fabric
      topology has converged to a stable state.

- それは骨組みのトポロジーが安定状態に一点に集まった後に発見された新しいendstationを処理します。

   In both instances, the processing is identical.

両方のインスタンスでは、処理は同じです。

Ruffen, et al.               Informational                     [Page 15]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[15ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   When a new endstation is detected on one of the switch's local
   ports, the Inverse Resolve server sends an Interswitch New User
   request message (Section 6.5) over the switch flood path to all
   other switches in the fabric.  The purpose of the Interswitch New
   User request is two-fold:

新しいendstationがスイッチの地方のポートの1つに検出されるとき、Inverse Resolveサーバは骨組みの他のすべてのスイッチへのスイッチ洪水経路の上にInterswitch New User要求メッセージ(セクション6.5)を送ります。 Interswitch New User要求の目的は二面です:

   -  It informs the other switches of the new endstation address.
      Any entries for that endstation in the local databases of other
      switches should be dealt with appropriately.

- それは新しいendstationアドレスの他のスイッチを知らせます。 他のスイッチのローカルのデータベースのそのendstationのためのどんなエントリーも適切に対処されるべきです。

   -  It requests information about any static VLAN(s) to which the
      endstation has been assigned.

- それはendstationが割り当てられたどんな静的なVLAN(s)の情報も要求します。

   When a switch receives an Interswitch New User request message
   from one of its upstream neighbors, it first forwards the message
   to all its downstream neighbors.  No actual processing or VLAN
   resolution is attempted until the message reaches the end of the
   switch flood path and begins its trip back along the return path.
   This ensures that all switches in the fabric receive notification
   of the new user and have synchronized their databases.

スイッチが上流の隣人のひとりからInterswitch New User要求メッセージを受け取るとき、それは最初に、すべての川下の隣人にメッセージを転送します。 メッセージがスイッチ洪水経路の端に達して、リターンパスに沿って旅行を始めるまで、実際の処理かどんなVLAN解決も試みられません。 これは、骨組みのすべてのスイッチが新しいユーザの通知を受け取って、それらのデータベースを同期させたのを確実にします。

   If a switch receives an Interswitch New User request message but
   has no downstream neighbors, it does the following:

スイッチでは、Interswitch New User要求メッセージを受け取りますが、どんな川下の隣人もいないなら、以下をします:

   -  If the endstation was previously connected to one of the
      switch's local ports, the switch formulates an Interswitch New
      User Response message by loading the VLAN identifier(s) of the
      static VLAN(s) to which the endstation was assigned, along with
      its own MAC address.  (VLAN identifiers are stored in
      Tag/Length/Value (TLV) format.  See Section 2.3.)  The switch
      then sets the message status field to NewUserAck, and returns
      the message to its upstream (requesting) neighbor.

- endstationが以前にスイッチの地方のポートの1つに接続されたなら、スイッチはendstationが割り当てられた静的なVLAN(s)に関するVLAN識別子をロードすることによって、Interswitch New User Responseメッセージを定式化します、それ自身のMACアドレスと共に。 (VLAN識別子はTag/長さ/値(TLV)の形式で保存されます。 セクション2.3を見てください。) スイッチは、次に、メッセージ状態分野をNewUserAckに設定して、(要求します)上流の隣人にメッセージを返します。

      Otherwise, the switch sets the status field to NewUserUnknown
      and returns the message to its upstream neighbor.

さもなければ、スイッチは、状態分野をNewUserUnknownに設定して、上流の隣人にメッセージを返します。

   -  The switch then deletes the endstation from its local database,
      as well as any entries associated with the endstation in its
      connection table.

- 次に、スイッチはローカルのデータベースからendstationを削除します、接続テーブルのendstationに関連しているどんなエントリーと同様に。

   When a switch forwards an Interswitch New User request message to
   its downstream neighbors, it keeps track of the number of requests
   it has sent out and does not respond back to its upstream neighbor
   until all requests have been responded to.

スイッチがInterswitch New User要求メッセージを川下の隣人に転送するとき、それは、それが出した要求の数の動向をおさえて、要求が反応したすべてまで上流の隣人に応じて戻りません。

Ruffen, et al.               Informational                     [Page 16]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[16ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   -  As each response is received, the switch checks the status
      field of the message.  If the status is NewUserAck, the switch
      retains the information in that response.  When all requests
      have been responded to, the switch returns the NewUserAck
      response to its upstream neighbor.

- それぞれの応答が受け取られているので、スイッチはメッセージの状態分野をチェックします。 状態がNewUserAckであるなら、スイッチはその応答における情報を保有します。 すべての要求に応じたとき、スイッチは上流の隣人へのNewUserAck応答を返します。

   -  If all the Interswitch New User Request messages have been
      responded to with a status of NewUserUnknown, the switch checks
      to see if the endstation was previously connected to one of its
      local ports.  If so, the switch formulates an Interswitch New
      User Response message by loading the VLAN identifier(s) of the
      static VLAN(s) to which the endstation was assigned, along with
      its own MAC address.  The switch then sets the message status
      field to NewUserAck, and returns the message to its upstream
      (requesting) neighbor.

- NewUserUnknownの状態ですべてのInterswitch New User Requestメッセージに応じたなら、スイッチは、endstationが以前に地方のポートの1つに接続されたかどうか確認するためにチェックします。 そうだとすれば、スイッチはendstationが割り当てられた静的なVLAN(s)に関するVLAN識別子をロードすることによって、Interswitch New User Responseメッセージを定式化します、それ自身のMACアドレスと共に。 スイッチは、次に、メッセージ状態分野をNewUserAckに設定して、(要求します)上流の隣人にメッセージを返します。

      Otherwise, the switch sets the status field to NewUserUnknown
      and returns the message to its upstream neighbor.

さもなければ、スイッチは、状態分野をNewUserUnknownに設定して、上流の隣人にメッセージを返します。

   -  The switch then deletes the endstation from its local database,
      as well as any entries associated with the endstation in its
      connection table.

- 次に、スイッチはローカルのデータベースからendstationを削除します、接続テーブルのendstationに関連しているどんなエントリーと同様に。

   When the originating switch has received responses to all the
   Interswitch New User Request messages it has sent, it does the
   following:

起因するスイッチがそれが送ったすべてのInterswitch New User Requestメッセージへの応答を受けたとき、以下をします:

   -  If it has received a response message with a status of
      NewUserAck, it loads the new VLAN information into its local
      database.

- NewUserAckの状態で応答メッセージを受けたなら、それは新しいVLAN情報をローカルのデータベースにロードします。

   -  If all responses have been received with a status of
      NewUserUnknown, the originating switch assumes that the
      endstation was not previously connected anywhere in the network
      and assigns it to a VLAN according to the VLAN membership rules
      and order of precedence.

- NewUserUnknownの状態ですべての応答を受けたなら、起因するスイッチは、endstationが以前に、ネットワークで何処にも接続されないで、先行のVLAN会員資格規則と秩序によると、それをVLANに割り当てると仮定します。

   If any Interswitch New User Request message has not been responded
   to within a certain predetermined time (currently 5 seconds), the
   originating switch recalculates the switch flood path and resends
   the Interswitch New User Request message.

何かInterswitch New User Requestメッセージが、ある予定された時間(現在の5秒)、起因しているスイッチrecalculatesの中でスイッチ洪水経路に反応していなくて、Interswitch New User Requestメッセージを再送するなら。

Ruffen, et al.               Informational                     [Page 17]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[17ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

4.1.3 Local Delete Server

4.1.3 ローカルはサーバを削除します。

   The Directory Local Delete server removes entries (both local and
   remote) from the local Node and Alias Tables.  It is invoked when
   an endstation, previously known to be attached to one switch, has
   been moved and discovered on another switch.

ディレクトリLocal Deleteサーバは地方のNodeとアリアTablesからエントリー(地方のものと同様にリモートな)を取り除きます。 以前に1個のスイッチに取り付けられるのが知られていたendstationが別のスイッチの上に動かされて、発見されたとき、それは呼び出されます。

   Note also that remote entries are cached and are purged from the
   tables on a first-in/first-out basis as space is needed in the
   cache.

また、遠く離れたエントリーはキャッシュされて、スペースがキャッシュで必要であるようにテーブルを外で中の第1/最初のベースから追放されることに注意してください。

4.2 Topology Service Center

4.2 トポロジーのサービスセンター

   The Topology Service Center is responsible for maintaining three
   databases relating to the topology of the switch fabric:

Topology Serviceセンターはスイッチ骨組みのトポロジーに関連する3つのデータベースを維持するのに責任があります:

   -  The topology table of SFVLAN switches that are physical
      neighbors to the local switch.

- 地方のスイッチへの物理的な隣接物であるSFVLANスイッチのトポロジーテーブル。

   -  The spanning tree that defines the loop-free switch flood path
      used for transmitting undirected interswitch messages.

- 無輪のスイッチ洪水経路を定義するスパニングツリーは、undirected interswitchを伝えるのにメッセージを使用しました。

   -  The directed graph that is used to calculate the best path(s)
      for call connections.

- 呼び出し接続に、最も良い経路について計算するのに使用される有向グラフ。

4.2.1 Neighbor Discovery Server

4.2.1 隣人発見サーバ

   The Topology Neighbor Discovery server uses Interswitch Keepalive
   messages to detect the switch's neighbors and establish the
   topology of the switching fabric.  Interswitch Keepalive messages
   are exchanged in accordance with Cabletron's VlanHello protocol,
   described in detail in [IDhello].

Topology Neighborディスカバリーサーバはスイッチの隣人を検出して、切り換え骨組みのトポロジーを確立するInterswitch Keepaliveメッセージを使用します。 [IDhello]で詳細に説明されたCabletronのVlanHelloプロトコルに応じて、Interswitch Keepaliveメッセージを交換します。

4.2.2 Spanning Tree Server

4.2.2 スパニングツリーサーバ

   The Topology Spanning Tree server is invoked by the Topology
   Neighbor Discovery server when a neighboring SFVLAN switch is
   either discovered or lost -- that is, when the operational status
   of a network link changes.

すなわち、ネットワークリンクの操作上の状態が変化するとき、隣接しているSFVLANスイッチが発見されるか、またはなくされているとき、Topology Spanning TreeサーバはTopology Neighborディスカバリーサーバによって呼び出されます。

   The Spanning Tree server exchanges interswitch messages with
   neighboring SFVLAN switches to calculate the switch flood path
   over which undirected interswitch messages are sent.  There are
   two parts to this process:

Spanning Treeサーバは、undirected interswitchメッセージが送られるスイッチ洪水経路について計算するために隣接しているSFVLANスイッチとinterswitchメッセージを交換します。 このプロセスへの2つの部品があります:

   -  Creating and maintaining the spanning tree
   -  Remote blocking

- スパニングツリーを作成して、維持します--リモートブロッキング

Ruffen, et al.               Informational                     [Page 18]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[18ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

4.2.2.1 Creating and Maintaining the Spanning Tree

4.2.2.1 スパニングツリーを作成して、維持すること。

   In a network with redundant network links, a packet traveling between
   switches can potentially be caught in an infinite loop -- an
   intolerable situation in a networking environment.  However, it is
   possible to reduce a network topology to a single configuration
   (known as a spanning tree) such that there is, at most, one path
   between any two switches.

余分なネットワークリンクがあるネットワークでは、無限ループで潜在的にスイッチの間を移動するパケットは捕らえることができます--ネットワーク環境における堪え難い状況。 しかしながら、ただ一つの構成(スパニングツリーとして、知られている)にネットワーク形態を減少させるのが可能であるので、どんな2個のスイッチの間にはも、1つの経路が高々あります。

   Within the SFVLAN product, the spanning tree is created and
   maintained using the Spanning Tree Algorithm defined by the IEEE
   802.1d standard.

SFVLAN製品の中では、スパニングツリーは、IEEE 802.1d規格によって定義されたSpanning Tree Algorithmを使用することで作成されて、維持されます。

      Note:

以下に注意してください。

         A detailed discussion of this algorithm is beyond the scope of
         this document.  See [IEEE] for more information.

このアルゴリズムの詳細な論議はこのドキュメントの範囲を超えています。 詳しい情報に関して[IEEE]を見てください。

   To implement the Spanning Tree Algorithm, SFVLAN switches exchange
   Interswitch BPDU messages (Section 6.2) containing encapsulated
   IEEE-compliant 802.2 Bridge Protocol Data Units (BPDUs).  There are
   two types of BPDUs:

Spanning Tree Algorithmを実装するために、802.2カプセル化されたIEEE対応することのBridgeプロトコルData Units(BPDUs)を含んでいて、SFVLANは交換Interswitch BPDUメッセージ(セクション6.2)を切り換えます。 BPDUsの2つのタイプがあります:

   -  Configuration (CFG) BPDUs are exchanged during the switch
      discovery process, following the receipt of an Interswitch
      Keepalive message.  They are used to create the initial the
      spanning tree.

- Interswitch Keepaliveメッセージの領収書に従って、スイッチ発見プロセスの間、構成(CFG)BPDUsを交換します。 それらは、わたるのが木に追い上げるイニシャルを作成するのに使用されます。

   -  Topology Change Notification (TCN) BPDUs are exchanged when
      changes in the network topology are detected.  They are used to
      redefine the spanning tree to reflect the current topology.

- ネットワーク形態における変化を検出するとき、トポロジーChange Notification(TCN)BPDUsを交換します。 それらは、現在のトポロジーを反映するためにスパニングツリーを再定義するのに使用されます。

   See [IEEE] for detailed descriptions of these BPDUs.

これらのBPDUsの詳述に関して[IEEE]を見てください。

4.2.2.2 Remote Blocking

4.2.2.2 リモートブロッキング

   After the spanning tree has been computed, each network port on an
   SFVLAN switch will be in one of two states:

SFVLANスイッチの上のそれぞれのネットワークポートは2つの州の1つでスパニングツリーが計算された後になるでしょう:

   -  Forwarding.  A port in the Forwarding state will be used to
      transmit all ISMP messages.

- 推進。 Forwarding状態のポートは、すべてのISMPメッセージを送るのに使用されるでしょう。

Ruffen, et al.               Informational                     [Page 19]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[19ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   -  Blocking.  A port in the Blocking state will not be used to
      forward undirected ISMP messages.  Blocking the rebroadcast of
      these messages on selected ports prevents message duplication
      arising from multiple paths that exist in the network topology.
      Note that all other types of ISMP message will be transmitted.

- 妨げます。 Blocking状態のポートは、メッセージをundirected ISMPに転送するのに使用されないでしょう。 ブロッキング、再放送、選択されるのに関するこれらのメッセージでは、ポートは、メッセージ複製がネットワーク形態に存在する複数の経路から起こるのを防ぎます。 他のすべてのタイプに関するISMPメッセージが送られることに注意してください。

      Note:

以下に注意してください。

         The IEEE 802.1d standard specifies other port states used
         during the initial creation of the spanning tree. These states
         are not relevant to the discussion here.

IEEE 802.1d規格はスパニングツリーの初期の作成の間に使用される他のポート州を指定します。 これらの州はここでの議論に関連していません。

   Note that although a port in the Blocking state will not forward
   undirected ISMP messages, it may still receive them.  Any such
   message received will ultimately be discarded, but at the cost of CPU
   time necessary to process the packet.

Blocking状態のポートがメッセージをundirected ISMPに転送しませんが、まだそれらを受けているかもしれないことに注意してください。 結局、捨てられますが、パケットを処理するのに必要なCPU時間の費用にはそのようなメッセージが受けたいずれもあるでしょう。

   To prevent the transmission of undirected messages to a port, the
   port's owner switch can set remote blocking on the link by sending an
   Interswitch Remote Blocking message (Section 6.3) out over the port.
   This notifies the switch on the other end of the link that undirected
   messages should not be sent over the link, regardless of the state of
   the sending port.

非指示されたメッセージの伝達をポートに防ぐために、ポートの所有者スイッチはリンクの上にInterswitch Remote Blockingメッセージ(セクション6.3)をポートの上の外に送ることによって、リモートブロッキングを設定できます。 これは、リンクのもう一方の端で非指示されたメッセージがリンクの上に送られるべきでないようにスイッチに通知します、送付ポートの状態にかかわらず。

   Each SFVLAN switch sends an Interswitch Remote Blocking message out
   over all its blocked network ports every 5 seconds.  A flag within
   the message indicates whether remote blocking should be turned on or
   off over the link.

それぞれのSFVLANスイッチは5秒毎にすべての妨げられたネットワークポートにわたってInterswitch Remote Blockingメッセージを出します。 メッセージの中の旗は、リモートブロッキングがリンクの上につけたり消したりされるべきであるかどうかを示します。

4.2.3 Link State Server

4.2.3 リンク州のサーバ

   The Topology Link State server is invoked by any process that detects
   a change in the state of the network links of the local switch.
   These changes include (but are not limited to) changes in operational
   or administrative status of the link, path "cost" or bandwidth.

Topology Link州サーバは地方のスイッチのネットワークリンクの状態の変化を検出するどんなプロセスによっても呼び出されます。 しかし、これらの変化が含んでいる、(制限されない、)、リンク、経路「費用」または帯域幅の操作上の、または、管理の状態の変化。

   The Link State server runs Cabletron's Virtual LAN Link State (VLS)
   protocol which exchanges interswitch messages with neighboring SFVLAN
   switches to calculate the set of best paths between the local switch
   and all other switches in the fabric. (The VLS protocol is described
   in detail in [IDvlsp].)

Link州サーバは骨組みで地方のスイッチと他のすべてのスイッチの間の最も良い経路のセットについて計算するために隣接しているSFVLANスイッチとinterswitchメッセージを交換するCabletronのバーチャルLAN Link州(VLS)プロトコルを実行します。 (VLSプロトコルは[IDvlsp]で詳細に説明されます。)

   The Link State server also notifies the Connect Service Center
   (Section 4.5) of any remote links that have failed, thereby
   necessitating potential tear-down of current connections.

また、Link州サーバは失敗したどんなリモートリンクについてもConnect Serviceセンター(セクション4.5)に通知します、その結果、現在の接続の潜在的分解を必要とします。

Ruffen, et al.               Informational                     [Page 20]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[20ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

4.3 Resolve Service Center

4.3 決心サービスセンター

   The Resolve Service Center is responsible for resolving the
   destination address of broadcast data packets (such as an IP ARP
   packet) to a unicast MAC address to be used in mapping the call
   connection.  To do this, the Resolve Service Center attempts to
   resolve such broadcast packets directly at the access port of the
   ingress switch.

Resolve Serviceセンターは呼び出し接続を写像する際に使用されるために放送データ・パケット(IP ARPパケットなどの)の送付先アドレスをユニキャストMACアドレスに決議するのに責任があります。 これをするために、Resolve Serviceセンターは、直接イングレススイッチのアクセスポートでそのような放送パケットを分解するのを試みます。

   Address resolution is accomplished as follows:

アドレス解決は以下の通り実行されます:

   1) First, an attempt is made to resolve the address from the switch's
      local databases by calling the following servers:

1) まず最初に、以下のサーバを呼ぶことによってスイッチのローカルのデータベースからのアドレスを決議するのを試みをします:

      -  The Table server attempts to resolve the address from the
         Resolve Table (Section 4.3.1).

- Tableサーバは、Resolve Table(セクション4.3.1)からのアドレスを決議するのを試みます。

      -  Next, the Local server attempts to resolve the address from the
         Node and Alias Tables (Section 4.3.2).

- 次に、Localサーバは、NodeとアリアTables(セクション4.3.2)からのアドレスを決議するのを試みます。

      -  If the address is not found in these tables but is an IP
         address, the Resolve Subnet server (Section 4.3.3) is also
         called.

- また、アドレスがこれらのテーブルで見つけられませんが、IPアドレスであるなら、Resolve Subnetサーバ(セクション4.3.3)は呼ばれます。

   2) If the address cannot be resolved locally, the Interswitch Resolve
      server (Section 4.3.4) is called to access the "virtual directory"
      by sending an Interswitch Resolve request message out over the
      switch flood path.

2) 局所的にアドレスを決議できないなら、Interswitch Resolveサーバ(セクション4.3.4)は、スイッチ洪水経路の上にInterswitch Resolve要求メッセージを出すことによって「仮想ディレクトリ」にアクセスするために呼ばれます。

   3) If the address cannot be resolved either locally or via an
      Interswitch Resolve message -- that is, the destination endstation
      is unknown to any switch, perhaps because it has never transmitted
      a packet to its switch -- the following steps are taken:

3) 局所的かInterswitch Resolveメッセージでアドレスを決議できないなら(どんなスイッチにおいても、すなわち、目的地endstationは未知です、恐らくパケットをスイッチに一度も伝えたことがないので)、以下の方法を取ります:

      -  The Unresolvable server (Section 4.3.5) is called to record the
         unresolved packet.

- Unresolvableサーバ(セクション4.3.5)は、未定のパケットを記録するために呼ばれます。

      -  The Block server (Section 4.3.6) is called to determine whether
         the address should be added to the Block Table.

- Blockサーバ(セクション4.3.6)は、アドレスがBlock Tableに加えられるべきであるかどうか決定するために呼ばれます。

      -  The Flood Service Center (Section 4.8) is called to broadcast
         the packet to other SFVLAN switches using a tag-based flooding
         mechanism.

- Flood Serviceセンター(セクション4.8)は、タグベースの氾濫メカニズムを使用することで他のSFVLANスイッチにパケットを放送するために召集されます。

Ruffen, et al.               Informational                     [Page 21]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[21ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

4.3.1 Table Server

4.3.1 テーブルサーバ

   The Resolve Table server maintains the Resolve Table which contains a
   collection of addresses that might not be resolvable in the normal
   fashion.  This table typically contains such things as the addresses
   of "quiet" devices that do not send data packets or special mappings
   of IP addresses behind a router.  Entries can be added to or deleted
   from the Resolve Table via an external management application.

Resolve Tableサーバは正常なファッションで溶解性でないかもしれないアドレスの収集を含むResolve Tableを維持します。 このテーブルはデータ・パケットを送らない「静かな」デバイスのアドレスかIPの特別なマッピングがルータの後ろで扱うようなものを通常含んでいます。 エントリーは、アプリケーションを加えるか、または外部の管理を通したResolve Tableから削除できます。

4.3.2 Local Server

4.3.2 ローカルサーバ

   The Resolve Local server checks the Node and Alias Tables maintained
   by the Directory Service Center (Section 4.1) to determine if it can
   resolve the address.

Resolve Localサーバはそれがアドレスを決議できるかどうか決定するためにディレクトリサービスセンター(セクション4.1)によって維持されたNodeとアリアTablesをチェックします。

4.3.3 Subnet Server

4.3.3 サブネットサーバ

   If the address to be resolved is an IP address but cannot be resolved
   via the standard processing described above, the Resolve Subnet
   server applies the subnet mask to the IP address and then does a
   lookup in the Resolve Table.

決議されるべきアドレスをIPアドレスですが、上で説明された標準の処理で決議できないなら、Resolve Subnetサーバは、IPアドレスにサブネットマスクを当てはまって、Resolve Tableでルックアップをします。

4.3.4 Interswitch Resolve Server

4.3.4 Interswitchはサーバを決議します。

   If the address cannot be resolved locally, the Interswitch Resolve
   server accesses the "virtual directory" by sending an Interswitch
   Resolve request message (Section 6.4) out over the switch flood path.
   The Interswitch Resolve request message contains the destination
   address as it was received within the packet, along with a list of
   requested addressing information.

局所的にアドレスを決議できないなら、Interswitch Resolve要求メッセージ(セクション6.4)をスイッチ洪水経路の上の外に送ることによって、Interswitch Resolveサーバは「仮想ディレクトリ」にアクセスします。 Interswitch Resolve要求メッセージはパケットの中にそれを受け取ったように送付先アドレスを含んでいます、要求されたアドレス指定情報のリストと共に。

   When a switch receives an Interswitch Resolve request message from
   one of its upstream neighbors, it checks to see if the destination
   endstation is connected to one of its local access ports.  If so, it
   formulates an Interswitch Resolve response message by filling in the
   requested address information, along with its own MAC address.  It
   then sets the message status field to ResolveAck, and returns the
   message to its upstream (requesting) neighbor.

スイッチが上流の隣人のひとりからInterswitch Resolve要求メッセージを受け取るとき、それは、目的地endstationが地方のアクセスポートの1つに接続されるかどうか確認するためにチェックします。 そうだとすれば、要求されたアドレス情報に記入することによって、Interswitch Resolve応答メッセージを定式化します、それ自身のMACアドレスと共に。 それは、次に、メッセージ状態分野をResolveAckに設定して、(要求します)上流の隣人にメッセージを返します。

   If the receiving switch cannot resolve the address, it forwards the
   Interswitch Resolve request message to its downstream neighbors.  If
   the switch has no downstream neighbors, it sets the message status
   field to Unknown, and returns the message to its upstream
   (requesting) neighbor.

受信スイッチがアドレスを決議できないなら、それはInterswitch Resolve要求メッセージを川下の隣人に転送します。 スイッチにどんな川下の隣人もいないなら、それは、メッセージ状態分野をUnknownに設定して、(要求します)上流の隣人にメッセージを返します。

Ruffen, et al.               Informational                     [Page 22]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[22ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   When a switch forwards an Interswitch Resolve request message to its
   downstream neighbors, it keeps track of the number of requests it has
   sent out and received back.  It will only respond back to its
   upstream (requesting) neighbor when one of the following conditions
   occurs:

スイッチがInterswitch Resolve要求メッセージを川下の隣人に転送するとき、それはそれが出して、受け取り返した要求の数の動向をおさえます。 以下の条件の1つが起こると、それは(要求します)上流の隣人に応じて戻るだけでしょう:

   -  It receives any response with a status of ResolveAck

- それはResolveAckの状態でどんな応答も受けます。

   -  All downstream neighbors have responded with a status of Unknown

- すべての川下の隣人がUnknownの状態で応じました。

   Any Interswitch Resolve request message that is not responded to
   within a certain predetermined time (currently 5 seconds) is assumed
   to have a response status of Unknown.

ある予定された時間(現在の5秒)まで反応しない少しのInterswitch Resolve要求メッセージもUnknownの応答状態を持っていると思われます。

   When the Interswitch Resolve server receives a successful Interswitch
   Resolve response message, it records the resolved address information
   in the remote cache of its local directory for use in resolving later
   packets for the same endstation.  Note that this process results in
   each switch building its own unique copy of the virtual directory
   containing only the endstation addresses in which it is interested.

When the Interswitch Resolve server receives a successful Interswitch Resolve response message, it records the resolved address information in the remote cache of its local directory for use in resolving later packets for the same endstation. Note that this process results in each switch building its own unique copy of the virtual directory containing only the endstation addresses in which it is interested.

4.3.5 Unresolvable Server

4.3.5 Unresolvable Server

   The Unresolvable server is called when a packet destination address
   cannot be resolved.  The server records the packet in a table that
   can then be examined to determine which endstations are generating
   unresolvable traffic.

The Unresolvable server is called when a packet destination address cannot be resolved. The server records the packet in a table that can then be examined to determine which endstations are generating unresolvable traffic.

   Also, if a particular destination is repeatedly seen to be
   unresolvable, the server calls the Block server (Section 4.3.6) to
   determine whether the address should be blocked.

Also, if a particular destination is repeatedly seen to be unresolvable, the server calls the Block server (Section 4.3.6) to determine whether the address should be blocked.

4.3.6 Block Server

4.3.6 Block Server

   The Resolve Block server is called when a particular destination has
   been repeatedly seen to be unresolvable.  This typically happens
   when, unknown to the packet source, the destination endstation is
   either not currently available or no longer exists.

The Resolve Block server is called when a particular destination has been repeatedly seen to be unresolvable. This typically happens when, unknown to the packet source, the destination endstation is either not currently available or no longer exists.

   If the Block server determines that the unresolved address has
   exceeded a configurable request threshold, the address is added to
   the server's Block Table.  Interswitch Resolve request messages for
   addresses listed in the Block Table are sent less frequently, thereby
   reducing the amount of Interswitch Resolve traffic throughout the
   fabric.

If the Block server determines that the unresolved address has exceeded a configurable request threshold, the address is added to the server's Block Table. Interswitch Resolve request messages for addresses listed in the Block Table are sent less frequently, thereby reducing the amount of Interswitch Resolve traffic throughout the fabric.

Ruffen, et al.               Informational                     [Page 23]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 23] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   If an address listed in the Block Table is later successfully
   resolved by and Interswitch Resolve request message, the address is
   removed from the table.

If an address listed in the Block Table is later successfully resolved by and Interswitch Resolve request message, the address is removed from the table.

4.4 Policy Service Center

4.4 Policy Service Center

   Once the destination address of the call packet has been resolved,
   the Policy Service Center is called to determine the validity of the
   requested call connection based on the VLAN policy of the source and
   destination VLANs.

Once the destination address of the call packet has been resolved, the Policy Service Center is called to determine the validity of the requested call connection based on the VLAN policy of the source and destination VLANs.

4.4.1 Unicast Rules Server

4.4.1 Unicast Rules Server

   The Policy Unicast Rules server recognizes two VLAN policy values:
   Open or Secure.  The default policy for all VLANs is Open.

The Policy Unicast Rules server recognizes two VLAN policy values: Open or Secure. The default policy for all VLANs is Open.

   The policy value is used as follows when determining the validity of
   a requested call connection:

The policy value is used as follows when determining the validity of a requested call connection:

   -  If the VLAN policy of either the source or destination cannot be
      determined, the Filter Service Center is called to establish a
      filter (i.e., blocked) for the SA/DA pair.

- If the VLAN policy of either the source or destination cannot be determined, the Filter Service Center is called to establish a filter (i.e., blocked) for the SA/DA pair.

   -  If the source and destination endstations belong to the same VLAN,
      then the connection is permitted regardless of the VLAN policy.

- If the source and destination endstations belong to the same VLAN, then the connection is permitted regardless of the VLAN policy.

   -  If the source and destination endstations belong to different
      VLANs, but both VLANs are running with an Open policy, then the
      connection is permitted, providing cut-through switching between
      different VLAN(s).

- If the source and destination endstations belong to different VLANs, but both VLANs are running with an Open policy, then the connection is permitted, providing cut-through switching between different VLAN(s).

   -  If the source and destination endstations belong to different
      VLANs and one or both of the VLANs are running with a Secure
      policy, then the Flood Service Center (Section 4.8) is called to
      broadcast the packet to other SFVLAN switches having ports or
      endstations that belong to the same VLAN as the packet source.

- If the source and destination endstations belong to different VLANs and one or both of the VLANs are running with a Secure policy, then the Flood Service Center (Section 4.8) is called to broadcast the packet to other SFVLAN switches having ports or endstations that belong to the same VLAN as the packet source.

      Note that if any of the VLANs to which the source or destination
      belong has a Secure policy, then the policy used in the above
      algorithm is Secure.

Note that if any of the VLANs to which the source or destination belong has a Secure policy, then the policy used in the above algorithm is Secure.

Ruffen, et al.               Informational                     [Page 24]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 24] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

4.5 Connect Service Center

4.5 Connect Service Center

   Once the Policy Service Center (Section 4.4) has determined that a
   requested call connection is valid, the Connect Service Center is
   called to set up the connection.  Note that connectivity between two
   endstations within the fabric is established on a switch-by-switch
   basis as the call progresses through the fabric toward its
   destination.  No synchronization is needed between switches to
   establish an end-to-end connection.

Once the Policy Service Center (Section 4.4) has determined that a requested call connection is valid, the Connect Service Center is called to set up the connection. Note that connectivity between two endstations within the fabric is established on a switch-by-switch basis as the call progresses through the fabric toward its destination. No synchronization is needed between switches to establish an end-to-end connection.

   The Connect Service Center maintains a Connection Table containing
   information for all connections currently active on the switch's
   local ports.

The Connect Service Center maintains a Connection Table containing information for all connections currently active on the switch's local ports.

   Connections are removed from the Connection Table when one of the
   endstations is moved to a new switch (Section 4.1.2) or when the
   Topology Link State server (Section 4.2.3) notifies the Connect
   Service Center that a network link has failed.  Otherwise,
   connections are not automatically aged out or removed from the
   Connection Table until a certain percentage threshold (HiMark) of
   table capacity is reached and resources are needed.  At that point,
   some number of connections (typically 100) are aged out and removed
   at one time.

Connections are removed from the Connection Table when one of the endstations is moved to a new switch (Section 4.1.2) or when the Topology Link State server (Section 4.2.3) notifies the Connect Service Center that a network link has failed. Otherwise, connections are not automatically aged out or removed from the Connection Table until a certain percentage threshold (HiMark) of table capacity is reached and resources are needed. At that point, some number of connections (typically 100) are aged out and removed at one time.

4.5.1 Local Server

4.5.1 Local Server

   If the destination endstation resides on the local switch, the
   Connect Local server establishes a connection between the source and
   destination ports.  Note that if the source and destination both
   reside on the same physical port, a filter connection is established
   by calling the Filter Service Center (Section 4.6).

If the destination endstation resides on the local switch, the Connect Local server establishes a connection between the source and destination ports. Note that if the source and destination both reside on the same physical port, a filter connection is established by calling the Filter Service Center (Section 4.6).

4.5.2 Link State Server

4.5.2 Link State Server

   The Connect Link State server is called if the destination endstation
   of the proposed connection does not reside on the local switch.

The Connect Link State server is called if the destination endstation of the proposed connection does not reside on the local switch.

   The server executes a call to the Path Link State server (Section
   4.7.1) which returns up to three "best" paths of equal cost from the
   local switch to the destination switch.  If more than one path is
   returned, the server chooses a path that provides the best load
   balancing of user traffic across the fabric.

The server executes a call to the Path Link State server (Section 4.7.1) which returns up to three "best" paths of equal cost from the local switch to the destination switch. If more than one path is returned, the server chooses a path that provides the best load balancing of user traffic across the fabric.

Ruffen, et al.               Informational                     [Page 25]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 25] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

4.5.3 Directory Server

4.5.3 Directory Server

   The Connect Directory server is called if the Connect Link State
   server is unable to provide a path for some reason.

The Connect Directory server is called if the Connect Link State server is unable to provide a path for some reason.

   The server examines the local directory to determine on which switch
   the destination endstation resides.  If the port of access to the
   destination switch is known, then a connection is established using
   that port as the outport of the connection.

The server examines the local directory to determine on which switch the destination endstation resides. If the port of access to the destination switch is known, then a connection is established using that port as the outport of the connection.

4.6 Filter Service Center

4.6 Filter Service Center

   The Filter Service Center is responsible for establishing filtered
   connections.  This service center is called by the Connect Local
   server (Section 4.5.1) if the source and destination endstations
   reside on the same physical port, and by the Policy Service Center
   (Section 4.4) if the VLAN of either the source or destination is
   indeterminate.

The Filter Service Center is responsible for establishing filtered connections. This service center is called by the Connect Local server (Section 4.5.1) if the source and destination endstations reside on the same physical port, and by the Policy Service Center (Section 4.4) if the VLAN of either the source or destination is indeterminate.

   A filter connection is programmed in the switch hardware with no
   specified outport.  That is, the connection is programmed to discard
   any traffic for that SA/DA pair.

A filter connection is programmed in the switch hardware with no specified outport. That is, the connection is programmed to discard any traffic for that SA/DA pair.

4.7 Path Service Center

4.7 Path Service Center

   The Path Service Center is responsible for determining the path from
   a source to a destination.

The Path Service Center is responsible for determining the path from a source to a destination.

4.7.1 Link State Server

4.7.1 Link State Server

   The Path Link State server is called by the Connect Link State server
   (Section 4.5.2) to return up to three best paths of equal cost
   between a source and destination pair of endstations.  These best
   paths are calculated by the Topology Link State server (Section
   4.2.3).

The Path Link State server is called by the Connect Link State server (Section 4.5.2) to return up to three best paths of equal cost between a source and destination pair of endstations. These best paths are calculated by the Topology Link State server (Section 4.2.3).

   The Path Link State server is also called by the Connect Service
   Center to return a complete source-to-destination path consisting of
   a list of individual switch port names.  A switch port name consists
   of the switch base MAC address and a port instance relative to the
   switch.

The Path Link State server is also called by the Connect Service Center to return a complete source-to-destination path consisting of a list of individual switch port names. A switch port name consists of the switch base MAC address and a port instance relative to the switch.

Ruffen, et al.               Informational                     [Page 26]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 26] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

4.7.2 Spanning Tree Server

4.7.2 Spanning Tree Server

   The Path Spanning Tree server is called by any server needing to
   forward an undirected message out over the switch flood path.  The
   server returns a port mask indicating which local ports are currently
   enabled as outports of the switch flood path.  The switch flood path
   is calculated by the Topology Spanning Tree server (Section 4.2.2).

The Path Spanning Tree server is called by any server needing to forward an undirected message out over the switch flood path. The server returns a port mask indicating which local ports are currently enabled as outports of the switch flood path. The switch flood path is calculated by the Topology Spanning Tree server (Section 4.2.2).

4.8 Flood Service Center

4.8 Flood Service Center

   If the Resolve Service Center (Section 4.3) is unable to resolve the
   destination address of a packet, it invokes the Flood Service Center
   to broadcast the unresolved packet.

If the Resolve Service Center (Section 4.3) is unable to resolve the destination address of a packet, it invokes the Flood Service Center to broadcast the unresolved packet.

4.8.1 Tag-Based Flood Server

4.8.1 Tag-Based Flood Server

   The Tag-Based Flood server encapsulates the unresolved packet into an
   Interswitch Tag-Based Flood message (Section 6.6), along with a list
   of Virtual LAN identifiers specifying those VLANs to which the source
   endstation belongs.  The message is then sent out over the switch
   flood path to all other switches in the fabric.

The Tag-Based Flood server encapsulates the unresolved packet into an Interswitch Tag-Based Flood message (Section 6.6), along with a list of Virtual LAN identifiers specifying those VLANs to which the source endstation belongs. The message is then sent out over the switch flood path to all other switches in the fabric.

   When a switch receives an Interswitch Tag-Based Flood message, it
   examines the encapsulated header to determine the VLAN(s) to which
   the packet should be sent.  If any of the switch's local access ports
   belong to one or more of the specified VLANs, the switch strips off
   the tag-based header and forwards the original packet out the
   appropriate access port(s).

When a switch receives an Interswitch Tag-Based Flood message, it examines the encapsulated header to determine the VLAN(s) to which the packet should be sent. If any of the switch's local access ports belong to one or more of the specified VLANs, the switch strips off the tag-based header and forwards the original packet out the appropriate access port(s).

   The switch also forwards the entire encapsulated packet along the
   switch flood path to its downstream neighboring switches, if any.

The switch also forwards the entire encapsulated packet along the switch flood path to its downstream neighboring switches, if any.

5. Monitoring Call Connections

5. Monitoring Call Connections

   The SecureFast VLAN product permits monitoring of user traffic moving
   between two endstations by establishing a call tap on the connection
   between the two stations.  Traffic can be monitored in one or both
   directions along the connection path.

The SecureFast VLAN product permits monitoring of user traffic moving between two endstations by establishing a call tap on the connection between the two stations. Traffic can be monitored in one or both directions along the connection path.

5.1 Definitions

5.1 Definitions

   In addition to the terms defined in Section 1.2, the following terms
   are used in this description of the call tap process.

In addition to the terms defined in Section 1.2, the following terms are used in this description of the call tap process.

Ruffen, et al.               Informational                     [Page 27]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 27] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   Originating Switch

Originating Switch

      The originating switch is the switch that requests the call tap.
      Any switch along a call connection path may request a tap on that
      call connection.

The originating switch is the switch that requests the call tap. Any switch along a call connection path may request a tap on that call connection.

   Probe

Probe

      The tap probe is the device to receive a copy of the call
      connection data.  The probe is attached to a port on the probe
      switch.

The tap probe is the device to receive a copy of the call connection data. The probe is attached to a port on the probe switch.

   Probe Switch

Probe Switch

      The probe switch (also known as the terminating switch) is the
      switch to which the probe is attached.  The probe switch can be
      anywhere in the topology.

The probe switch (also known as the terminating switch) is the switch to which the probe is attached. The probe switch can be anywhere in the topology.

5.2 Tapping a Connection

5.2 Tapping a Connection

   A request to tap a call connection between two endstations can
   originate on any switch along the call connection path -- the ingress
   switch, the egress switch, or any of the intermediate switches.  The
   call connection must have already been established before a call tap
   request can be issued.  The probe device can be attached to any
   switch in the topology.

A request to tap a call connection between two endstations can originate on any switch along the call connection path -- the ingress switch, the egress switch, or any of the intermediate switches. The call connection must have already been established before a call tap request can be issued. The probe device can be attached to any switch in the topology.

5.2.1 Types of Tap Connections

5.2.1 Types of Tap Connections

   A call tap is enabled by setting up an auxiliary tap connection
   associated with the call being monitored.  Since the tap must
   originate on a switch somewhere along the call connection path, the
   tap connection path will pass through one or more of the switches
   along the call path.  However, since the probe switch can be anywhere
   in the switch fabric, the tap path and the call path may diverge at
   some point.

A call tap is enabled by setting up an auxiliary tap connection associated with the call being monitored. Since the tap must originate on a switch somewhere along the call connection path, the tap connection path will pass through one or more of the switches along the call path. However, since the probe switch can be anywhere in the switch fabric, the tap path and the call path may diverge at some point.

   Therefore, on each switch along the tap path, the tap connection is
   established in one of three ways:

Therefore, on each switch along the tap path, the tap connection is established in one of three ways:

   -  The existing call connection is used with no modification.

- The existing call connection is used with no modification.

         When both the call path and tap path pass through the switch,
         and the inport and outports of both connections are identical,
         the switch uses the existing call connection to route the tap.

When both the call path and tap path pass through the switch, and the inport and outports of both connections are identical, the switch uses the existing call connection to route the tap.

   -  The existing call connection is modified.

- The existing call connection is modified.

Ruffen, et al.               Informational                     [Page 28]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 28] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

         When both the call path and tap path pass through the switch,
         but the call path outport is different from the tap path
         outport, the switch enables an extra outport in either one or
         both directions of the call connection, depending on the
         direction of the tap.  This happens under two conditions.

When both the call path and tap path pass through the switch, but the call path outport is different from the tap path outport, the switch enables an extra outport in either one or both directions of the call connection, depending on the direction of the tap. This happens under two conditions.

   -  If the switch is also the probe switch, an extra outport is
         enabled to the probe.

- If the switch is also the probe switch, an extra outport is enabled to the probe.

   -  If the switch is the point at which the call path and the tap path
         diverge, an extra outport is enabled to the downstream neighbor
         on that leg of the switch flood path on which the probe switch
         is located.

- If the switch is the point at which the call path and the tap path diverge, an extra outport is enabled to the downstream neighbor on that leg of the switch flood path on which the probe switch is located.

   -  A new connection is established.

- A new connection is established.

         If the call path does not pass through the switch (because the
         tap path has diverged from the call path), a completely new
         connection is established for the tap.

If the call path does not pass through the switch (because the tap path has diverged from the call path), a completely new connection is established for the tap.

5.2.2 Locating the Probe and Establishing the Tap Connection

5.2.2 Locating the Probe and Establishing the Tap Connection

   To establish a call tap, the originating switch formats an
   Interswitch Tap request message (Section 6.7) and sends it out over
   the switch flood path to all other switches in the topology.

To establish a call tap, the originating switch formats an Interswitch Tap request message (Section 6.7) and sends it out over the switch flood path to all other switches in the topology.

      Note:

Note:

         If the originating switch is also the probe switch, no
         Interswitch Tap request message is necessary.

If the originating switch is also the probe switch, no Interswitch Tap request message is necessary.

   As the Interswitch Tap request message travels out along the switch
   flood path, each switch receiving the message checks to see if it is
   the probe switch and does the following:

As the Interswitch Tap request message travels out along the switch flood path, each switch receiving the message checks to see if it is the probe switch and does the following:

   -  If the switch is the probe switch, it establishes the tap
      connection by either setting up a new connection or modifying the
      call connection, as appropriate (see Section 5.2.1).  It then
      reformats the Tap request message to be a Tap response message
      with a status indicating that the probe has been found, and sends
      the message back to its upstream neighbor.

- If the switch is the probe switch, it establishes the tap connection by either setting up a new connection or modifying the call connection, as appropriate (see Section 5.2.1). It then reformats the Tap request message to be a Tap response message with a status indicating that the probe has been found, and sends the message back to its upstream neighbor.

   -  If the switch is not the probe switch, it forwards the Tap request
      message to all its downstream neighbors (if any).

- If the switch is not the probe switch, it forwards the Tap request message to all its downstream neighbors (if any).

   -  If the switch is not the probe switch and has no downstream
      neighbors, it reformats the Tap request message to be a Tap
      response message with a status indicating that the probe is not

- If the switch is not the probe switch and has no downstream neighbors, it reformats the Tap request message to be a Tap response message with a status indicating that the probe is not

Ruffen, et al.               Informational                     [Page 29]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 29] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

      located on that leg of the switch flood path.   It then sends the
      response message back to its upstream neighbor.

located on that leg of the switch flood path. It then sends the response message back to its upstream neighbor.

      When a switch forwards an Interswitch Tap request message to its
      downstream neighbors, it keeps track of the number of requests it
      has sent out.

When a switch forwards an Interswitch Tap request message to its downstream neighbors, it keeps track of the number of requests it has sent out.

   -  If a response is received with a status indicating that the probe
      switch is located somewhere downstream, the switch establishes the
      appropriate type of tap connection (see Section 5.2.1).  It then
      formats a Tap response message with a status indicating that the
      probe has been found and passes the message to its upstream
      neighbor.

- If a response is received with a status indicating that the probe switch is located somewhere downstream, the switch establishes the appropriate type of tap connection (see Section 5.2.1). It then formats a Tap response message with a status indicating that the probe has been found and passes the message to its upstream neighbor.

   -  If no responses are received with a status indicating that the
      probe switch is located downstream, the switch formats a Tap
      response message with a status indicating that the probe has not
      been found and passes the message to its upstream neighbor.

- If no responses are received with a status indicating that the probe switch is located downstream, the switch formats a Tap response message with a status indicating that the probe has not been found and passes the message to its upstream neighbor.

5.2.3 Status Field

5.2.3 Status Field

   The status field of the Interswitch Tap request/response message
   contains information about the state of the tap.  Some of these
   status values are transient and are merely used to track the progress
   of the tap request.  Other status values are stored in the tap table
   of each switch along the tap path for use when the tap is torn down.
   The possible status values are as follows:

The status field of the Interswitch Tap request/response message contains information about the state of the tap. Some of these status values are transient and are merely used to track the progress of the tap request. Other status values are stored in the tap table of each switch along the tap path for use when the tap is torn down. The possible status values are as follows:

   -  StatusUnassigned.  This is the initial status of the Interswitch
      Tap request message.

- StatusUnassigned. This is the initial status of the Interswitch Tap request message.

   -  OutportDecisionUnknown.  The tap request is still moving
      downstream along the switch flood path.  The probe switch had not
      yet been found.

- OutportDecisionUnknown. The tap request is still moving downstream along the switch flood path. The probe switch had not yet been found.

   -  ProbeNotFound.  The probe switch is not located on this leg of the
      switch flood path.

- ProbeNotFound. The probe switch is not located on this leg of the switch flood path.

   -  DisableOutport.  The probe switch is located on this leg of the
      switch flood path, and the switch has had to either modify the
      call connection or establish a new connection to implement the tap
      (see Section 5.2.1).  When the tap is torn down, the switch will
      have to disable any additional outports that have been enabled for
      the tap.

- DisableOutport. The probe switch is located on this leg of the switch flood path, and the switch has had to either modify the call connection or establish a new connection to implement the tap (see Section 5.2.1). When the tap is torn down, the switch will have to disable any additional outports that have been enabled for the tap.

   -  KeepOutport.  The probe switch is located on this leg of the
      switch flood path, and the switch was able to route the tap over
      the existing call path (see Section 5.2.1).  Any ports used for

- KeepOutport. The probe switch is located on this leg of the switch flood path, and the switch was able to route the tap over the existing call path (see Section 5.2.1). Any ports used for

Ruffen, et al.               Informational                     [Page 30]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 30] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

      the tap will remain enabled when the tap is torn down.

the tap will remain enabled when the tap is torn down.

5.3 Untapping a Connection

5.3 Untapping a Connection

   A request to untap a call connection must be issued on the tap
   originating switch -- that is, the same switch that issued the tap
   request.

A request to untap a call connection must be issued on the tap originating switch -- that is, the same switch that issued the tap request.

   To untap a call connection, the originating switch sends an
   Interswitch Untap request message (Section 6.7) out over the switch
   flood path to all other switches in the topology.  The message is
   sent over the switch flood path, rather than the tap connection path,
   to ensure that all switches that know of the tap are properly
   notified, even if the switch topology has changed since the tap was
   established.

To untap a call connection, the originating switch sends an Interswitch Untap request message (Section 6.7) out over the switch flood path to all other switches in the topology. The message is sent over the switch flood path, rather than the tap connection path, to ensure that all switches that know of the tap are properly notified, even if the switch topology has changed since the tap was established.

   When a switch receives an Interswitch Untap request message, it
   checks to see if it is handling a tap for the specified call
   connection.  If so, the switch disables the tap connection, as
   follows:

When a switch receives an Interswitch Untap request message, it checks to see if it is handling a tap for the specified call connection. If so, the switch disables the tap connection, as follows:

   -  If a new connection was added for the tap, the connection is
      deleted from the connection table.

- If a new connection was added for the tap, the connection is deleted from the connection table.

   -  If additional outports were enabled on the call connection, they
      are disabled.

- If additional outports were enabled on the call connection, they are disabled.

   The switch then forwards the Interswitch Untap request message to its
   downstream neighbor (if any).  If the switch has no downstream
   neighbors, it formats an untap response and sends the message back to
   its upstream neighbor.

The switch then forwards the Interswitch Untap request message to its downstream neighbor (if any). If the switch has no downstream neighbors, it formats an untap response and sends the message back to its upstream neighbor.

   When a switch forwards an Interswitch Untap request message to its
   downstream neighbors, it keeps track of the number of requests it has
   sent out and does not respond back to its upstream neighbor until all
   untap requests have been responded to.  Once all responses have been
   received, the switch handles any final cleanup for the tap and then
   sends a single Interswitch Untap response message to its upstream
   neighbor.

When a switch forwards an Interswitch Untap request message to its downstream neighbors, it keeps track of the number of requests it has sent out and does not respond back to its upstream neighbor until all untap requests have been responded to. Once all responses have been received, the switch handles any final cleanup for the tap and then sends a single Interswitch Untap response message to its upstream neighbor.

Ruffen, et al.               Informational                     [Page 31]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 31] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

6. Interswitch Message Protocol (ISMP)

6. Interswitch Message Protocol (ISMP)

   The InterSwitch Message protocol (ISMP) provides a consistent method
   of encapsulating and transmitting messages exchanged between switches
   to create and maintain the databases and provide other control
   services and functionality required by the SFVLAN product.

The InterSwitch Message protocol (ISMP) provides a consistent method of encapsulating and transmitting messages exchanged between switches to create and maintain the databases and provide other control services and functionality required by the SFVLAN product.

6.1 General Packet Structure

6.1 General Packet Structure

   ISMP packets are of variable length and have the following general
   structure:

ISMP packets are of variable length and have the following general structure:

   -  Frame header
   -  ISMP packet header
   -  ISMP message body

- Frame header - ISMP packet header - ISMP message body

   Each of these packet segments is discussed separately in the
   following subsections.

Each of these packet segments is discussed separately in the following subsections.

6.1.1 Frame Header

6.1.1 Frame Header

   ISMP packets are encapsulated within an IEEE 802-compliant frame
   using a standard header as shown below:

ISMP packets are encapsulated within an IEEE 802-compliant frame using a standard header as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +      Destination address      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   04 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+        Source address         +
   08 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   12 |             Type              |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   16 |                                                               |
      +                                                               +
      :                                                               :

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + Destination address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 04 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source address + 08 | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 12 | Type | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 16 | | + + : :

   Destination address

Destination address

      This 6-octet field contains the Media Access Control (MAC) address
      of the multicast channel over which all switches in the fabric
      receive ISMP packets.  Except where otherwise noted, this field

This 6-octet field contains the Media Access Control (MAC) address of the multicast channel over which all switches in the fabric receive ISMP packets. Except where otherwise noted, this field

Ruffen, et al.               Informational                     [Page 32]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 32] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

      contains the multicast address of the control channel over which
      all switches in the fabric receive ISMP packets -- a value of 01-
      00-1D-00-00-00.

contains the multicast address of the control channel over which all switches in the fabric receive ISMP packets -- a value of 01- 00-1D-00-00-00.

   Source address

Source address

      Except where otherwise noted, this 6-octet field contains the
      physical (MAC) address of the switch originating the ISMP packet.

Except where otherwise noted, this 6-octet field contains the physical (MAC) address of the switch originating the ISMP packet.

   Type

Type

      This 2-octet field identifies the type of data carried within the
      frame.  Except where otherwise noted, the type field of ISMP
      packets contains the value 0x81FD.

This 2-octet field identifies the type of data carried within the frame. Except where otherwise noted, the type field of ISMP packets contains the value 0x81FD.

6.1.2 ISMP Packet Header

6.1.2 ISMP Packet Header

   There are two versions of the ISMP packet header in use by the
   SecureFast VLAN product.

There are two versions of the ISMP packet header in use by the SecureFast VLAN product.

6.1.2.1 Version 2

6.1.2.1 Version 2

   The version 2 ISMP packet header consists of 6 octets, as shown
   below:

The version 2 ISMP packet header consists of 6 octets, as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |///////////////////////////////////////////////////////////////|
      ://////// Frame header /////////////////////////////////////////:
      +//////// (14 octets)  /////////+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   12 |///////////////////////////////|            Version            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   16 |       ISMP message type       |        Sequence number        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |                                                               |
      +                                                               +
      :                                                               :

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 |///////////////////////////////////////////////////////////////| ://////// Frame header /////////////////////////////////////////: +//////// (14 octets) /////////+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 12 |///////////////////////////////| Version | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 16 | ISMP message type | Sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | | + + : :

   Frame header

Frame header

      This 14-octet field contains the frame header (Section 6.1.1).

This 14-octet field contains the frame header (Section 6.1.1).

Ruffen, et al.               Informational                     [Page 33]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 33] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

   Version

Version

      This 2-octet field contains the version number of the InterSwitch
      Message Protocol to which this ISMP packet adheres. This document
      describes ISMP Version 2.0.

This 2-octet field contains the version number of the InterSwitch Message Protocol to which this ISMP packet adheres. This document describes ISMP Version 2.0.

   ISMP message type

ISMP message type

      This 2-octet field contains a value indicating which type of ISMP
      message is contained within the message body.  The following table
      lists each ISMP message, along with its message type and the
      section within this document that describes the message in detail:

This 2-octet field contains a value indicating which type of ISMP message is contained within the message body. The following table lists each ISMP message, along with its message type and the section within this document that describes the message in detail:

         Message Name                       Type    Description

Message Name Type Description

         Interswitch Link State message        3    See note below
         Interswitch BPDU message              4    Section 6.2
         Interswitch Remote Blocking message   4    Section 6.3
         Interswitch Resolve message           5    Section 6.4
         Interswitch New User message          5    Section 6.5
         Interswitch Tag-Based Flood message   7    Section 6.6
         Interswitch Tap/Untap message         8    Section 6.7

Interswitch Link State message 3 See note below Interswitch BPDU message 4 Section 6.2 Interswitch Remote Blocking message 4 Section 6.3 Interswitch Resolve message 5 Section 6.4 Interswitch New User message 5 Section 6.5 Interswitch Tag-Based Flood message 7 Section 6.6 Interswitch Tap/Untap message 8 Section 6.7

      Note:

Note:

         The Link State messages used by the VLS Protocol are not
         described in this document.  For a detailed description of
         these messages, see [IDvlsp].

The Link State messages used by the VLS Protocol are not described in this document. For a detailed description of these messages, see [IDvlsp].

   Sequence number

Sequence number

      This 2-octet field contains an internally generated sequence
      number used by the various protocol handlers for internal
      synchronization of messages.

This 2-octet field contains an internally generated sequence number used by the various protocol handlers for internal synchronization of messages.

6.1.2.2 Version 3

6.1.2.2 Version 3

   The version 3 ISMP packet header is used only by the Interswitch
   Keepalive message.  That message is not described in this document.
   For a detailed description of the version 3 ISMP packet header, see
   [IDhello].

The version 3 ISMP packet header is used only by the Interswitch Keepalive message. That message is not described in this document. For a detailed description of the version 3 ISMP packet header, see [IDhello].

Ruffen, et al.               Informational                     [Page 34]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen, et al. Informational [Page 34] RFC 2643 Cabletron's SecureFast VLAN Operational Model August 1999

6.1.3 ISMP Message Body

6.1.3 ISMP Message Body

   The ISMP message body is a variable-length field containing the
   actual data of the ISMP message.  The length and content of this
   field are determined by the value found in the message type field.

The ISMP message body is a variable-length field containing the actual data of the ISMP message. The length and content of this field are determined by the value found in the message type field.

   See the following sections for the exact format of each message type.

See the following sections for the exact format of each message type.

6.2 Interswitch BPDU Message

6.2 Interswitch BPDU Message

   The Interswitch BPDU message consists of a variable number of octets,
   as shown below:

The Interswitch BPDU message consists of a variable number of octets, as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 4)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |          Message flags        |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   28 |                                                               |
      :                          BPDU packet                          :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(4をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | メッセージ旗| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 28 | | : BPDUパケット: | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 4, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ4、バージョン1について説明します。

Ruffen, et al.               Informational                     [Page 35]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[35ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Opcode

Opcode

      This 2-octet field contains the operation type of the message. For
      an Interswitch BPDU message, the value should be 1.

この2八重奏の分野はメッセージの操作タイプを含んでいます。 Interswitch BPDUメッセージに関しては、値は1であるべきです。

   Message flags

メッセージ旗

      This 2-octet field is currently unused.  It is reserved for future
      use.

この2八重奏の分野は現在、未使用です。 それは今後の使用のために予約されます。

   BPDU packet

BPDUパケット

      This variable-length field contains an IEEE-compliant 802.2 Bridge
      Protocol Data Unit.  See [IEEE] for a detailed description of the
      contents of this field.

この可変長の分野はIEEE対応することの802.2BridgeプロトコルData Unitを含んでいます。 この分野のコンテンツの詳述に関して[IEEE]を見てください。

6.3 Interswitch Remote Blocking Message

6.3 Interswitchのリモートブロッキングメッセージ

   The Interswitch Remote Blocking message consists of 30 octets, as
   shown below:

Interswitch Remote Blockingメッセージは以下に示されるように30の八重奏から成ります:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 4)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |           Opcode              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |          Message flags        |        Blocking flag ...      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |       ... Blocking flag       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(4をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | メッセージ旗| 旗を妨げます… | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | ... ブロッキング旗| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 4, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ4、バージョン1について説明します。

Ruffen, et al.               Informational                     [Page 36]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[36ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Opcode

Opcode

      This 2-octet field contains the operation type of the message.
      Valid values are as follows:

この2八重奏の分野はメッセージの操作タイプを含んでいます。 有効値は以下の通りです:

         2   Enable/disable remote blocking
         3   Acknowledge previously received Remote Blocking message

2は、リモートブロッキング3Acknowledgeが以前に受信されたRemote Blockingメッセージであると可能にするか、または無効にします。

   Message flags

メッセージ旗

         This 2-octet field is currently unused.  It is reserved for
         future use.

この2八重奏の分野は現在、未使用です。 それは今後の使用のために予約されます。

   Blocking flag

ブロッキング旗

         This 4-octet field contains a flag indicating the state of
         remote blocking on the link over which the message was
         received.  A value of 1 indicates remote blocking is on and no
         undirected ISMP messages should be sent over the link.  A value
         of 0 indicates remote blocking is off.  This flag is irrelevant
         if the operation type (Opcode) of the message has a value of 3.

この4八重奏の分野はメッセージが受け取られたリンクの上にリモートブロッキングの状態を示す旗を含んでいます。 1の値は、リモートブロッキングが進行中であるのを示します、そして、undirected ISMPメッセージを全くリンクの上に送るべきではありません。 0の値は、リモートブロッキングが取り止めになっているのを示します。 メッセージの操作タイプ(Opcode)に3の値があるなら、この旗は無関係です。

6.4 Interswitch Resolve Message

6.4 Interswitchはメッセージを決議します。

   There are two versions of the Interswitch Resolve message used by the
   SecureFast VLAN product.

SecureFast VLAN製品によって使用されるInterswitch Resolveメッセージの2つのバージョンがあります。

6.4.1 Prior to Version 1.8

6.4.1 バージョン1.8の前に

   The Interswitch Resolve message used by SFVLAN prior to version 1.8
   consists of a variable number of octets, as shown below:

バージョン1.8の前にSFVLANによって使用されたInterswitch Resolveメッセージは可変数の八重奏から成ります、以下に示すように:

Ruffen, et al.               Informational                     [Page 37]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[37ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    00 |                                                               |
       +                         Frame header /                        +
       :                   ISMP packet header (type 5)                 :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    20 |           Version             |            Opcode             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    24 |            Status             |           Call Tag            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    28 |                                                               |
       +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    32 |                               |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
    36 |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    40 |                                                               |
       +       Owner switch MAC        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    44 |                               |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
    48 |                                                               |
       :                   Known destination address                   :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     n |     Count     |                                               |
       +-+-+-+-+-+-+-+-+                                               +
   n+4 |                         Resolve list                          |
       :                                                               :
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(5をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | 状態| 呼び出しタグ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | | + パケット+++++++++++++++++32のソースMAC| | | スイッチMAC+36を溯源する+++++++++++++++++| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 40 | | + 所有者スイッチMAC+++++++++++++++++44| | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 48 | | : 知られている送付先アドレス: | | +++++++++++++++++++++++++++++++++n| カウント| | ++++++++++n+4| 決心リスト| : : | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          n = 46 + length of known address TLV

知られているアドレスTLVのn=46+長さ

   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch Resolve request.  The term "owner" switch refers to that
   switch to which the destination endstation is attached.  And the term
   "responding" switch refers to either the "owner" switch or to a
   switch at the end of the switch flood path that does not own the
   endstation but issues an Interswitch Resolve response because it has
   no downstream neighbors.

メッセージ分野の以下の記述では、用語「起因する」スイッチはオリジナルのInterswitch Resolve要求を出したスイッチについて言及します。 用語「所有者」スイッチは目的地endstationが付けているそのスイッチについて言及します。 そして、用語「応じる」スイッチが「所有者」スイッチについて言及するか、それは、スイッチ洪水経路の端のスイッチに、endstationを所有していませんが、それにはどんな川下の隣人もいないので、Interswitch Resolve応答を発行します。

Ruffen, et al.               Informational                     [Page 38]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[38ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   With the exception of the resolve list (which has a different size
   and format in a Resolve response message), all fields of an
   Interswitch Resolve message are allocated by the originating switch,
   and unless otherwise noted below, are written by the originating
   switch.

起因するスイッチによって割り当てられて、そうでなければ、有名な下による書かれていて、起因することが切り替わるということでないなら、決心リスト(Resolve応答メッセージにおける異なったサイズと形式を持っている)を除いて、Interswitch Resolveメッセージのすべての分野がそうです。

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 5, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ5、バージョン1について説明します。

   Opcode

Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

この2八重奏の分野はメッセージの命令コードを含んでいます。 有効値は以下の通りです:

         1    The message is a Resolve request.
         2    The message is a Resolve response.
         3    (unused in Resolve messages)
         4    (unused in Resolve messages)

1 メッセージはResolve要求です。 2 メッセージはResolve応答です。 3 (Resolveメッセージの未使用の)4(Resolveメッセージの未使用)です。

      The originating switch writes a value of 1 to this field, while
      the responding switch writes a value of 2.

起因するスイッチはこの分野に1の値を書きますが、応じるスイッチは2の値を書きます。

   Status

状態

      This 2-octet field contains the status of a Resolve response
      message.  Valid values are as follows:

この2八重奏の分野はResolve応答メッセージの状態を含んでいます。 有効値は以下の通りです:

         0    The Resolve request succeeded (ResolveAck).
         1    (unused)
         2    The Resolve request failed (Unknown).

0 Resolve要求は(ResolveAck)を引き継ぎました。 1 (未使用の) 2 Resolve要求は失敗しました(未知の)。

      This field is written by the responding switch.

この分野は応じるスイッチによって書かれます。

   Call tag

呼び出しタグ

      This 2-octet field contains the call tag of the endstation packet
      for which this Resolve request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet.

この2八重奏の分野はこのResolve要求が出されるendstationパケットの呼び出しタグを含んでいます。 呼び出しタグは唯一パケットを特定する16の噛み付いている値(起因するスイッチで、生成される)です。

Ruffen, et al.               Informational                     [Page 39]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[39ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Source MAC of packet

パケットのソースMAC

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

この6八重奏の分野は呼び出しタグによって特定されたパケットを溯源したendstationの物理的な(MAC)アドレスを含んでいます。

   Originating switch MAC

スイッチMACを溯源します。

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original Resolve request.

この6八重奏の分野はオリジナルのResolve要求を出したスイッチの物理的な(MAC)アドレスを含んでいます。

   Owner switch MAC

所有者スイッチMAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the destination endstation is attached -- that is,
      the switch that was able to resolve the requested addressing
      information.  This field is written by the owner switch.

この6八重奏の分野は目的地endstationが付けているスイッチの物理的な(MAC)アドレスを含んでいます--すなわち、要求されたアドレス指定情報を決議できたスイッチ。 この分野は所有者スイッチによって書かれます。

      If the status of the response is Unknown, this field is
      irrelevant.

応答の状態がUnknownであるなら、この分野は無関係です。

   Known destination address

知られている送付先アドレス

      This variable-length field contains the known attribute of the
      destination endstation address.  This address is stored in
      Tag/Length/Value format.  (See Section 2.3.)

この可変長の分野は送付先endstationアドレスの知られている属性を含んでいます。 このアドレスはTag/長さ/値の形式で保存されます。 (セクション2.3を見てください。)

   Count

カウント

      This 1-octet field contains the number of address attributes
      requested or returned.  This is the number of items in the resolve
      list.

この1八重奏の分野は属性が要求したか、または返したアドレスの数を含んでいます。 これは決心リストの件数です。

   Resolve list

決心リスト

      This variable-length field contains a list of the address
      attributes either requested by the originating switch or returned
      by the owner switch.  Note that in a Resolve request message, this
      list contains only the tags of the requested address attributes
      (see Section 2.3).  On the other hand, a Resolve response message
      with a status of ResolveAck contains the full TLV of each resolved
      address attribute.  The number of entries in the list is specified
      in the count field.

この可変長の分野は起因するスイッチによって要求されたか、または所有者スイッチによって返されたアドレス属性のリストを含んでいます。 Resolve要求メッセージでは、このリストが要求されたアドレス属性のタグだけを入れてあることに注意してください(セクション2.3を見てください)。 他方では、ResolveAckの状態があるResolve応答メッセージはそれぞれの決心しているアドレス属性の完全なTLVを含んでいます。 リストのエントリーの数はカウント分野で指定されます。

      In an Interswitch Resolve response message, this field is
      irrelevant if the status of the response is Unknown.

Interswitch Resolve応答メッセージでは、この分野は応答の状態がUnknownであるなら無関係です。

Ruffen, et al.               Informational                     [Page 40]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[40ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

6.4.2 Version 1.8

6.4.2 バージョン1.8

   The Interswitch Resolve message used by SFVLAN version 1.8 consists
   of a variable number of octets, as shown below:

SFVLANバージョン1.8によって使用されるInterswitch Resolveメッセージは以下に示されるように可変数の八重奏から成ります:

Ruffen, et al.               Informational                     [Page 41]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[41ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 5)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                                                               |
      +       Owner switch MAC        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   48 |                                                               |
      :                   Known destination address                   :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
  n+4 |                         Resolve list                          |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   n1 |                                                               |
      +    Actual dest switch MAC     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Downlink chassis MAC      +
 n1+8 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n1+12 |                                                               |
      +      Actual chassis MAC       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
n1+20 |                                                               |
      +                          Domain name                          +
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           n = 46 + length of known address TLV
           n1 = n + length of Resolve list

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(5をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | 状態| 呼び出しタグ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | | + パケット+++++++++++++++++32のソースMAC| | | スイッチMAC+36を溯源する+++++++++++++++++| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 40 | | + 所有者スイッチMAC+++++++++++++++++44| | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 48 | | : 知られている送付先アドレス: | | +++++++++++++++++++++++++++++++++n| カウント| | ++++++++++n+4| 決心リスト| : : | | +++++++++++++++++++++++++++++++++n1| | + 実際のdestスイッチMAC+++++++++++++++++| | | +++++++++++++++++ダウンリンク筐体MAC+n1+8| | +++++++++++++++++++++++++++++++++n1+12| | + 実際の筐体MAC+++++++++++++++++| | | ++++++++++++++++++n1+20| | + ドメイン名+: : +++++++++++++++++++++++++++++++++nは知られているアドレスTLV n1=n+長さのResolveリストの46+長さと等しいです。

Ruffen, et al.               Informational                     [Page 42]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[42ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch Resolve request.  The term "owner" switch refers to that
   switch to which the destination endstation is attached.  And the term
   "responding" switch refers to either the "owner" switch or to a
   switch at the end of the switch flood path that does not own the
   endstation but issues an Interswitch Resolve response because it has
   no downstream neighbors.

メッセージ分野の以下の記述では、用語「起因する」スイッチはオリジナルのInterswitch Resolve要求を出したスイッチについて言及します。 用語「所有者」スイッチは目的地endstationが付けているそのスイッチについて言及します。 そして、用語「応じる」スイッチが「所有者」スイッチについて言及するか、それは、スイッチ洪水経路の端のスイッチに、endstationを所有していませんが、それにはどんな川下の隣人もいないので、Interswitch Resolve応答を発行します。

   With the exception of the resolve list (which has a different size
   and format in a Resolve response message) and the four fields
   following the resolve list, all fields of an Interswitch Resolve
   message are allocated by the originating switch, and unless otherwise
   noted below, are written by the originating switch.

決心を除いて、決心リスト、Interswitch Resolveメッセージの野原が起因するスイッチによって割り当てられるすべてに続いて、そうでなければ、有名な下が書かれない場合、起因するスイッチで(どれに、異なったサイズがありますか、そして、Resolve応答メッセージにおける形式)と4つの分野を記載してください。

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This section describes version 3 of the Interswitch Resolve
      message.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このセクションはInterswitch Resolveメッセージのバージョン3について説明します。

   Opcode

Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

この2八重奏の分野はメッセージの命令コードを含んでいます。 有効値は以下の通りです:

         1    The message is a Resolve request.
         2    The message is a Resolve response.
         3    (unused in Resolve messages)
         4    (unused in Resolve messages)

1 メッセージはResolve要求です。 2 メッセージはResolve応答です。 3 (Resolveメッセージの未使用の)4(Resolveメッセージの未使用)です。

      The originating switch writes a value of 1 to this field, while
      the responding switch writes a value of 2.

起因するスイッチはこの分野に1の値を書きますが、応じるスイッチは2の値を書きます。

Ruffen, et al.               Informational                     [Page 43]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[43ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Status

状態

      This 2-octet field contains the status of a Resolve response
      message.  Valid values are as follows:

この2八重奏の分野はResolve応答メッセージの状態を含んでいます。 有効値は以下の通りです:

         0    The Resolve request succeeded (ResolveAck).
         1    (unused)
         2    The Resolve request failed (Unknown).

0 Resolve要求は(ResolveAck)を引き継ぎました。 1 (未使用の) 2 Resolve要求は失敗しました(未知の)。

      This field is written by the responding switch.

この分野は応じるスイッチによって書かれます。

   Call tag

呼び出しタグ

      This 2-octet field contains the call tag of the endstation packet
      for which this Resolve request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet.

この2八重奏の分野はこのResolve要求が出されるendstationパケットの呼び出しタグを含んでいます。 呼び出しタグは唯一パケットを特定する16の噛み付いている値(起因するスイッチで、生成される)です。

   Source MAC of packet

パケットのソースMAC

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

この6八重奏の分野は呼び出しタグによって特定されたパケットを溯源したendstationの物理的な(MAC)アドレスを含んでいます。

   Originating switch MAC

スイッチMACを溯源します。

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original Resolve request.

この6八重奏の分野はオリジナルのResolve要求を出したスイッチの物理的な(MAC)アドレスを含んでいます。

   Owner switch MAC

所有者スイッチMAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the destination endstation is attached -- that is,
      the switch that was able to resolve the requested addressing
      information.  This field is written by the owner switch.

この6八重奏の分野は目的地endstationが付けているスイッチの物理的な(MAC)アドレスを含んでいます--すなわち、要求されたアドレス指定情報を決議できたスイッチ。 この分野は所有者スイッチによって書かれます。

      If the status of the response is Unknown, this field is
      irrelevant.

応答の状態がUnknownであるなら、この分野は無関係です。

   Known destination address

知られている送付先アドレス

      This variable-length field contains the known attribute of the
      destination endstation address.  This address is stored in
      Tag/Length/Value format.

この可変長の分野は送付先endstationアドレスの知られている属性を含んでいます。 このアドレスはTag/長さ/値の形式で保存されます。

Ruffen, et al.               Informational                     [Page 44]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[44ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Count

カウント

      This 1-octet field contains the number of address attributes
      requested or returned.  This is the number of items in the resolve
      list.

この1八重奏の分野は属性が要求したか、または返したアドレスの数を含んでいます。 これは決心リストの件数です。

   Resolve list

決心リスト

      This variable-length field contains a list of the address
      attributes either requested by the originating switch or returned
      by the owner switch.  Note that in a Resolve request message, this
      list contains only the tags of the requested address attributes.
      On the other hand, a Resolve response message with a status of
      ResolveAck contains the full TLV of each resolved address
      attribute.  The number of entries in the list is specified in the
      count field.

この可変長の分野は起因するスイッチによって要求されたか、または所有者スイッチによって返されたアドレス属性のリストを含んでいます。 Resolve要求メッセージでは、このリストが要求されたアドレス属性のタグだけを入れてあることに注意してください。 他方では、ResolveAckの状態があるResolve応答メッセージはそれぞれの決心しているアドレス属性の完全なTLVを含んでいます。 リストのエントリーの数はカウント分野で指定されます。

      In an Interswitch Resolve response message, this field is
      irrelevant if the status of the response is Unknown.

Interswitch Resolve応答メッセージでは、この分野は応答の状態がUnknownであるなら無関係です。

   Actual destination switch MAC

実際の目的地スイッチMAC

      This 6-octet field contains the physical (MAC) address of the
      actual switch within the chassis to which the endstation is
      attached.  If the status of the response is Unknown, this field is
      irrelevant.

この6八重奏の分野はendstationが付けている筐体の中に実際のスイッチの物理的な(MAC)アドレスを含んでいます。 応答の状態がUnknownであるなら、この分野は無関係です。

   Downlink chassis MAC

ダウンリンク筐体MAC

      This 6-octet field contains the physical (MAC) address of the
      downlink chassis.  If the status of the response is Unknown, this
      field is irrelevant.

この6八重奏の分野はダウンリンク筐体の物理的な(MAC)アドレスを含んでいます。 応答の状態がUnknownであるなら、この分野は無関係です。

   Actual chassis MAC

実際の筐体MAC

      This 6-octet field contains the physical (MAC) address of the
      uplink chassis.  If the status of the response is Unknown, this
      field is irrelevant.

この6八重奏の分野はアップリンク筐体の物理的な(MAC)アドレスを含んでいます。 応答の状態がUnknownであるなら、この分野は無関係です。

   Domain name

ドメイン名

      This 16-octet field contains the ASCII name of the domain.  If the
      status of the response is Unknown, this field is irrelevant.

この16八重奏の分野はドメインのASCII名を含んでいます。 応答の状態がUnknownであるなら、この分野は無関係です。

Ruffen, et al.               Informational                     [Page 45]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[45ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

6.5 Interswitch New User Message

6.5 Interswitchの新しいユーザメッセージ

   The Interswitch New User message consists of a variable number of
   octets, as shown below:

Interswitch New Userメッセージは以下に示されるように可変数の八重奏から成ります:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 5)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                                                               |
      +   Previous owner switch MAC   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   48 |                                                               :
      :                    MAC address of new user                    +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   70 |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
   74 |                          Resolve list                         |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(5をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | 状態| 呼び出しタグ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | | + パケット+++++++++++++++++32のソースMAC| | | スイッチMAC+36を溯源する+++++++++++++++++| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 40 | | + 前の所有者スイッチMAC+++++++++++++++++44| | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 48 | : : 新しいユーザ+のMACアドレス| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 70 | カウント| | +-+-+-+-+-+-+-+-+ + 74 | 決心リスト| : : | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In the following description of the message fields, the term
   "originating" switch refers to the switch that issued the original
   Interswitch New User request.  The term "previous owner" switch
   refers to that switch to which the endstation was previously
   attached.  And the term "responding" switch refers to either the
   "previous owner" switch or to a switch at the end of the switch flood
   path that did not own the endstation but issues an Interswitch New
   User response because it has no downstream neighbors.

メッセージ分野の以下の記述では、用語「起因する」スイッチはオリジナルのInterswitch New User要求を出したスイッチについて言及します。 用語「前の所有者」スイッチはendstationが以前に取り付けられたそのスイッチについて言及します。 そして、用語「応じる」スイッチが「前の所有者」スイッチについて言及するか、それは、スイッチ洪水経路の端のスイッチに、endstationを所有していませんでしたが、それにはどんな川下の隣人もいないので、Interswitch New User応答を発行します。

Ruffen, et al.               Informational                     [Page 46]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[46ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   With the exception of the resolve list, all fields of an Interswitch
   New User message are allocated by the originating switch, and unless
   otherwise noted below, are written by the originating switch.

起因するスイッチによって割り当てられて、そうでなければ、有名な下による書かれていて、起因することが切り替わるということでないなら、決心リストを除いて、Interswitch New Userメッセージのすべての分野がそうです。

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 5, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ5、バージョン1について説明します。

   Opcode

Opcode

      This 2-octet field contains the operation code of the message.
      Valid values are as follows:

この2八重奏の分野はメッセージの命令コードを含んでいます。 有効値は以下の通りです:

         1    (unused in a New User message)
         2    (unused in a New User message)
         3    The message is a New User request.
         4    The message is a New User response.

1 (New Userメッセージの未使用の) 2 (New Userメッセージの未使用の) 3 メッセージはNew User要求です。 4 メッセージはNew User応答です。

      The originating switch writes a value of 3 to this field, while
      the responding switch writes a value of 4.

起因するスイッチはこの分野に3の値を書きますが、応じるスイッチは4の値を書きます。

   Status

状態

      This 2-octet field contains the status of a New User response
      message.  Valid values are as follows:

この2八重奏の分野はNew User応答メッセージの状態を含んでいます。 有効値は以下の通りです:

         0    VLAN resolution successful (NewUserAck)
         1    (unused)
         2    VLAN resolution unsuccessful (NewUserUnknown)

0VLAN解決うまくいっている(NewUserAck)1(未使用)の2VLAN解決失敗しています。(NewUserUnknown)

      This field is written by the responding switch.

この分野は応じるスイッチによって書かれます。

   Call tag

呼び出しタグ

      This 2-octet field contains the call tag of the endstation packet
      for which this New User request is issued.  The call tag is a 16-
      bit value (generated by the originating switch) that uniquely
      identifies the packet that caused the switch to identify the
      endstation as a new user.

この2八重奏の分野はこのNew User要求が出されるendstationパケットの呼び出しタグを含んでいます。 呼び出しタグは唯一スイッチがendstationが新しいユーザであると認識したパケットを特定する16の噛み付いている値(起因するスイッチで、生成される)です。

Ruffen, et al.               Informational                     [Page 47]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[47ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Source MAC of packet

パケットのソースMAC

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

この6八重奏の分野は呼び出しタグによって特定されたパケットを溯源したendstationの物理的な(MAC)アドレスを含んでいます。

   Originating switch MAC

スイッチMACを溯源します。

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original New User request.

この6八重奏の分野はオリジナルのNew User要求を出したスイッチの物理的な(MAC)アドレスを含んでいます。

   Previous owner switch MAC

前の所有者スイッチMAC

      This 6-octet field contains the physical (MAC) address of the
      switch to which the endstation was previously attached -- that is,
      the switch that was able to resolve the VLAN information. This
      field is written by the previous owner switch.

この6八重奏の分野はendstationが以前に取り付けられたスイッチの物理的な(MAC)アドレスを含んでいます--すなわち、VLAN情報を決議できたスイッチ。 この分野は前の所有者スイッチによって書かれます。

      If the status of the response is Unknown, this field is
      irrelevant.

応答の状態がUnknownであるなら、この分野は無関係です。

   MAC address of new user

新しいユーザのMACアドレス

      This 24-octet field contains the physical (MAC) address of the new
      user endstation, stored in Tag/Length/Value format.

この24八重奏の分野はTag/長さ/値の形式で保存された新しいユーザendstationの物理的な(MAC)アドレスを含んでいます。

   Count

カウント

      This 1-octet field contains the number of VLAN identifiers
      returned.  This is the number of items in the resolve list. This
      field is written by the previous owner switch.

この1八重奏の分野は識別子が返したVLANの数を含んでいます。 これは決心リストの件数です。 この分野は前の所有者スイッチによって書かれます。

      If the status of the response is Unknown, this field and the
      resolve list are irrelevant.

応答の状態がUnknownであるなら、この分野と決心リストは無関係です。

   Resolve list

決心リスト

      This variable-length field contains a list of the VLAN identifiers
      of all static VLANs to which the endstation belongs, stored in
      Tag/Length/Value format (see Section 2.3). The number of entries
      in the list is specified in the count field.  This list is written
      by the previous owner switch.

この可変長の分野はendstationが属するすべての静的なVLANsに関するVLAN識別子のリストを含んでいます、Tag/長さ/値の形式で保存されて(セクション2.3を見てください)。 リストのエントリーの数はカウント分野で指定されます。 このリストは前の所有者スイッチによって書かれます。

      If the status of the response is Unknown, this field is
      irrelevant.

応答の状態がUnknownであるなら、この分野は無関係です。

Ruffen, et al.               Informational                     [Page 48]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[48ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

6.6 Interswitch Tag-Based Flood Message

6.6 Interswitchのタグベースの洪水メッセージ

   There are two versions of the Interswitch Tag-Based Flood message
   used by the SecureFast VLAN product.

SecureFast VLAN製品によって使用されるベースのInterswitch Tag Floodメッセージの2つのバージョンがあります。

6.6.1 Prior to Version 1.8

6.6.1 バージョン1.8の前に

   The Interswitch Tag-Based Flood message used by SFVLAN prior to
   version 1.8 consists of a variable number of octets, as shown below:

バージョン1.8の前にSFVLANによって使用されたベースのInterswitch Tag Floodメッセージは可変数の八重奏から成ります、以下に示すように:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 7)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |           Version             |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |            Status             |           Call Tag            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |                                                               |
      +     Source MAC of packet      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Originating switch MAC    +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |     Count     |                                               |
      +-+-+-+-+-+-+-+-+                                               +
   44 |                           VLAN list                           |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |                                                               |
      +                                                               +
      :                        Original packet                        :
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(7をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | 状態| 呼び出しタグ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | | + パケット+++++++++++++++++32のソースMAC| | | スイッチMAC+36を溯源する+++++++++++++++++| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 40 | カウント| | +-+-+-+-+-+-+-+-+ + 44 | VLANリスト| : : | | +++++++++++++++++++++++++++++++++n| | + + : オリジナルのパケット: + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         n = 41 + length of VLAN list

nはVLANリストの41+長さと等しいです。

Ruffen, et al.               Informational                     [Page 49]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[49ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 7, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ7、バージョン1について説明します。

   Opcode

Opcode

      This 2-octet field contains the operation code of the message. The
      value here should be 1, indicating the message is a flood request.

この2八重奏の分野はメッセージの命令コードを含んでいます。 メッセージが洪水要求であることを示して、ここの値は1であるべきです。

   Status

状態

      This 2-octet field is currently unused.  It is reserved for future
      use.

この2八重奏の分野は現在、未使用です。 それは今後の使用のために予約されます。

   Call tag

呼び出しタグ

      This 2-octet field contains the call tag of the endstation packet
      encapsulated within this tag-based flood message.  The call tag is
      a 16-bit value (generated by the originating switch) that uniquely
      identifies the packet.

この2八重奏の分野はこのタグベースの洪水メッセージの中でカプセルに入れられたendstationパケットの呼び出しタグを含んでいます。 呼び出しタグは唯一パケットを特定する16ビットの値(起因するスイッチで、生成される)です。

   Source MAC of packet

パケットのソースMAC

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

この6八重奏の分野は呼び出しタグによって特定されたパケットを溯源したendstationの物理的な(MAC)アドレスを含んでいます。

   Originating switch MAC

スイッチMACを溯源します。

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original tag-based flooded message.

この6八重奏の分野はオリジナルのタグベースの水につかっているメッセージを発行したスイッチの物理的な(MAC)アドレスを含んでいます。

   Count

カウント

      This 1-octet field contains the number of VLAN identifiers
      included in the VLAN list.

VLANリストに識別子を含んでいて、この1八重奏の分野はVLANの数を含んでいます。

   VLAN list

VLANリスト

      This variable-length field contains a list of the VLAN identifiers
      of all VLANs to which the source endstation belongs.  Each entry
      in this list has the following format:

この可変長の分野はソースendstationが属するすべてのVLANsに関するVLAN識別子のリストを含んでいます。 このリストにおける各エントリーには、以下の形式があります:

Ruffen, et al.               Informational                     [Page 50]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[50ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Value length  |                                               |
      +-+-+-+-+-+-+-+-+                                               +
      |                        VLAN identifier value                  |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 値の長さ| | +-+-+-+-+-+-+-+-+ + | VLAN識別子価値| : : | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      The 1-octet value length field contains the length of the VLAN
      identifier.  VLAN identifiers can be from 1 to 16 characters long.

1八重奏の値の長さの分野はVLAN識別子の長さを含んでいます。 長い間、VLAN識別子は1〜16のキャラクタであるかもしれません。

   Original packet

オリジナルのパケット

      This variable-length field contains the original packet as sent by
      the source endstation.

ソースendstationによって送られるようにこの可変長の分野はオリジナルのパケットを含んでいます。

Ruffen, et al.               Informational                     [Page 51]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[51ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

6.6.2 Version 1.8

6.6.2 バージョン1.8

   The Interswitch Tag-Based Flood message used by SFVLAN version 1.8
   consists of a variable number of octets, as shown below:

SFVLANバージョン1.8によって使用されるベースのInterswitch Tag Floodメッセージは以下に示されるように可変数の八重奏から成ります:

      Note:

以下に注意してください。

         SFVLAN version 1.8 also recognizes the Interswitch Tag-Based
         Flood message as described in Section 6.6.1.

SFVLANバージョン1.8 また、セクション6.6.1で説明されるようにベースのInterswitch Tag Floodメッセージを認識します。

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 7)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |       VLAN identifier         |           Version             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |           Opcode              |            Status             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |          Call tag             |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Source MAC of packet      +
   32 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   36 |                                                               |
      +    Originating switch MAC     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                               |     Count     |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               +
   44 |                                                               |
      :                           VLAN list                           :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    n |                                                               |
      +                                                               +
      :                        Original packet                        :
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(7をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | VLAN識別子| バージョン| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | Opcode| 状態| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | 呼び出しタグ| | パケット+32の+++++++++++++++++ソースMAC| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 36 | | + 起因するスイッチMAC+++++++++++++++++40| | カウント| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 44 | | : VLANは記載します: | | +++++++++++++++++++++++++++++++++n| | + + : オリジナルのパケット: + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            n = 41 + length of VLAN list

nはVLANリストの41+長さと等しいです。

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

Ruffen, et al.               Informational                     [Page 52]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[52ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

      -  The frame header source address contains a value of 02-00-1D-
         00-xx-yy, where xx-yy is a value set by the VLAN Manager
         application to tag the frame header with the VLAN identifier.
         This value ranges from 2 to 4095.  For example, a value of 100
         would be set as 00-64.

- フレームヘッダーソースアドレスは02-00-1 D-00-xx-yyの値を含んでいます。(そこでは、xx-yyがフレームヘッダーにVLAN識別子をタグ付けするようにVLANマネージャアプリケーションで設定された値です)。 この値は2〜4095年まで及びます。 例えば、100の値は00-64として設定されるでしょう。

      -  The frame header type field contains a value of 0x81FF.  Note
         that this differs from all other ISMP messages.

- フレームヘッダータイプ分野は0x81FFの値を含んでいます。 これが他のすべてのISMPメッセージと異なっていることに注意してください。

   VLAN identifier

VLAN識別子

      This 2-octet field contains the VLAN identifier of the packet
      source.

この2八重奏の分野はパケットソースに関するVLAN識別子を含んでいます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This section describes version 2 of the Interswitch Tag-
      Based Flood message.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このセクションはInterswitch TagのベースのFloodメッセージのバージョン2について説明します。

   Opcode

Opcode

      This 2-octet field contains the operation code of the message.
      Valid values here are as follows:

この2八重奏の分野はメッセージの命令コードを含んでいます。 ここの有効値は以下の通りです:

      1  The message is a flood request.  The original packet is
         complete within this message.

1 メッセージは洪水要求です。 オリジナルのパケットはこのメッセージの中で完全です。

      2  The message is a fragmented flood request.  The first portion
         of the original packet is contained in this message.

2 メッセージは断片化している洪水要求です。 オリジナルのパケットの最初の一部がこのメッセージに含まれています。

      3  The message is a fragmented flood request.  The second portion
         of the original packet is contained in this message.

3 メッセージは断片化している洪水要求です。 オリジナルのパケットの2番目の一部がこのメッセージに含まれています。

   Status

状態

      This 2-octet field is currently unused.  It is reserved for future
      use.

この2八重奏の分野は現在、未使用です。 それは今後の使用のために予約されます。

   Call tag

呼び出しタグ

      This 2-octet field contains the call tag of the endstation packet
      encapsulated within this tag-based flood message.  The call tag is
      a 16-bit value (generated by the originating switch) that uniquely
      identifies the packet.

この2八重奏の分野はこのタグベースの洪水メッセージの中でカプセルに入れられたendstationパケットの呼び出しタグを含んでいます。 呼び出しタグは唯一パケットを特定する16ビットの値(起因するスイッチで、生成される)です。

Ruffen, et al.               Informational                     [Page 53]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[53ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Source MAC of packet

パケットのソースMAC

      This 6-octet field contains the physical (MAC) address of the
      endstation that originated the packet identified by the call tag.

この6八重奏の分野は呼び出しタグによって特定されたパケットを溯源したendstationの物理的な(MAC)アドレスを含んでいます。

   Originating switch MAC

スイッチMACを溯源します。

      This 6-octet field contains the physical (MAC) address of the
      switch that issued the original tag-based flooded message.

この6八重奏の分野はオリジナルのタグベースの水につかっているメッセージを発行したスイッチの物理的な(MAC)アドレスを含んでいます。

   Count

カウント

      This 1-octet field contains the number of VLAN identifiers
      included in the VLAN list.

VLANリストに識別子を含んでいて、この1八重奏の分野はVLANの数を含んでいます。

   VLAN list

VLANリスト

      This variable-length field contains a list of the VLAN identifiers
      of all VLANs to which the source endstation belongs.  Each entry
      in this list has the following format:

この可変長の分野はソースendstationが属するすべてのVLANsに関するVLAN識別子のリストを含んでいます。 このリストにおける各エントリーには、以下の形式があります:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Value length  |                                               |
      +-+-+-+-+-+-+-+-+                                               +
      |                        VLAN identifier value                  |
      :                                                               :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 値の長さ| | +-+-+-+-+-+-+-+-+ + | VLAN識別子価値| : : | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      The 1-octet value length field contains the length of the VLAN
      identifier.  VLAN identifiers can be from 1 to 16 characters long.

1八重奏の値の長さの分野はVLAN識別子の長さを含んでいます。 長い間、VLAN識別子は1〜16のキャラクタであるかもしれません。

   Original packet

オリジナルのパケット

      This variable-length field contains the original packet as sent by
      the source endstation.

ソースendstationによって送られるようにこの可変長の分野はオリジナルのパケットを含んでいます。

Ruffen, et al.               Informational                     [Page 54]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[54ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

6.7 Interswitch Tap/Untap Message

6.7 Interswitch蛇口/Untapメッセージ

   The Interswitch Tap/Untap message consists of a variable number of
   octets, as shown below:

Interswitch Tap/Untapメッセージは以下に示されるように可変数の八重奏から成ります:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   00 |                                                               |
      +                         Frame header /                        +
      :                   ISMP packet header (type 8)                 :
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   20 |            Version            |            Opcode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   24 |             Status            |          Error code           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   28 |           Header type         |         Header length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   32 |            Direction          |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       Probe switch MAC        +
   36 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   40 |                           Probe port                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   44 |                                                               |
      +                                                               +
   48 |                           (Reserved)                          |
      +                                                               +
   52 |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   56 |                                                               |
      +                                                               +
      |                             Header                            |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 00 | | + フレームヘッダー/+: ISMPパケットのヘッダー(8をタイプします): | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 20 | バージョン| Opcode| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 24 | 状態| エラーコード| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 28 | ヘッダータイプ| ヘッダ長| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 32 | 方向| | +++++++++++++++++徹底的調査スイッチMAC+36| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 40 | ポートを調べてください。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 44 | | + + 48 | (予約される)です。 | + + 52 | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 56 | | + + | ヘッダー| + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Frame header/ISMP packet header

フレームヘッダー/ISMPパケットのヘッダー

      This 20-octet field contains the frame header and the ISMP packet
      header.

この20八重奏の分野はフレームヘッダーとISMPパケットのヘッダーを含みます。

   Version

バージョン

      This 2-octet field contains the version number of the message
      type.  This document describes ISMP message type 8, version 1.

この2八重奏の分野はメッセージタイプのバージョン番号を含んでいます。 このドキュメントはISMPメッセージタイプ8、バージョン1について説明します。

Ruffen, et al.               Informational                     [Page 55]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[55ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Opcode

Opcode

      tet field contains the operation type of the message. ues are as
      follows:

tet分野はメッセージの操作タイプを含んでいます。uesは以下の通りです:

         1  The message is a Tap request.
         2  The message is a Tap response.
         3  The message is an Untap request.
         4  The message is an Untap response.

1 メッセージはTap要求です。 2 メッセージはTap応答です。 3 メッセージはUntap要求です。 4 メッセージはUntap応答です。

   Status

状態

      This 2-octet field contains the current status of the tap request.
      Valid values are as follows:

この2八重奏の分野は蛇口要求の現在の状態を含んでいます。 有効値は以下の通りです:

         1  Switch must disable outport on untap. (DisableOutport)
         2  Switch must keep outports on untap. (KeepOutport)
         3  Probe not found this leg of spanning tree. (ProbeNotFound)
         4  Still searching for probe switch. (OutportDecisionUnknown)
         5  Unassigned. (StatusUnassigned)
         6  (reserved)
         7  (reserved)
         8  (reserved)
         9  (reserved)

1個のスイッチがuntapで外港を無効にしなければなりません。 (DisableOutport) 2スイッチはuntapに外港を保たなければなりません。 (KeepOutport) 3徹底的調査はスパニングツリーのこの脚に当たりませんでした。 (ProbeNotFound) 4 まだ、徹底的調査スイッチを捜し求めています。 (OutportDecisionUnknown) 5 割り当てられません。 (StatusUnassigned) 6 (予約される)の7(予約される)8(予約される)9(予約される)です。

      See Section 5.2.3 for details on the use of this field.

この分野の使用に関する詳細に関してセクション5.2.3を見てください。

   Error code

エラーコード

      This 2-octet field contains the response message error code of the
      requested operation.  Valid values are as follows:

この2八重奏の分野は要求された操作の応答メッセージエラーコードを含んでいます。 有効値は以下の通りです:

         1  Operation successful. (NoError)
         2  No response heard from downstream neighbor. (Timeout)
         3  Port does not exist on probe switch. (BadPort)
         4  Message invalid. (InvalidMessage)
         5  Version number invalid. (IncompatibleVersions)

1 操作うまくいきます。 (NoError) 2 応答は全く川下の隣人から聞かれませんでした。 (タイムアウト) 3 ポートは徹底的調査スイッチの上に存在していません。 (BadPort) 4メッセージ病人。 (InvalidMessage) 5バージョン数の病人。 (IncompatibleVersions)

   Header type

ヘッダータイプ

      This 2-octet field contains the type of information contained in
      the header field.  Currently, valid values are as follows:

この2八重奏の分野はヘッダーフィールドに含まれた情報の種類を含みます。 現在、有効値は以下の通りです:

      1  (reserved) 2  Header contains destination and source endstation
         MAC addresses.

1 (予約されます) 2 Headerは目的地とソースendstation MACアドレスを含んでいます。

Ruffen, et al.               Informational                     [Page 56]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[56ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

   Header length

ヘッダ長

      This 2-octet field contains the length of the header field.
      Currently, this field always contains a value of 12.

この2八重奏の分野はヘッダーフィールドの長さを含んでいます。 現在、この分野はいつも12の値を含みます。

   Direction

方向

      This 2-octet field contains a value indicating the type of tap.
      Valid values are as follows:

この2八重奏の分野は蛇口のタイプを示す値を含んでいます。 有効値は以下の通りです:

      1  (reserved)
      2  Tap is bi-directional and data should be captured flowing in
         either direction over the connection.
      3  Tap is uni-directional and data should be captured only when it
         flows from the source to the destination.

1 (予約されます) 2Tapは双方向であり、接続の上をどちらの方向にも流れながら、データを得るべきです。 3蛇口はuni方向上です、そして、ソースから目的地まで流れるときだけ、データを得るべきです。

   Probe switch MAC

スイッチMACを調べてください。

      This 6-octet field contains the physical (MAC) address of the
      switch to which the probe is attached.

この6八重奏の分野は徹底的調査が付けているスイッチの物理的な(MAC)アドレスを含んでいます。

   Probe port

ポートを調べてください。

      This 4-octet field contains the logical port number (on the probe
      switch) to which the probe is attached.

この4八重奏の分野は徹底的調査が付けている論理的なポートナンバー(徹底的調査スイッチの)を含んでいます。

   Reserved

予約されます。

      These 12 octets are reserved.

これらの12の八重奏が予約されています。

   Header

ヘッダー

      This variable-length field contains the header that identifies the
      connection being tapped.  The length of the header is stored in
      the length field.

この可変長の分野は叩かれている接続を特定するヘッダーを含んでいます。 ヘッダーの長さは長さの分野に保存されます。

      Currently, this field is 12 octets long and contains the 6-octet
      physical address of the connection's destination endstation,
      followed by the 6-octet physical address of the connection's
      source endstation, as shown below:

現在、この分野は、長い間の12の八重奏であり、以下に示すように接続のソースendstationの6八重奏の物理アドレスがあとに続いた接続の目的地endstationの6八重奏の物理アドレスを含みます:

Ruffen, et al.               Informational                     [Page 57]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[57ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +    Destination MAC address    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Source MAC address       +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 目的地MACアドレス+++++++++++++++++| | | ソースMACが+であると扱う+++++++++++++++++| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7. Security Considerations

7. セキュリティ問題

   Requested call connections are established or denied based on the
   VLAN policy of the source and destination addresses specified within
   the packet.  Section 4.4.1 discusses this process in detail.

要求された呼び出し接続は、パケットの中で指定されたソースと送付先アドレスのVLAN方針に基づいて確立されるか、または否定されます。 セクション4.4 .1 詳細にこのプロセスについて議論します。

8. References

8. 参照

   [RFC1700]   Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
               RFC 1700, October 1994.

[RFC1700] レイノルズとJ.とJ.ポステル、「規定番号」、STD2、RFC1700、1994年10月。

   [IEEE]      "IEEE Standard 802.1d -- 1990"

[IEEE]、「IEEE規格802.1d--1990インチ

   [IDvlsp]    Kane, L., "Cabletron's VLS Protocol Specification", RFC
               2642, August 1999.

[IDvlsp] ケーン、L.、「CabletronのVLSプロトコル仕様」、RFC2642、1999年8月。

   [IDhello]   Hamilton, D. and D. Ruffen, "Cabletron's VlanHello
               Protocol Specification", RFC 2641, August 1999.

[IDhello] ハミルトンとD.とD.Ruffen、「CabletronのVlanHelloプロトコル仕様」、RFC2641、1999年8月。

Ruffen, et al.               Informational                     [Page 58]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[58ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

9. Authors' Addresses

9. 作者のアドレス

   Dave Ruffen
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

Inc.Post Office Box5005ロチェスター、デーヴRuffen Cabletron Systemsニューハンプシャー03866-5005

   Phone: (603) 332-9400
   EMail: ruffen@ctron.com

以下に電話をしてください。 (603) 332-9400 メールしてください: ruffen@ctron.com

   Ted Len
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

Inc.Post Office Box5005ロチェスター、テッドレンCabletron Systemsニューハンプシャー03866-5005

   Phone: (603) 332-9400
   EMail:  len@ctron.com

以下に電話をしてください。 (603) 332-9400 メールしてください: len@ctron.com

   Judy Yanacek
   Cabletron Systems, Inc.
   Post Office Box 5005
   Rochester, NH  03866-5005

Inc.Post Office Box5005ロチェスター、ジュディYanacek Cabletron Systemsニューハンプシャー03866-5005

   Phone: (603) 332-9400
   EMail:  jyanacek@ctron.com

以下に電話をしてください。 (603) 332-9400 メールしてください: jyanacek@ctron.com

Ruffen, et al.               Informational                     [Page 59]

RFC 2643     Cabletron's SecureFast VLAN Operational Model   August 1999

Ruffen、他 情報[59ページ]のRFC2643Cabletronのモデル1999年8月の操作上のSecureFast VLAN

10.  Full Copyright Statement

10. 完全な著作権宣言文

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Copyright(C)インターネット協会(1999)。 All rights reserved。

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部分配された実装を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsプロセスで定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

上に承諾された限られた許容は、永久であり、インターネット協会、後継者または案配によって取り消されないでしょう。

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Ruffen, et al.               Informational                     [Page 60]

Ruffen、他 情報[60ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

Excel97のフライトシュミレーター イースターエッグ

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る