RFC2743 日本語訳

2743 Generic Security Service Application Program Interface Version 2,Update 1. J. Linn. January 2000. (Format: TXT=229418 bytes) (Obsoletes RFC2078) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                            J. Linn
Request for Comments: 2743                              RSA Laboratories
Obsoletes: 2078                                             January 2000
Category: Standards Track

コメントを求めるワーキンググループJ.リンの要求をネットワークでつないでください: 2743のRSA研究所が以下を時代遅れにします。 2078 2000年1月のカテゴリ: 標準化過程

         Generic Security Service Application Program Interface
                          Version 2, Update 1

一般的なセキュリティー・サービス適用業務プログラム・インタフェースバージョン2、アップデート1

Status of this Memo

このMemoの状態

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。

Copyright Notice

版権情報

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Copyright(C)インターネット協会(2000)。 All rights reserved。

Abstract

要約

   The Generic Security Service Application Program Interface (GSS-API),
   Version 2, as defined in [RFC-2078], provides security services to
   callers in a generic fashion, supportable with a range of underlying
   mechanisms and technologies and hence allowing source-level
   portability of applications to different environments. This
   specification defines GSS-API services and primitives at a level
   independent of underlying mechanism and programming language
   environment, and is to be complemented by other, related
   specifications:

Generic Security Service Application Program Interface(GSS-API)、[RFC-2078]で定義されるバージョン2は訪問者へのセキュリティー・サービスを一般的なファッションに提供します、メカニズムと技術の基礎となって、したがって、アプリケーションのソース平らな携帯性を異なった環境に許容する範囲で、我慢できます。 この仕様は、発症機序とプログラミング言語環境の如何にかかわらずレベルでGSS-APIサービスと基関数を定義して、他の、そして、関連する仕様で補足となることです:

      documents defining specific parameter bindings for particular
      language environments

特定の言語環境のための特定のパラメタ結合を定義するドキュメント

      documents defining token formats, protocols, and procedures to be
      implemented in order to realize GSS-API services atop particular
      security mechanisms

特定のセキュリティー対策の上でGSS-APIサービスがわかるために実行されるために象徴書式、プロトコル、および手順を定義するドキュメント

   This memo obsoletes [RFC-2078], making specific, incremental changes
   in response to implementation experience and liaison requests. It is
   intended, therefore, that this memo or a successor version thereto
   will become the basis for subsequent progression of the GSS-API
   specification on the standards track.

実現経験と連絡要求に対応して特定の、そして、増加の変更を行って、このメモは[RFC-2078]を時代遅れにします。 したがって、このメモかそれに加えて後継者バージョンが標準化過程に関するGSS-API仕様のその後の進行の基礎になることを意図します。

Linn                        Standards Track                     [Page 1]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[1ページ]。

TABLE OF CONTENTS

目次

   1: GSS-API Characteristics and Concepts . . . . . . . . . . . .  4
   1.1: GSS-API Constructs . . . . . . . . . . . . . . . . . . . .  6
   1.1.1:  Credentials . . . . . . . . . . . . . . . . . . . . . .  6
   1.1.1.1: Credential Constructs and Concepts . . . . . . . . . .  6
   1.1.1.2: Credential Management  . . . . . . . . . . . . . . . .  7
   1.1.1.3: Default Credential Resolution  . . . . . . . . . . . .  8
   1.1.2: Tokens . . . . . . . . . . . . . . . . . . . . . . . . .  9
   1.1.3:  Security Contexts . . . . . . . . . . . . . . . . . . . 11
   1.1.4:  Mechanism Types . . . . . . . . . . . . . . . . . . . . 12
   1.1.5:  Naming  . . . . . . . . . . . . . . . . . . . . . . . . 13
   1.1.6:  Channel Bindings  . . . . . . . . . . . . . . . . . . . 16
   1.2:  GSS-API Features and Issues . . . . . . . . . . . . . . . 17
   1.2.1:  Status Reporting  and Optional Service Support  . . . . 17
   1.2.1.1: Status Reporting . . . . . . . . . . . . . . . . . . . 17
   1.2.1.2: Optional Service Support . . . . . . . . . . . . . . . 19
   1.2.2: Per-Message Security Service Availability  . . . . . . . 20
   1.2.3: Per-Message Replay Detection and Sequencing  . . . . . . 21
   1.2.4:  Quality of Protection . . . . . . . . . . . . . . . . . 24
   1.2.5: Anonymity Support  . . . . . . . . . . . . . . . . . . . 25
   1.2.6: Initialization . . . . . . . . . . . . . . . . . . . . . 25
   1.2.7: Per-Message Protection During Context Establishment  . . 26
   1.2.8: Implementation Robustness  . . . . . . . . . . . . . . . 27
   1.2.9: Delegation . . . . . . . . . . . . . . . . . . . . . . . 28
   1.2.10: Interprocess Context Transfer . . . . . . . . . . . . . 28
   2:  Interface Descriptions  . . . . . . . . . . . . . . . . . . 29
   2.1:  Credential management calls . . . . . . . . . . . . . . . 31
   2.1.1:  GSS_Acquire_cred call . . . . . . . . . . . . . . . . . 31
   2.1.2:  GSS_Release_cred call . . . . . . . . . . . . . . . . . 34
   2.1.3:  GSS_Inquire_cred call . . . . . . . . . . . . . . . . . 35
   2.1.4:  GSS_Add_cred call . . . . . . . . . . . . . . . . . . . 37
   2.1.5:  GSS_Inquire_cred_by_mech call . . . . . . . . . . . . . 40
   2.2:  Context-level calls . . . . . . . . . . . . . . . . . . . 41
   2.2.1:  GSS_Init_sec_context call . . . . . . . . . . . . . . . 42
   2.2.2:  GSS_Accept_sec_context call . . . . . . . . . . . . . . 49
   2.2.3:  GSS_Delete_sec_context call . . . . . . . . . . . . . . 53
   2.2.4:  GSS_Process_context_token call  . . . . . . . . . . . . 54
   2.2.5:  GSS_Context_time call . . . . . . . . . . . . . . . . . 55
   2.2.6:  GSS_Inquire_context call  . . . . . . . . . . . . . . . 56
   2.2.7:  GSS_Wrap_size_limit call  . . . . . . . . . . . . . . . 57
   2.2.8:  GSS_Export_sec_context call . . . . . . . . . . . . . . 59
   2.2.9:  GSS_Import_sec_context call . . . . . . . . . . . . . . 61
   2.3:  Per-message calls . . . . . . . . . . . . . . . . . . . . 62
   2.3.1:  GSS_GetMIC call . . . . . . . . . . . . . . . . . . . . 63
   2.3.2:  GSS_VerifyMIC call  . . . . . . . . . . . . . . . . . . 64
   2.3.3:  GSS_Wrap call . . . . . . . . . . . . . . . . . . . . . 65
   2.3.4:  GSS_Unwrap call . . . . . . . . . . . . . . . . . . . . 66

1: GSS-APIの特性と概念. . . . . . . . . . . . 4 1.1: GSS-API構造物. . . . . . . . . . . . . . . . . . . . 6 1.1.1: 信任状. . . . . . . . . . . . . . . . . . . . . . 6 1.1.1、.1: 信任している構造物と概念. . . . . . . . . . 6 1.1.1、.2: 信任している管理. . . . . . . . . . . . . . . . 7 1.1.1、.3: デフォルト信任している解決. . . . . . . . . . . . 8 1.1.2: 象徴. . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.3: セキュリティ文脈. . . . . . . . . . . . . . . . . . . 11 1.1.4: メカニズムタイプ. . . . . . . . . . . . . . . . . . . . 12 1.1.5: 命名. . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.6: チャンネル結合. . . . . . . . . . . . . . . . . . . 16 1.2: GSS-APIは、.171.2に.1を特徴として、発行します: 状態報告と任意のサービスは. . . . 17 1.2.1.1を支持します: 状態報告. . . . . . . . . . . . . . . . . . . 17 1.2.1.2: 任意のサービスサポート. . . . . . . . . . . . . . . 19 1.2.2: 1メッセージあたりのセキュリティー・サービスの有用性. . . . . . . 20 1.2.3: 1メッセージあたりの再生検出と配列. . . . . . 21 1.2.4: 保護. . . . . . . . . . . . . . . . . 24 1.2.5の品質: 匿名サポート. . . . . . . . . . . . . . . . . . . 25 1.2.6: 初期設定. . . . . . . . . . . . . . . . . . . . . 25 1.2.7: 文脈設立. . 26 1.2.8の間の1メッセージあたりの保護: 実現丈夫さ. . . . . . . . . . . . . . . 27 1.2.9: 代表団. . . . . . . . . . . . . . . . . . . . . . . 28 1.2.10: インタプロセス文脈転送. . . . . . . . . . . . . 28 2: 記述. . . . . . . . . . . . . . . . . . 29 2.1を連結してください: 信任している経営者側は、.1に.312.1人に電話をします: GSS_Acquire_信用呼び出し. . . . . . . . . . . . . . . . . 31 2.1.2: GSS_Release_信用呼び出し. . . . . . . . . . . . . . . . . 34 2.1.3: GSS_Inquire_信用呼び出し. . . . . . . . . . . . . . . . . 35 2.1.4: GSS_Add_信用呼び出し. . . . . . . . . . . . . . . . . . . 37 2.1.5: _mech呼び出し. . . . . . . . . . . . . 40 2.2によるGSS_Inquire_信用_: 文脈レベル呼び出し. . . . . . . . . . . . . . . . . . . 41 2.2.1: GSS_Init_秒_文脈呼び出し. . . . . . . . . . . . . . . 42 2.2.2: GSS_Accept_秒_文脈呼び出し. . . . . . . . . . . . . . 49 2.2.3: GSS_Delete_秒_文脈呼び出し. . . . . . . . . . . . . . 53 2.2.4: GSS_Process_文脈_象徴呼び出し. . . . . . . . . . . . 54 2.2.5: GSS_Context_時間呼び出し. . . . . . . . . . . . . . . . . 55 2.2.6: GSS_Inquire_文脈呼び出し. . . . . . . . . . . . . . . 56 2.2.7: GSS_Wrap_サイズ_限界呼び出し. . . . . . . . . . . . . . . 57 2.2.8: GSS_Export_秒_文脈呼び出し. . . . . . . . . . . . . . 59 2.2.9: GSS_Import_秒_文脈呼び出し. . . . . . . . . . . . . . 61 2.3: 1メッセージあたりの呼び出し. . . . . . . . . . . . . . . . . . . . 62 2.3.1: GSS_GetMIC呼び出し. . . . . . . . . . . . . . . . . . . . 63 2.3.2: GSS_VerifyMIC呼び出し. . . . . . . . . . . . . . . . . . 64 2.3.3: GSS_Wrap呼び出し. . . . . . . . . . . . . . . . . . . . . 65 2.3.4: GSS_Unwrapは、.66に電話をします。

Linn                        Standards Track                     [Page 2]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[2ページ]。

   2.4:  Support calls . . . . . . . . . . . . . . . . . . . . . . 68
   2.4.1:  GSS_Display_status call . . . . . . . . . . . . . . . . 68
   2.4.2:  GSS_Indicate_mechs call . . . . . . . . . . . . . . . . 69
   2.4.3:  GSS_Compare_name call . . . . . . . . . . . . . . . . . 70
   2.4.4:  GSS_Display_name call . . . . . . . . . . . . . . . . . 71
   2.4.5:  GSS_Import_name call  . . . . . . . . . . . . . . . . . 72
   2.4.6:  GSS_Release_name call . . . . . . . . . . . . . . . . . 73
   2.4.7:  GSS_Release_buffer call . . . . . . . . . . . . . . . . 74
   2.4.8:  GSS_Release_OID_set call  . . . . . . . . . . . . . . . 74
   2.4.9:  GSS_Create_empty_OID_set call . . . . . . . . . . . . . 75
   2.4.10: GSS_Add_OID_set_member call . . . . . . . . . . . . . . 76
   2.4.11: GSS_Test_OID_set_member call  . . . . . . . . . . . . . 76
   2.4.12: GSS_Inquire_names_for_mech call . . . . . . . . . . . . 77
   2.4.13: GSS_Inquire_mechs_for_name call . . . . . . . . . . . . 77
   2.4.14: GSS_Canonicalize_name call  . . . . . . . . . . . . . . 78
   2.4.15: GSS_Export_name call  . . . . . . . . . . . . . . . . . 79
   2.4.16: GSS_Duplicate_name call . . . . . . . . . . . . . . . . 80
   3: Data Structure Definitions for GSS-V2 Usage  . . . . . . . . 81
   3.1: Mechanism-Independent Token Format . . . . . . . . . . . . 81
   3.2: Mechanism-Independent Exported Name Object Format  . . . . 84
   4: Name Type Definitions  . . . . . . . . . . . . . . . . . . . 85
   4.1: Host-Based Service Name Form . . . . . . . . . . . . . . . 85
   4.2: User Name Form . . . . . . . . . . . . . . . . . . . . . . 86
   4.3: Machine UID Form . . . . . . . . . . . . . . . . . . . . . 87
   4.4: String UID Form  . . . . . . . . . . . . . . . . . . . . . 87
   4.5: Anonymous Nametype . . . . . . . . . . . . . . . . . . . . 87
   4.6: GSS_C_NO_OID . . . . . . . . . . . . . . . . . . . . . . . 88
   4.7: Exported Name Object . . . . . . . . . . . . . . . . . . . 88
   4.8: GSS_C_NO_NAME  . . . . . . . . . . . . . . . . . . . . . . 88
   5:  Mechanism-Specific Example Scenarios  . . . . . . . . . . . 88
   5.1: Kerberos V5, single-TGT  . . . . . . . . . . . . . . . . . 89
   5.2: Kerberos V5, double-TGT  . . . . . . . . . . . . . . . . . 89
   5.3:  X.509 Authentication Framework  . . . . . . . . . . . . . 90
   6:  Security Considerations . . . . . . . . . . . . . . . . . . 91
   7:  Related Activities  . . . . . . . . . . . . . . . . . . . . 92
   8:  Referenced Documents  . . . . . . . . . . . . . . . . . . . 93
   Appendix A: Mechanism Design Constraints  . . . . . . . . . . . 94
   Appendix B: Compatibility with GSS-V1 . . . . . . . . . . . . . 94
   Appendix C: Changes Relative to RFC-2078  . . . . . . . . . . . 96
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . .100
   Full Copyright Statement  . . . . . . . . . . . . . . . . . . .101

2.4: サポートコール. . . . . . . . . . . . . . . . . . . . . . 68 2.4.1: GSS_Display_状態呼び出し. . . . . . . . . . . . . . . . 68 2.4.2: GSS_Indicate_mechs呼び出し. . . . . . . . . . . . . . . . 69 2.4.3: GSS_Compare_名前呼び出し. . . . . . . . . . . . . . . . . 70 2.4.4: GSS_Display_名前呼び出し. . . . . . . . . . . . . . . . . 71 2.4.5: GSS_Import_名前呼び出し. . . . . . . . . . . . . . . . . 72 2.4.6: GSS_Release_名前呼び出し. . . . . . . . . . . . . . . . . 73 2.4.7: GSS_Release_バッファ呼び出し. . . . . . . . . . . . . . . . 74 2.4.8: GSS_Release_OID_セット呼び出し. . . . . . . . . . . . . . . 74 2.4.9: GSS_Createの_の空の_OID_セット呼び出し. . . . . . . . . . . . . 75 2.4.10: GSS_Add_OID_セット_メンバー呼び出し. . . . . . . . . . . . . . 76 2.4.11: GSS_Test_OID_セット_メンバー呼び出し. . . . . . . . . . . . . 76 2.4.12: GSS_Inquire_は_mechのための_を呼び出し. . . . . . . . . . . . 77 2.4.13と命名します: _のためのmechs_が呼び出し. . . . . . . . . . . . 77 2.4.14と命名するGSS_Inquire_: GSS_Canonicalize_名前呼び出し. . . . . . . . . . . . . . 78 2.4.15: GSS_Export_名前呼び出し. . . . . . . . . . . . . . . . . 79 2.4.16: GSS_Duplicate_名前呼び出し. . . . . . . . . . . . . . . . 80 3: GSS-V2用法. . . . . . . . 81 3.1のためのデータ構造定義: メカニズムから独立している象徴形式. . . . . . . . . . . . 81 3.2: メカニズム無党派は名前物の形式. . . . 84 4を輸出しました: 型定義. . . . . . . . . . . . . . . . . . . 85 4.1を命名してください: ホストベースのサービス名フォーム. . . . . . . . . . . . . . . 85 4.2: ユーザ名前フォーム. . . . . . . . . . . . . . . . . . . . . . 86 4.3: UIDフォーム. . . . . . . . . . . . . . . . . . . . . 87 4.4を機械加工してください: UIDフォーム. . . . . . . . . . . . . . . . . . . . . 87 4.5を結んでください: 匿名のNametype. . . . . . . . . . . . . . . . . . . . 87 4.6: GSS_C_いいえ_OID. . . . . . . . . . . . . . . . . . . . . . . 88 4.7: 輸出された名前物. . . . . . . . . . . . . . . . . . . 88 4.8: GSS_C_いいえ_名. . . . . . . . . . . . . . . . . . . . . . 88 5: メカニズム特有の例のシナリオ. . . . . . . . . . . 88 5.1: ケルベロスV5、独身のTGT.895.2: ケルベロスV5、二重TGT.895.3: X.509認証枠組み. . . . . . . . . . . . . 90 6: セキュリティ問題. . . . . . . . . . . . . . . . . . 91 7: 関連活動. . . . . . . . . . . . . . . . . . . . 92 8: 参照をつけられたドキュメント. . . . . . . . . . . . . . . . . . . 93付録A: メカニズム・デザイン規制. . . . . . . . . . . 94付録B: GSS-V1. . . . . . . . . . . . . 94付録Cとの互換性: RFC-2078. . . . . . . . . . . 96作者のアドレスに比例した変化… .100の完全な著作権宣言文.101………………

Linn                        Standards Track                     [Page 3]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[3ページ]。

1: GSS-API Characteristics and Concepts

1: GSS-APIの特性と概念

   GSS-API operates in the following paradigm.  A typical GSS-API caller
   is itself a communications protocol, calling on GSS-API in order to
   protect its communications with authentication, integrity, and/or
   confidentiality security services.  A GSS-API caller accepts tokens
   provided to it by its local GSS-API implementation and transfers the
   tokens to a peer on a remote system; that peer passes the received
   tokens to its local GSS-API implementation for processing. The
   security services available through GSS-API in this fashion are
   implementable (and have been implemented) over a range of underlying
   mechanisms based on secret-key and public-key cryptographic
   technologies.

GSS-APIは以下のパラダイムで作動します。 典型的なGSS-API訪問者はそれ自体でコミュニケーションプロトコルです、認証、保全、そして/または、秘密性セキュリティー・サービスとのコミュニケーションを保護するためにGSS-APIを訪問して。 GSS-API訪問者は、地方のGSS-API実行でそれに提供された象徴を受け入れて、リモートシステムの上で象徴を同輩に移します。 その同輩は処理のための地方のGSS-API実行に容認された象徴を渡します。 GSS-APIを通して利用可能なセキュリティー・サービスは秘密鍵に基づくさまざまな発症機序と公開カギ暗号化技術の上でこんなやり方で実行可能です(実行されてください、そうした)。

   The GSS-API separates the operations of initializing a security
   context between peers, achieving peer entity authentication
   (GSS_Init_sec_context() and GSS_Accept_sec_context() calls), from the
   operations of providing per-message data origin authentication and
   data integrity protection (GSS_GetMIC() and GSS_VerifyMIC() calls)
   for messages subsequently transferred in conjunction with that
   context.  (The definition for the peer entity authentication service,
   and other definitions used in this document, corresponds to that
   provided in [ISO-7498-2].) When establishing a security context, the
   GSS-API enables a context initiator to optionally permit its
   credentials to be delegated, meaning that the context acceptor may
   initiate further security contexts on behalf of the initiating
   caller. Per-message GSS_Wrap() and GSS_Unwrap() calls provide the
   data origin authentication and data integrity services which
   GSS_GetMIC() and GSS_VerifyMIC() offer, and also support selection of
   confidentiality services as a caller option. Additional calls provide
   supportive functions to the GSS-API's users.

GSS-APIはセキュリティ文脈を初期化する操作を同輩の間に切り離します、同輩実体認証(GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()呼び出し)を達成して、次にその文脈に関連して移されたメッセージのための1メッセージあたりのデータ起源認証とデータ保全保護(GSS_GetMIC()とGSS_VerifyMIC()呼び出し)を提供する操作から。 (同輩実体認証サービスのための定義、および本書では使用される他の定義は[ISO-7498-2]に提供されたそれに対応しています。) セキュリティ文脈を確立するとき、GSS-APIは、文脈創始者が、信任状が代表として派遣されることを任意に許可するのを可能にします、文脈アクセプタが開始している訪問者を代表してさらなるセキュリティ文脈を開始するかもしれないことを意味して。 1メッセージあたりのGSS_Wrap()とGSS_Unwrap()呼び出しは、訪問者オプションとしてGSS_GetMIC()とGSS_VerifyMIC()が提供するデータ起源認証とデータ保全サービスを提供して、また、秘密性サービスのサポート品揃えを提供します。 追加呼び出しはGSS-APIのユーザに支持している機能を提供します。

   The following paragraphs provide an example illustrating the
   dataflows involved in use of the GSS-API by a client and server in a
   mechanism-independent fashion, establishing a security context and
   transferring a protected message. The example assumes that credential
   acquisition has already been completed.  The example also assumes
   that the underlying authentication technology is capable of
   authenticating a client to a server using elements carried within a
   single token, and of authenticating the server to the client (mutual
   authentication) with a single returned token; this assumption holds
   for some presently-documented CAT mechanisms but is not necessarily
   true for other cryptographic technologies and associated protocols.

以下のパラグラフはメカニズムから独立しているファッションでクライアントとサーバでGSS-APIの使用にかかわるデータフローを例証する例を提供します、セキュリティ文脈を確立して、保護されたメッセージを移して。 例は、信任している買収が既に完了したと仮定します。 また、例は、単一の象徴の中で運ばれた要素を使用することでサーバにクライアントを認証して、基本的な認証技術が単一の返された象徴をもっているクライアント(互いの認証)にサーバを認証できると仮定します。 この仮定は、いくつかの現在記録されたCATメカニズムに当てはまりますが、他の暗号化技術と関連プロトコルには、必ず本当であるというわけではありません。

   The client calls GSS_Init_sec_context() to establish a security
   context to the server identified by targ_name, and elects to set the
   mutual_req_flag so that mutual authentication is performed in the
   course of context establishment. GSS_Init_sec_context() returns an

クライアントが、GSS_Init_をtarg_名前によって特定されたサーバにセキュリティ文脈を確立する秒_文脈()と呼んで、互いの_req_旗を設定するのを選ぶので、互いの認証は文脈設立の間に実行されます。 GSS_Init_秒_文脈()は戻ります。

Linn                        Standards Track                     [Page 4]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[4ページ]。

   output_token to be passed to the server, and indicates
   GSS_S_CONTINUE_NEEDED status pending completion of the mutual
   authentication sequence. Had mutual_req_flag not been set, the
   initial call to GSS_Init_sec_context() would have returned
   GSS_S_COMPLETE status. The client sends the output_token to the
   server.

サーバに通過されるために_象徴を出力して、GSS_S_CONTINUE_が互いの認証系列の完成まで状態を必要としたのを示します。 互いの_req_旗が設定されなかったなら、GSS_Init_秒_文脈()への初期の呼び出しは_S_COMPLETE状態をGSSに返したでしょうに。 クライアントは出力_象徴をサーバに送ります。

   The server passes the received token as the input_token parameter to
   GSS_Accept_sec_context().  GSS_Accept_sec_context indicates
   GSS_S_COMPLETE status, provides the client's authenticated identity
   in the src_name result, and provides an output_token to be passed to
   the client. The server sends the output_token to the client.

サーバは入力_象徴パラメタとしてGSS_Accept_秒_文脈()に容認された象徴を渡します。 GSS_Accept_秒_文脈は、GSS_S_COMPLETE状態を示して、結果というsrc_名前にクライアントの認証されたアイデンティティを提供して、クライアントに渡されるために出力_象徴を提供します。 サーバは出力_象徴をクライアントに送ります。

   The client passes the received token as the input_token parameter to
   a successor call to GSS_Init_sec_context(), which processes data
   included in the token in order to achieve mutual authentication from
   the client's viewpoint. This call to GSS_Init_sec_context() returns
   GSS_S_COMPLETE status, indicating successful mutual authentication
   and the completion of context establishment for this example.

クライアントは入力_象徴パラメタとしてGSS_Init_秒_文脈()への後継者呼び出しに容認された象徴を渡します。(象徴にデータを含んでいて、文脈は、クライアントの観点から互いの認証を達成するために処理されます)。 この例のための文脈設立のうまくいっている互いの認証と完成を示して、GSS_Init_秒_文脈()へのこの呼び出しは_S_COMPLETE状態をGSSに返します。

   The client generates a data message and passes it to GSS_Wrap().
   GSS_Wrap() performs data origin authentication, data integrity, and
   (optionally) confidentiality processing on the message and
   encapsulates the result into output_message, indicating
   GSS_S_COMPLETE status. The client sends the output_message to the
   server.

クライアントは、データメッセージを発生させて、GSS_Wrap()にそれを通過します。 GSS_Wrap()はデータ起源認証、データ保全、および(任意に)秘密性処理をメッセージに実行して、出力_メッセージに結果を要約します、GSS_S_COMPLETE状態を示して。 クライアントは出力_メッセージをサーバに送ります。

   The server passes the received message to GSS_Unwrap().  GSS_Unwrap()
   inverts the encapsulation performed by GSS_Wrap(), deciphers the
   message if the optional confidentiality feature was applied, and
   validates the data origin authentication and data integrity checking
   quantities. GSS_Unwrap() indicates successful validation by returning
   GSS_S_COMPLETE status along with the resultant output_message.

サーバはGSS_Unwrap()に受信されたメッセージを通過します。 GSS_Unwrap()はGSS_Wrap()によって実行されたカプセル化を逆にして、任意の秘密性の特徴が適用されたならメッセージを解読して、量をチェックするデータ起源認証とデータ保全を有効にします。 GSS_Unwrap()は結果の出力_メッセージに伴う戻っているGSS_S_COMPLETE状態のそばでうまくいっている合法化を示します。

   For purposes of this example, we assume that the server knows by
   out-of-band means that this context will have no further use after
   one protected message is transferred from client to server. Given
   this premise, the server now calls GSS_Delete_sec_context() to flush
   context-level information.  Optionally, the server-side application
   may provide a token buffer to GSS_Delete_sec_context(), to receive a
   context_token to be transferred to the client in order to request
   that client-side context-level information be deleted.

この例の目的のために、私たちは、クライアントからサーバまで1つの保護されたメッセージを移した後にサーバがバンドの外によるいいえがこの文脈でさらに使用する手段を知っていると思います。この前提を考えて、サーバは、現在、GSS_Delete_を豊富な文脈レベル情報に秒_文脈()と呼びます。 任意に、サーバサイドアプリケーションは、クライアントサイド文脈レベル情報が削除されるよう要求するためにクライアントに移すために文脈_象徴を受け取るためにGSS_Delete_秒_文脈()に象徴バッファを提供するかもしれません。

   If a context_token is transferred, the client passes the
   context_token to GSS_Process_context_token(), which returns
   GSS_S_COMPLETE status after deleting context-level information at the
   client system.

文脈_象徴がわたるなら、クライアントはGSS_Process_文脈_象徴()に文脈_象徴を渡します。(クライアントシステムで文脈レベル情報を削除した後に、それは、_S_COMPLETE状態をGSSに返します)。

Linn                        Standards Track                     [Page 5]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[5ページ]。

   The GSS-API design assumes and addresses several basic goals,
   including:

GSS-APIデザインは、いくつかの基本的な目標、包含を仮定して、記述します:

      Mechanism independence: The GSS-API defines an interface to
      cryptographically implemented strong authentication and other
      security services at a generic level which is independent of
      particular underlying mechanisms. For example, GSS-API-provided
      services have been implemented using secret-key technologies
      (e.g., Kerberos, per [RFC-1964]) and with public-key approaches
      (e.g., SPKM, per [RFC-2025]).

メカニズム独立: GSS-APIは特定の発症機序から独立している一般的なレベルで暗号で実行された強い認証と他のセキュリティー・サービスとインタフェースを定義します。例えば、GSS APIが提供されたサービスが秘密鍵技術(例えば、[RFC-1964]あたりのケルベロス)を使用することで実行されて公開カギアプローチ(例えば、[RFC-2025]あたりのSPKM)と共にありました。

      Protocol environment independence: The GSS-API is independent of
      the communications protocol suites with which it is employed,
      permitting use in a broad range of protocol environments. In
      appropriate environments, an intermediate implementation "veneer"
      which is oriented to a particular communication protocol may be
      interposed between applications which call that protocol and the
      GSS-API (e.g., as defined in [RFC-2203] for Open Network Computing
      Remote Procedure Call (RPC)), thereby invoking GSS-API facilities
      in conjunction with that protocol's communications invocations.

環境独立について議定書の中で述べてください: GSS-APIはそれが採用しているコミュニケーションプロトコル群から独立しています、広範囲なプロトコル環境における使用を可能にして。 適切な環境で、特定の通信プロトコルに適応する中間的実現「ベニヤ」はそのプロトコルを呼ぶアプリケーションとGSS-APIの間で挿入されるかもしれません(例えば、オープンNetwork Computing Remote Procedure Call(RPC)のために[RFC-2203]で定義されるように)、その結果、そのプロトコルのコミュニケーション実施に関連してGSS-API施設を呼び出します。

      Protocol association independence: The GSS-API's security context
      construct is independent of communications protocol association
      constructs. This characteristic allows a single GSS-API
      implementation to be utilized by a variety of invoking protocol
      modules on behalf of those modules' calling applications. GSS-API
      services can also be invoked directly by applications, wholly
      independent of protocol associations.

協会独立について議定書の中で述べてください: GSS-APIのセキュリティ文脈構造物は通信規約協会構造物から独立しています。 それらのモジュールが、アプリケーションと呼ぶことを代表してこの特性はさまざまな呼び出しで利用されるべきただ一つのGSS-API実行プロトコルモジュールを許容します。 また、完全にプロトコル協会の如何にかかわらず直接アプリケーションでGSS-APIサービスを呼び出すことができます。

      Suitability to a range of implementation placements: GSS-API
      clients are not constrained to reside within any Trusted Computing
      Base (TCB) perimeter defined on a system where the GSS-API is
      implemented; security services are specified in a manner suitable
      to both intra-TCB and extra-TCB callers.

さまざまな実現プレースメントへの適合: GSS-APIクライアントがシステムで上GSS-APIが実行される定義されたどんなTrusted Computing基地(TCB)の周辺の中にも住んでいるのが抑制されません。 セキュリティー・サービスはイントラ-TCBと余分なTCB訪問者の両方に適当な方法で指定されます。

1.1: GSS-API Constructs

1.1: GSS-API構造物

   This section describes the basic elements comprising the GSS-API.

このセクションはGSS-APIを包括する基本要素について説明します。

1.1.1:  Credentials

1.1.1: 信任状

1.1.1.1: Credential Constructs and Concepts

1.1.1.1: 信任している構造物と概念

   Credentials provide the prerequisites which permit GSS-API peers to
   establish security contexts with each other. A caller may designate
   that the credential elements which are to be applied for context
   initiation or acceptance be selected by default.  Alternately, those
   GSS-API callers which need to make explicit selection of particular

信任状はGSS-API同輩が互いと共にセキュリティ文脈を確立することを許可する前提条件を提供します。 訪問者は指定するかもしれません。文脈開始か承認のために適用されることである信任状要素はデフォルトで選択されます。 交互に、必要があるそれらのGSS-API訪問者が特定の明白な選択をします。

Linn                        Standards Track                     [Page 6]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[6ページ]。

   credentials structures may make references to those credentials
   through GSS-API-provided credential handles ("cred_handles").  In all
   cases, callers' credential references are indirect, mediated by GSS-
   API implementations and not requiring callers to access the selected
   credential elements.

信任状構造はGSS APIが提供された信任しているハンドル(「_が扱う信用」)を通して信任状をそれらを参照するかもしれません。 すべての場合では、訪問者の信任している参照は間接的です、GSS API実行で調停されて、訪問者が選択された信任している要素にアクセスするのが必要でないことで。

   A single credential structure may be used to initiate outbound
   contexts and to accept inbound contexts. Callers needing to operate
   in only one of these modes may designate this fact when credentials
   are acquired for use, allowing underlying mechanisms to optimize
   their processing and storage requirements. The credential elements
   defined by a particular mechanism may contain multiple cryptographic
   keys, e.g., to enable authentication and message encryption to be
   performed with different algorithms.

ただ一つの信任している構造は、外国行きの文脈を開始して、本国行きの文脈を受け入れるのに使用されるかもしれません。 使用のために信任状を取得するとき、これらのモードが1だけで作動する必要がある訪問者はこの事実を指定するかもしれません、発症機序が彼らの処理と格納要件を最適化するのを許容して。 特定のメカニズムによって定義された信任している要素は、例えば認証とメッセージ暗号化が異なったアルゴリズムで実行されるのを可能にするために複数の暗号化キーを含むかもしれません。

   A GSS-API credential structure may contain multiple credential
   elements, each containing mechanism-specific information for a
   particular underlying mechanism (mech_type), but the set of elements
   within a given credential structure represent a common entity.  A
   credential structure's contents will vary depending on the set of
   mech_types supported by a particular GSS-API implementation. Each
   credential element identifies the data needed by its mechanism in
   order to establish contexts on behalf of a particular principal, and
   may contain separate credential references for use in context
   initiation and context acceptance.  Multiple credential elements
   within a given credential having overlapping combinations of
   mechanism, usage mode, and validity period are not permitted.

GSS-APIの信任している構造は複数の信任している要素を含むかもしれなくて、それぞれ特定の発症機序のためのメカニズム特殊情報を含んでいて、しかし、(mech_タイプ)、与えられた信任している構造の中の要素のセットは一般的な実体を表します。 特定のGSS-API実行で支持されたmech_タイプのセットによって、信任している構造のコンテンツは異なるでしょう。 それぞれの信任している要素は、特定の元本を代表して文脈を確立するためにメカニズムによって必要とされたデータを特定して、文脈開始と文脈承認に使用の別々の信任している参照を含むかもしれません。 メカニズムの組み合わせを重ね合わせる、用法モード、および有効期間を持っている与えられた信任状の中の複数の信任している要素は受入れられません。

   Commonly, a single mech_type will be used for all security contexts
   established by a particular initiator to a particular target. A major
   motivation for supporting credential sets representing multiple
   mech_types is to allow initiators on systems which are equipped to
   handle multiple types to initiate contexts to targets on other
   systems which can accommodate only a subset of the set supported at
   the initiator's system.

一般的に、単独のmech_タイプは特定の創始者によって特定の目標に確立されたすべてのセキュリティ文脈に使用されるでしょう。 複数のmech_タイプの代理をする信任しているセットを支えることに関する主要な動機は備えているシステムの上の創始者が創始者のシステムで支えられたセットの部分集合しか対応できない他のシステムで目標に文脈を開始するために複数のタイプを扱うのを許容することです。

1.1.1.2: Credential Management

1.1.1.2: 信任している管理

   It is the responsibility of underlying system-specific mechanisms and
   OS functions below the GSS-API to ensure that the ability to acquire
   and use credentials associated with a given identity is constrained
   to appropriate processes within a system. This responsibility should
   be taken seriously by implementors, as the ability for an entity to
   utilize a principal's credentials is equivalent to the entity's
   ability to successfully assert that principal's identity.

与えられたアイデンティティに関連している信任状を取得して、使用する能力がシステムの中で過程を当てるのが抑制されるのを保証するのは、GSS-APIの下の基本的なシステム特有のメカニズムとOS機能の責任です。 この責任は作成者によって真剣に受け止められるべきです、実体が校長の信任状を利用する能力が首尾よくその校長のアイデンティティについて断言する実体の能力に同等であるので。

Linn                        Standards Track                     [Page 7]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[7ページ]。

   Once a set of GSS-API credentials is established, the transferability
   of that credentials set to other processes or analogous constructs
   within a system is a local matter, not defined by the GSS-API. An
   example local policy would be one in which any credentials received
   as a result of login to a given user account, or of delegation of
   rights to that account, are accessible by, or transferable to,
   processes running under that account.

1セットのGSS-API信任状がいったん確立されると、システムの中の他の過程か類似の構造物へのその信任状セットの転々流通性はGSS-APIによって定義されるのではなく、地域にかかわる事柄です。 例のローカルの方針は与えられたユーザアカウントへのログイン、またはそのアカウントへの権利の代表団の結果として受け取られたどんな信任状もアクセスしやすいか、または移転可能です、それで実行される過程が説明されるということであるものでしょう。

   The credential establishment process (particularly when performed on
   behalf of users rather than server processes) is likely to require
   access to passwords or other quantities which should be protected
   locally and exposed for the shortest time possible. As a result, it
   will often be appropriate for preliminary credential establishment to
   be performed through local means at user login time, with the
   result(s) cached for subsequent reference. These preliminary
   credentials would be set aside (in a system-specific fashion) for
   subsequent use, either:

信任..設立..過程..特に..実行..ユーザ..むしろ..サーバ..過程..ありそう..必要..アクセス..パスワード..量..保護..局所的..露出..短い..時間..可能 その結果、予備の信任している設立がユーザログイン時間にローカルの手段で実行されるのは、しばしば適切でしょう、結果がその後の参照のためにキャッシュされている状態で。 これらの予備の信任状はその後の使用のためにかたわらに置かれるでしょう(システム特有のファッションで):

      to be accessed by an invocation of the GSS-API GSS_Acquire_cred()
      call, returning an explicit handle to reference that credential

_GSS-API GSSの実施によってアクセスされるために、そんなに信任している参照に明白なハンドルを返して、Acquire_信用()は呼びます。

      to comprise default credential elements to be installed, and to be
      used when default credential behavior is requested on behalf of a
      process

デフォルト信任状の振舞いであるときに、デフォルトを包括するために、インストールされた、使用されるべき信任している要素は過程を代表して要求されます。

1.1.1.3: Default Credential Resolution

1.1.1.3: デフォルト信任状解決

   The GSS_Init_sec_context() and GSS_Accept_sec_context() routines
   allow the value GSS_C_NO_CREDENTIAL to be specified as their
   credential handle parameter.  This special credential handle
   indicates a desire by the application to act as a default principal.
   In support of application portability, support for the default
   resolution behavior described below for initiator credentials
   (GSS_Init_sec_context() usage) is mandated; support for the default
   resolution behavior described below for acceptor credentials
   (GSS_Accept_sec_context() usage) is recommended. If default
   credential resolution fails, GSS_S_NO_CRED status is to be returned.

GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()ルーチンは、_値GSS_Cのいいえ_CREDENTIALが彼らの信任しているハンドルパラメタとして指定されるのを許容します。 この特別な信任しているハンドルは、デフォルト元本として務めるためにアプリケーションで願望を示します。 アプリケーションの携帯性を支持して、創始者信任状(GSS_Init_秒_文脈()用法)のために以下で説明されたデフォルト解決の振舞いのサポートは強制されます。 アクセプタ信任状(GSS_Accept_秒_文脈()用法)のために以下で説明されたデフォルト解決の振舞いのサポートはお勧めです。 GSS_S_いいえ_CRED状態はデフォルトであるなら、信任している解決が失敗して、返すことです。

      GSS_Init_sec_context:

GSS_イニット_秒_文脈:

         (i) If there is only a single principal capable of initiating
         security contexts that the application is authorized to act on
         behalf of, then that principal shall be used, otherwise

そこである場合にだけ、(i)はアプリケーションが校長が使用されるものとすることについてその時、そうでないことを代表して行動するのが認可されるセキュリティ文脈を開始できる独身の元本です。

Linn                        Standards Track                     [Page 8]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[8ページ]。

         (ii) If the platform maintains a concept of a default network-
         identity, and if the application is authorized to act on behalf
         of that identity for the purpose of initiating security
         contexts, then the principal corresponding to that identity
         shall be used, otherwise

(ii) プラットホームがデフォルトの概念を維持するなら、アイデンティティをネットワークでつないでください。そうすれば、アプリケーションがセキュリティ文脈を開始する目的のためのそのアイデンティティを代表して行動するのが認可されるなら、そのアイデンティティに対応する校長は使用されるものとします、そうではありません。

         (iii) If the platform maintains a concept of a default local
         identity, and provides a means to map local identities into
         network-identities, and if the application is authorized to act
         on behalf of the network-identity image of the default local
         identity for the purpose of initiating security contexts, then
         the principal corresponding to that identity shall be used,
         otherwise

(iii) プラットホームがデフォルトの地方のアイデンティティの概念を維持して、地方のアイデンティティを写像する手段をネットワークアイデンティティに前提として、セキュリティ文脈を開始する目的のためのデフォルトの地方のアイデンティティについてアプリケーションがネットワークアイデンティティイメージを代表して行動するのが認可されるなら、そのアイデンティティに対応する校長は使用されるものとします、そうではありません。

         (iv) A user-configurable default identity should be used.

(iv) ユーザ構成可能なデフォルトのアイデンティティは使用されるべきです。

      GSS_Accept_sec_context:

GSS_は_秒_文脈を受け入れます:

         (i) If there is only a single authorized principal identity
         capable of accepting security contexts, then that principal
         shall be used, otherwise

(i) セキュリティ文脈を受け入れることができるただ一つの認可された主要なアイデンティティしかなければ、その校長は使用されるものとします、そうではありません。

         (ii) If the mechanism can determine the identity of the target
         principal by examining the context-establishment token, and if
         the accepting application is authorized to act as that
         principal for the purpose of accepting security contexts, then
         that principal identity shall be used, otherwise

(ii) メカニズムが文脈設立象徴を調べることによって目標校長のアイデンティティを決定できて、受諾アプリケーションがセキュリティ文脈を受け入れる目的のためにそんなに主要であるとして機能するのが認可されるなら、その主要なアイデンティティは使用されるものとします、そうではありません。

         (iii) If the mechanism supports context acceptance by any
         principal, and mutual authentication was not requested, any
         principal that the application is authorized to accept security
         contexts under may be used, otherwise

メカニズムがどんな主要で、互いの認証でも文脈承認を支持するなら、(iii)は要求されないで、アプリケーションがセキュリティ文脈を受け入れるのが認可されるどんな校長も使用されるかもしれません、そうではありません。

         (iv) A user-configurable default identity shall be used.

(iv) ユーザ構成可能なデフォルトのアイデンティティは使用されるものとします。

   The purpose of the above rules is to allow security contexts to be
   established by both initiator and acceptor using the default behavior
   wherever possible.  Applications requesting default behavior are
   likely to be more portable across mechanisms and platforms than those
   that use GSS_Acquire_cred() to request a specific identity.

上の規則の目的はセキュリティ文脈が創始者とアクセプタの両方によって確立されるのをどこでも、可能であるところでデフォルトの振舞いを使用することで許容することです。 デフォルトの振舞いを要求するアプリケーションはメカニズムとプラットホームの向こう側に、特定のアイデンティティを要求するのにGSS_Acquire_信用()を使用するものより携帯用である傾向があります。

1.1.2: Tokens

1.1.2: 象徴

   Tokens are data elements transferred between GSS-API callers, and are
   divided into two classes. Context-level tokens are exchanged in order
   to establish and manage a security context between peers. Per-message
   tokens relate to an established context and are exchanged to provide

象徴は、GSS-API訪問者の間に移されたデータ要素であり、2つのクラスに分割されます。 同輩の間のセキュリティ文脈を確立して、管理するために文脈レベル象徴を交換します。 1メッセージあたりの象徴に確立した関係に関連して、提供するために交換します。

Linn                        Standards Track                     [Page 9]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[9ページ]。

   protective security services (i.e., data origin authentication,
   integrity, and optional confidentiality) for corresponding data
   messages.

対応するデータメッセージのための保護的なセキュリティー・サービス(すなわち、データ起源認証、保全、および任意の秘密性)。

   The first context-level token obtained from GSS_Init_sec_context() is
   required to indicate at its very beginning a globally-interpretable
   mechanism identifier, i.e., an Object Identifier (OID) of the
   security mechanism. The remaining part of this token as well as the
   whole content of all other tokens are specific to the particular
   underlying mechanism used to support the GSS-API. Section 3.1 of this
   document provides, for designers of GSS-API mechanisms, the
   description of the header of the first context-level token which is
   then followed by mechanism-specific information.

The first context-level token obtained from GSS_Init_sec_context() is required to indicate at its very beginning a globally-interpretable mechanism identifier, i.e., an Object Identifier (OID) of the security mechanism. The remaining part of this token as well as the whole content of all other tokens are specific to the particular underlying mechanism used to support the GSS-API. Section 3.1 of this document provides, for designers of GSS-API mechanisms, the description of the header of the first context-level token which is then followed by mechanism-specific information.

   Tokens' contents are opaque from the viewpoint of GSS-API callers.
   They are generated within the GSS-API implementation at an end
   system, provided to a GSS-API caller to be transferred to the peer
   GSS-API caller at a remote end system, and processed by the GSS-API
   implementation at that remote end system.

Tokens' contents are opaque from the viewpoint of GSS-API callers. They are generated within the GSS-API implementation at an end system, provided to a GSS-API caller to be transferred to the peer GSS-API caller at a remote end system, and processed by the GSS-API implementation at that remote end system.

   Context-level tokens may be output by GSS-API calls (and should be
   transferred to GSS-API peers) whether or not the calls' status
   indicators indicate successful completion.  Per-message tokens, in
   contrast, are to be returned only upon successful completion of per-
   message calls. Zero-length tokens are never returned by GSS routines
   for transfer to a peer. Token transfer may take place in an in-band
   manner, integrated into the same protocol stream used by the GSS-API
   callers for other data transfers, or in an out-of-band manner across
   a logically separate channel.

Context-level tokens may be output by GSS-API calls (and should be transferred to GSS-API peers) whether or not the calls' status indicators indicate successful completion. Per-message tokens, in contrast, are to be returned only upon successful completion of per- message calls. Zero-length tokens are never returned by GSS routines for transfer to a peer. Token transfer may take place in an in-band manner, integrated into the same protocol stream used by the GSS-API callers for other data transfers, or in an out-of-band manner across a logically separate channel.

   Different GSS-API tokens are used for different purposes (e.g.,
   context initiation, context acceptance, protected message data on an
   established context), and it is the responsibility of a GSS-API
   caller receiving tokens to distinguish their types, associate them
   with corresponding security contexts, and pass them to appropriate
   GSS-API processing routines.  Depending on the caller protocol
   environment, this distinction may be accomplished in several ways.

Different GSS-API tokens are used for different purposes (e.g., context initiation, context acceptance, protected message data on an established context), and it is the responsibility of a GSS-API caller receiving tokens to distinguish their types, associate them with corresponding security contexts, and pass them to appropriate GSS-API processing routines. Depending on the caller protocol environment, this distinction may be accomplished in several ways.

   The following examples illustrate means through which tokens' types
   may be distinguished:

The following examples illustrate means through which tokens' types may be distinguished:

      - implicit tagging based on state information (e.g., all tokens on
      a new association are considered to be context establishment
      tokens until context establishment is completed, at which point
      all tokens are considered to be wrapped data objects for that
      context),

- implicit tagging based on state information (e.g., all tokens on a new association are considered to be context establishment tokens until context establishment is completed, at which point all tokens are considered to be wrapped data objects for that context),

Linn                        Standards Track                    [Page 10]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 10] RFC 2743 GSS-API January 2000

      - explicit tagging at the caller protocol level,

- explicit tagging at the caller protocol level,

      - a hybrid of these approaches.

- a hybrid of these approaches.

   Commonly, the encapsulated data within a token includes internal
   mechanism-specific tagging information, enabling mechanism-level
   processing modules to distinguish tokens used within the mechanism
   for different purposes.  Such internal mechanism-level tagging is
   recommended to mechanism designers, and enables mechanisms to
   determine whether a caller has passed a particular token for
   processing by an inappropriate GSS-API routine.

Commonly, the encapsulated data within a token includes internal mechanism-specific tagging information, enabling mechanism-level processing modules to distinguish tokens used within the mechanism for different purposes. Such internal mechanism-level tagging is recommended to mechanism designers, and enables mechanisms to determine whether a caller has passed a particular token for processing by an inappropriate GSS-API routine.

   Development of GSS-API mechanisms based on a particular underlying
   cryptographic technique and protocol (i.e., conformant to a specific
   GSS-API mechanism definition) does not necessarily imply that GSS-API
   callers using that GSS-API mechanism will be able to interoperate
   with peers invoking the same technique and protocol outside the GSS-
   API paradigm, or with peers implementing a different GSS-API
   mechanism based on the same underlying technology.  The format of
   GSS-API tokens defined in conjunction with a particular mechanism,
   and the techniques used to integrate those tokens into callers'
   protocols, may not be interoperable with the tokens used by non-GSS-
   API callers of the same underlying technique.

Development of GSS-API mechanisms based on a particular underlying cryptographic technique and protocol (i.e., conformant to a specific GSS-API mechanism definition) does not necessarily imply that GSS-API callers using that GSS-API mechanism will be able to interoperate with peers invoking the same technique and protocol outside the GSS- API paradigm, or with peers implementing a different GSS-API mechanism based on the same underlying technology. The format of GSS-API tokens defined in conjunction with a particular mechanism, and the techniques used to integrate those tokens into callers' protocols, may not be interoperable with the tokens used by non-GSS- API callers of the same underlying technique.

1.1.3:  Security Contexts

1.1.3: Security Contexts

   Security contexts are established between peers, using credentials
   established locally in conjunction with each peer or received by
   peers via delegation. Multiple contexts may exist simultaneously
   between a pair of peers, using the same or different sets of
   credentials. Coexistence of multiple contexts using different
   credentials allows graceful rollover when credentials expire.
   Distinction among multiple contexts based on the same credentials
   serves applications by distinguishing different message streams in a
   security sense.

Security contexts are established between peers, using credentials established locally in conjunction with each peer or received by peers via delegation. Multiple contexts may exist simultaneously between a pair of peers, using the same or different sets of credentials. Coexistence of multiple contexts using different credentials allows graceful rollover when credentials expire. Distinction among multiple contexts based on the same credentials serves applications by distinguishing different message streams in a security sense.

   The GSS-API is independent of underlying protocols and addressing
   structure, and depends on its callers to transport GSS-API-provided
   data elements. As a result of these factors, it is a caller
   responsibility to parse communicated messages, separating GSS-API-
   related data elements from caller-provided data.  The GSS-API is
   independent of connection vs. connectionless orientation of the
   underlying communications service.

The GSS-API is independent of underlying protocols and addressing structure, and depends on its callers to transport GSS-API-provided data elements. As a result of these factors, it is a caller responsibility to parse communicated messages, separating GSS-API- related data elements from caller-provided data. The GSS-API is independent of connection vs. connectionless orientation of the underlying communications service.

   No correlation between security context and communications protocol
   association is dictated. (The optional channel binding facility,
   discussed in Section 1.1.6 of this document, represents an
   intentional exception to this rule, supporting additional protection

No correlation between security context and communications protocol association is dictated. (The optional channel binding facility, discussed in Section 1.1.6 of this document, represents an intentional exception to this rule, supporting additional protection

Linn                        Standards Track                    [Page 11]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 11] RFC 2743 GSS-API January 2000

   features within GSS-API supporting mechanisms.) This separation
   allows the GSS-API to be used in a wide range of communications
   environments, and also simplifies the calling sequences of the
   individual calls. In many cases (depending on underlying security
   protocol, associated mechanism, and availability of cached
   information), the state information required for context setup can be
   sent concurrently with initial signed user data, without interposing
   additional message exchanges.  Messages may be protected and
   transferred in both directions on an established GSS-API security
   context concurrently; protection of messages in one direction does
   not interfere with protection of messages in the reverse direction.

features within GSS-API supporting mechanisms.) This separation allows the GSS-API to be used in a wide range of communications environments, and also simplifies the calling sequences of the individual calls. In many cases (depending on underlying security protocol, associated mechanism, and availability of cached information), the state information required for context setup can be sent concurrently with initial signed user data, without interposing additional message exchanges. Messages may be protected and transferred in both directions on an established GSS-API security context concurrently; protection of messages in one direction does not interfere with protection of messages in the reverse direction.

   GSS-API implementations are expected to retain inquirable context
   data on a context until the context is released by a caller, even
   after the context has expired, although underlying cryptographic data
   elements may be deleted after expiration in order to limit their
   exposure.

GSS-API implementations are expected to retain inquirable context data on a context until the context is released by a caller, even after the context has expired, although underlying cryptographic data elements may be deleted after expiration in order to limit their exposure.

1.1.4:  Mechanism Types

1.1.4: Mechanism Types

   In order to successfully establish a security context with a target
   peer, it is necessary to identify an appropriate underlying mechanism
   type (mech_type) which both initiator and target peers support. The
   definition of a mechanism embodies not only the use of a particular
   cryptographic technology (or a hybrid or choice among alternative
   cryptographic technologies), but also definition of the syntax and
   semantics of data element exchanges which that mechanism will employ
   in order to support security services.

In order to successfully establish a security context with a target peer, it is necessary to identify an appropriate underlying mechanism type (mech_type) which both initiator and target peers support. The definition of a mechanism embodies not only the use of a particular cryptographic technology (or a hybrid or choice among alternative cryptographic technologies), but also definition of the syntax and semantics of data element exchanges which that mechanism will employ in order to support security services.

   It is recommended that callers initiating contexts specify the
   "default" mech_type value, allowing system-specific functions within
   or invoked by the GSS-API implementation to select the appropriate
   mech_type, but callers may direct that a particular mech_type be
   employed when necessary.

It is recommended that callers initiating contexts specify the "default" mech_type value, allowing system-specific functions within or invoked by the GSS-API implementation to select the appropriate mech_type, but callers may direct that a particular mech_type be employed when necessary.

   For GSS-API purposes, the phrase "negotiating mechanism" refers to a
   mechanism which itself performs negotiation in order to select a
   concrete mechanism which is shared between peers and is then used for
   context establishment.  Only those mechanisms which are defined in
   their specifications as negotiating mechanisms are to yield selected
   mechanisms with different identifier values than the value which is
   input by a GSS-API caller, except for the case of a caller requesting
   the "default" mech_type.

For GSS-API purposes, the phrase "negotiating mechanism" refers to a mechanism which itself performs negotiation in order to select a concrete mechanism which is shared between peers and is then used for context establishment. Only those mechanisms which are defined in their specifications as negotiating mechanisms are to yield selected mechanisms with different identifier values than the value which is input by a GSS-API caller, except for the case of a caller requesting the "default" mech_type.

   The means for identifying a shared mech_type to establish a security
   context with a peer will vary in different environments and
   circumstances; examples include (but are not limited to):

The means for identifying a shared mech_type to establish a security context with a peer will vary in different environments and circumstances; examples include (but are not limited to):

Linn                        Standards Track                    [Page 12]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 12] RFC 2743 GSS-API January 2000

      use of a fixed mech_type, defined by configuration, within an
      environment

use of a fixed mech_type, defined by configuration, within an environment

      syntactic convention on a target-specific basis, through
      examination of a target's name lookup of a target's name in a
      naming service or other database in order to identify mech_types
      supported by that target

syntactic convention on a target-specific basis, through examination of a target's name lookup of a target's name in a naming service or other database in order to identify mech_types supported by that target

      explicit negotiation between GSS-API callers in advance of
      security context setup

explicit negotiation between GSS-API callers in advance of security context setup

      use of a negotiating mechanism

use of a negotiating mechanism

   When transferred between GSS-API peers, mech_type specifiers (per
   Section 3 of this document, represented as Object Identifiers (OIDs))
   serve to qualify the interpretation of associated tokens. (The
   structure and encoding of Object Identifiers is defined in [ISOIEC-
   8824] and [ISOIEC-8825].) Use of hierarchically structured OIDs
   serves to preclude ambiguous interpretation of mech_type specifiers.
   The OID representing the DASS ([RFC-1507]) MechType, for example, is
   1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism ([RFC-
   1964]), having been advanced to the level of Proposed Standard, is
   1.2.840.113554.1.2.2.

When transferred between GSS-API peers, mech_type specifiers (per Section 3 of this document, represented as Object Identifiers (OIDs)) serve to qualify the interpretation of associated tokens. (The structure and encoding of Object Identifiers is defined in [ISOIEC- 8824] and [ISOIEC-8825].) Use of hierarchically structured OIDs serves to preclude ambiguous interpretation of mech_type specifiers. The OID representing the DASS ([RFC-1507]) MechType, for example, is 1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism ([RFC- 1964]), having been advanced to the level of Proposed Standard, is 1.2.840.113554.1.2.2.

1.1.5:  Naming

1.1.5: Naming

   The GSS-API avoids prescribing naming structures, treating the names
   which are transferred across the interface in order to initiate and
   accept security contexts as opaque objects.  This approach supports
   the GSS-API's goal of implementability atop a range of underlying
   security mechanisms, recognizing the fact that different mechanisms
   process and authenticate names which are presented in different
   forms. Generalized services offering translation functions among
   arbitrary sets of naming environments are outside the scope of the
   GSS-API; availability and use of local conversion functions to
   translate among the naming formats supported within a given end
   system is anticipated.

The GSS-API avoids prescribing naming structures, treating the names which are transferred across the interface in order to initiate and accept security contexts as opaque objects. This approach supports the GSS-API's goal of implementability atop a range of underlying security mechanisms, recognizing the fact that different mechanisms process and authenticate names which are presented in different forms. Generalized services offering translation functions among arbitrary sets of naming environments are outside the scope of the GSS-API; availability and use of local conversion functions to translate among the naming formats supported within a given end system is anticipated.

   Different classes of name representations are used in conjunction
   with different GSS-API parameters:

Different classes of name representations are used in conjunction with different GSS-API parameters:

      - Internal form (denoted in this document by INTERNAL NAME),
      opaque to callers and defined by individual GSS-API
      implementations.  GSS-API implementations supporting multiple
      namespace types must maintain internal tags to disambiguate the
      interpretation of particular names.  A Mechanism Name (MN) is a
      special case of INTERNAL NAME, guaranteed to contain elements

- Internal form (denoted in this document by INTERNAL NAME), opaque to callers and defined by individual GSS-API implementations. GSS-API implementations supporting multiple namespace types must maintain internal tags to disambiguate the interpretation of particular names. A Mechanism Name (MN) is a special case of INTERNAL NAME, guaranteed to contain elements

Linn                        Standards Track                    [Page 13]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 13] RFC 2743 GSS-API January 2000

      corresponding to one and only one mechanism; calls which are
      guaranteed to emit MNs or which require MNs as input are so
      identified within this specification.

corresponding to one and only one mechanism; calls which are guaranteed to emit MNs or which require MNs as input are so identified within this specification.

      - Contiguous string ("flat") form (denoted in this document by
      OCTET STRING); accompanied by OID tags identifying the namespace
      to which they correspond.  Depending on tag value, flat names may
      or may not be printable strings for direct acceptance from and
      presentation to users. Tagging of flat names allows GSS-API
      callers and underlying GSS-API mechanisms to disambiguate name
      types and to determine whether an associated name's type is one
      which they are capable of processing, avoiding aliasing problems
      which could result from misinterpreting a name of one type as a
      name of another type.

- Contiguous string ("flat") form (denoted in this document by OCTET STRING); accompanied by OID tags identifying the namespace to which they correspond. Depending on tag value, flat names may or may not be printable strings for direct acceptance from and presentation to users. Tagging of flat names allows GSS-API callers and underlying GSS-API mechanisms to disambiguate name types and to determine whether an associated name's type is one which they are capable of processing, avoiding aliasing problems which could result from misinterpreting a name of one type as a name of another type.

      - The GSS-API Exported Name Object, a special case of flat name
      designated by a reserved OID value, carries a canonicalized form
      of a name suitable for binary comparisons.

- The GSS-API Exported Name Object, a special case of flat name designated by a reserved OID value, carries a canonicalized form of a name suitable for binary comparisons.

   In addition to providing means for names to be tagged with types,
   this specification defines primitives to support a level of naming
   environment independence for certain calling applications. To provide
   basic services oriented towards the requirements of callers which
   need not themselves interpret the internal syntax and semantics of
   names, GSS-API calls for name comparison (GSS_Compare_name()),
   human-readable display (GSS_Display_name()), input conversion
   (GSS_Import_name()), internal name deallocation (GSS_Release_name()),
   and internal name duplication (GSS_Duplicate_name()) functions are
   defined. (It is anticipated that these proposed GSS-API calls will be
   implemented in many end systems based on system-specific name
   manipulation primitives already extant within those end systems;
   inclusion within the GSS-API is intended to offer GSS-API callers a
   portable means to perform specific operations, supportive of
   authorization and audit requirements, on authenticated names.)

In addition to providing means for names to be tagged with types, this specification defines primitives to support a level of naming environment independence for certain calling applications. To provide basic services oriented towards the requirements of callers which need not themselves interpret the internal syntax and semantics of names, GSS-API calls for name comparison (GSS_Compare_name()), human-readable display (GSS_Display_name()), input conversion (GSS_Import_name()), internal name deallocation (GSS_Release_name()), and internal name duplication (GSS_Duplicate_name()) functions are defined. (It is anticipated that these proposed GSS-API calls will be implemented in many end systems based on system-specific name manipulation primitives already extant within those end systems; inclusion within the GSS-API is intended to offer GSS-API callers a portable means to perform specific operations, supportive of authorization and audit requirements, on authenticated names.)

   GSS_Import_name() implementations can, where appropriate, support
   more than one printable syntax corresponding to a given namespace
   (e.g., alternative printable representations for X.500 Distinguished
   Names), allowing flexibility for their callers to select among
   alternative representations. GSS_Display_name() implementations
   output a printable syntax selected as appropriate to their
   operational environments; this selection is a local matter. Callers
   desiring portability across alternative printable syntaxes should
   refrain from implementing comparisons based on printable name forms
   and should instead use the GSS_Compare_name()  call to determine
   whether or not one internal-format name matches another.

GSS_Import_name() implementations can, where appropriate, support more than one printable syntax corresponding to a given namespace (e.g., alternative printable representations for X.500 Distinguished Names), allowing flexibility for their callers to select among alternative representations. GSS_Display_name() implementations output a printable syntax selected as appropriate to their operational environments; this selection is a local matter. Callers desiring portability across alternative printable syntaxes should refrain from implementing comparisons based on printable name forms and should instead use the GSS_Compare_name() call to determine whether or not one internal-format name matches another.

Linn                        Standards Track                    [Page 14]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 14] RFC 2743 GSS-API January 2000

   When used in large access control lists, the overhead of invoking
   GSS_Import_name() and GSS_Compare_name() on each name from the ACL
   may be prohibitive.  As an alternative way of supporting this case,
   GSS-API defines a special form of the contiguous string name which
   may be compared directly (e.g., with memcmp()).  Contiguous names
   suitable for comparison are generated by the GSS_Export_name()
   routine, which requires an MN as input.  Exported names may be re-
   imported by the GSS_Import_name() routine, and the resulting internal
   name will also be an MN.  The symbolic constant GSS_C_NT_EXPORT_NAME
   identifies the "export name" type. Structurally, an exported name
   object consists of a header containing an OID identifying the
   mechanism that authenticated the name, and a trailer containing the
   name itself, where the syntax of the trailer is defined by the
   individual mechanism specification.  The precise format of an
   exported name is defined in Section 3.2 of this specification.

When used in large access control lists, the overhead of invoking GSS_Import_name() and GSS_Compare_name() on each name from the ACL may be prohibitive. As an alternative way of supporting this case, GSS-API defines a special form of the contiguous string name which may be compared directly (e.g., with memcmp()). Contiguous names suitable for comparison are generated by the GSS_Export_name() routine, which requires an MN as input. Exported names may be re- imported by the GSS_Import_name() routine, and the resulting internal name will also be an MN. The symbolic constant GSS_C_NT_EXPORT_NAME identifies the "export name" type. Structurally, an exported name object consists of a header containing an OID identifying the mechanism that authenticated the name, and a trailer containing the name itself, where the syntax of the trailer is defined by the individual mechanism specification. The precise format of an exported name is defined in Section 3.2 of this specification.

   Note that the results obtained by using GSS_Compare_name() will in
   general be different from those obtained by invoking
   GSS_Canonicalize_name() and GSS_Export_name(), and then comparing the
   exported names.  The first series of operations determines whether
   two (unauthenticated) names identify the same principal; the second
   whether a particular mechanism would authenticate them as the same
   principal.  These two operations will in general give the same
   results only for MNs.

Note that the results obtained by using GSS_Compare_name() will in general be different from those obtained by invoking GSS_Canonicalize_name() and GSS_Export_name(), and then comparing the exported names. The first series of operations determines whether two (unauthenticated) names identify the same principal; the second whether a particular mechanism would authenticate them as the same principal. These two operations will in general give the same results only for MNs.

   The following diagram illustrates the intended dataflow among name-
   related GSS-API processing routines.

The following diagram illustrates the intended dataflow among name- related GSS-API processing routines.

Linn                        Standards Track                    [Page 15]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 15] RFC 2743 GSS-API January 2000

                        GSS-API library defaults
                               |
                               |
                               V                         text, for
   text -------------->  internal_name (IN) -----------> display only
         import_name()          /          display_name()
                               /
                              /
                             /
    accept_sec_context()    /
          |                /
          |               /
          |              /  canonicalize_name()
          |             /
          |            /
          |           /
          |          /
          |         /
          |        |
          V        V     <---------------------
    single mechanism        import_name()         exported name: flat
    internal_name (MN)                            binary "blob" usable
                         ---------------------->  for access control
                            export_name()

GSS-API library defaults | | V text, for text --------------> internal_name (IN) -----------> display only import_name() / display_name() / / / accept_sec_context() / | / | / | / canonicalize_name() | / | / | / | / | / | | V V <--------------------- single mechanism import_name() exported name: flat internal_name (MN) binary "blob" usable ----------------------> for access control export_name()

1.1.6:  Channel Bindings

1.1.6: Channel Bindings

   The GSS-API accommodates the concept of caller-provided channel
   binding ("chan_binding") information.  Channel bindings are used to
   strengthen the quality with which peer entity authentication is
   provided during context establishment, by limiting the scope within
   which an intercepted context establishment token can be reused by an
   attacker. Specifically, they enable GSS-API callers to bind the
   establishment of a security context to relevant characteristics
   (e.g., addresses, transformed representations of encryption keys) of
   the underlying communications channel, of protection mechanisms
   applied to that communications channel, and to application-specific
   data.

The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") information. Channel bindings are used to strengthen the quality with which peer entity authentication is provided during context establishment, by limiting the scope within which an intercepted context establishment token can be reused by an attacker. Specifically, they enable GSS-API callers to bind the establishment of a security context to relevant characteristics (e.g., addresses, transformed representations of encryption keys) of the underlying communications channel, of protection mechanisms applied to that communications channel, and to application-specific data.

   The caller initiating a security context must determine the
   appropriate channel binding values to provide as input to the
   GSS_Init_sec_context() call, and consistent values must be provided
   to GSS_Accept_sec_context() by the context's target, in order for
   both peers' GSS-API mechanisms to validate that received tokens
   possess correct channel-related characteristics. Use or non-use of
   the GSS-API channel binding facility is a caller option.  GSS-API
   mechanisms can operate in an environment where NULL channel bindings
   are presented; mechanism implementors are encouraged, but not

The caller initiating a security context must determine the appropriate channel binding values to provide as input to the GSS_Init_sec_context() call, and consistent values must be provided to GSS_Accept_sec_context() by the context's target, in order for both peers' GSS-API mechanisms to validate that received tokens possess correct channel-related characteristics. Use or non-use of the GSS-API channel binding facility is a caller option. GSS-API mechanisms can operate in an environment where NULL channel bindings are presented; mechanism implementors are encouraged, but not

Linn                        Standards Track                    [Page 16]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 16] RFC 2743 GSS-API January 2000

   required, to make use of caller-provided channel binding data within
   their mechanisms. Callers should not assume that underlying
   mechanisms provide confidentiality protection for channel binding
   information.

required, to make use of caller-provided channel binding data within their mechanisms. Callers should not assume that underlying mechanisms provide confidentiality protection for channel binding information.

   When non-NULL channel bindings are provided by callers, certain
   mechanisms can offer enhanced security value by interpreting the
   bindings' content (rather than simply representing those bindings, or
   integrity check values computed on them, within tokens) and will
   therefore depend on presentation of specific data in a defined
   format. To this end, agreements among mechanism implementors are
   defining conventional interpretations for the contents of channel
   binding arguments, including address specifiers (with content
   dependent on communications protocol environment) for context
   initiators and acceptors. (These conventions are being incorporated
   in GSS-API mechanism specifications and into the GSS-API C language
   bindings specification.) In order for GSS-API callers to be portable
   across multiple mechanisms and achieve the full security
   functionality which each mechanism can provide, it is strongly
   recommended that GSS-API callers provide channel bindings consistent
   with these conventions and those of the networking environment in
   which they operate.

When non-NULL channel bindings are provided by callers, certain mechanisms can offer enhanced security value by interpreting the bindings' content (rather than simply representing those bindings, or integrity check values computed on them, within tokens) and will therefore depend on presentation of specific data in a defined format. To this end, agreements among mechanism implementors are defining conventional interpretations for the contents of channel binding arguments, including address specifiers (with content dependent on communications protocol environment) for context initiators and acceptors. (These conventions are being incorporated in GSS-API mechanism specifications and into the GSS-API C language bindings specification.) In order for GSS-API callers to be portable across multiple mechanisms and achieve the full security functionality which each mechanism can provide, it is strongly recommended that GSS-API callers provide channel bindings consistent with these conventions and those of the networking environment in which they operate.

1.2:  GSS-API Features and Issues

1.2: GSS-API Features and Issues

   This section describes aspects of GSS-API operations, of the security
   services which the GSS-API provides, and provides commentary on
   design issues.

This section describes aspects of GSS-API operations, of the security services which the GSS-API provides, and provides commentary on design issues.

1.2.1:  Status Reporting and Optional Service Support

1.2.1: Status Reporting and Optional Service Support

1.2.1.1: Status Reporting

1.2.1.1: Status Reporting

   Each GSS-API call provides two status return values. Major_status
   values provide a mechanism-independent indication of call status
   (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED),
   sufficient to drive normal control flow within the caller in a
   generic fashion. Table 1 summarizes the defined major_status return
   codes in tabular fashion.

Each GSS-API call provides two status return values. Major_status values provide a mechanism-independent indication of call status (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1 summarizes the defined major_status return codes in tabular fashion.

   Sequencing-related informatory major_status codes
   (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
   GSS_S_GAP_TOKEN) can be indicated in conjunction with either
   GSS_S_COMPLETE or GSS_S_FAILURE status for GSS-API per-message calls.
   For context establishment calls, these sequencing-related codes will
   be indicated only in conjunction with GSS_S_FAILURE status (never in

Sequencing-related informatory major_status codes (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN) can be indicated in conjunction with either GSS_S_COMPLETE or GSS_S_FAILURE status for GSS-API per-message calls. For context establishment calls, these sequencing-related codes will be indicated only in conjunction with GSS_S_FAILURE status (never in

Linn                        Standards Track                    [Page 17]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 17] RFC 2743 GSS-API January 2000

   conjunction with GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and,
   therefore, always correspond to fatal failures if encountered during
   the context establishment phase.

conjunction with GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and, therefore, always correspond to fatal failures if encountered during the context establishment phase.

   Table 1: GSS-API Major Status Codes

Table 1: GSS-API Major Status Codes

   FATAL ERROR CODES

FATAL ERROR CODES

   GSS_S_BAD_BINDINGS            channel binding mismatch
   GSS_S_BAD_MECH                unsupported mechanism requested
   GSS_S_BAD_NAME                invalid name provided
   GSS_S_BAD_NAMETYPE            name of unsupported type provided
   GSS_S_BAD_STATUS              invalid input status selector
   GSS_S_BAD_SIG                 token had invalid integrity check
   GSS_S_BAD_MIC                   preferred alias for GSS_S_BAD_SIG
   GSS_S_CONTEXT_EXPIRED         specified security context expired
   GSS_S_CREDENTIALS_EXPIRED     expired credentials detected
   GSS_S_DEFECTIVE_CREDENTIAL    defective credential detected
   GSS_S_DEFECTIVE_TOKEN         defective token detected
   GSS_S_FAILURE                 failure, unspecified at GSS-API
                                   level
   GSS_S_NO_CONTEXT              no valid security context specified
   GSS_S_NO_CRED                 no valid credentials provided
   GSS_S_BAD_QOP                 unsupported QOP value
   GSS_S_UNAUTHORIZED            operation unauthorized
   GSS_S_UNAVAILABLE             operation unavailable
   GSS_S_DUPLICATE_ELEMENT       duplicate credential element requested
   GSS_S_NAME_NOT_MN             name contains multi-mechanism elements

GSS_S_BAD_BINDINGS channel binding mismatch GSS_S_BAD_MECH unsupported mechanism requested GSS_S_BAD_NAME invalid name provided GSS_S_BAD_NAMETYPE name of unsupported type provided GSS_S_BAD_STATUS invalid input status selector GSS_S_BAD_SIG token had invalid integrity check GSS_S_BAD_MIC preferred alias for GSS_S_BAD_SIG GSS_S_CONTEXT_EXPIRED specified security context expired GSS_S_CREDENTIALS_EXPIRED expired credentials detected GSS_S_DEFECTIVE_CREDENTIAL defective credential detected GSS_S_DEFECTIVE_TOKEN defective token detected GSS_S_FAILURE failure, unspecified at GSS-API level GSS_S_NO_CONTEXT no valid security context specified GSS_S_NO_CRED no valid credentials provided GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements

   INFORMATORY STATUS CODES

INFORMATORY STATUS CODES

   GSS_S_COMPLETE                normal completion
   GSS_S_CONTINUE_NEEDED         continuation call to routine
                                  required
   GSS_S_DUPLICATE_TOKEN         duplicate per-message token
                                  detected
   GSS_S_OLD_TOKEN               timed-out per-message token
                                  detected
   GSS_S_UNSEQ_TOKEN             reordered (early) per-message token
                                  detected
   GSS_S_GAP_TOKEN               skipped predecessor token(s)
                                  detected

GSS_S_COMPLETE normal completion GSS_S_CONTINUE_NEEDED continuation call to routine required GSS_S_DUPLICATE_TOKEN duplicate per-message token detected GSS_S_OLD_TOKEN timed-out per-message token detected GSS_S_UNSEQ_TOKEN reordered (early) per-message token detected GSS_S_GAP_TOKEN skipped predecessor token(s) detected

   Minor_status provides more detailed status information which may
   include status codes specific to the underlying security mechanism.
   Minor_status values are not specified in this document.

Minor_status provides more detailed status information which may include status codes specific to the underlying security mechanism. Minor_status values are not specified in this document.

Linn                        Standards Track                    [Page 18]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 18] RFC 2743 GSS-API January 2000

   GSS_S_CONTINUE_NEEDED major_status returns, and optional message
   outputs, are provided in GSS_Init_sec_context() and
   GSS_Accept_sec_context() calls so that different mechanisms'
   employment of different numbers of messages within their
   authentication sequences need not be reflected in separate code paths
   within calling applications. Instead, such cases are accommodated
   with sequences of continuation calls to GSS_Init_sec_context()  and
   GSS_Accept_sec_context().  The same facility is used to encapsulate
   mutual authentication within the GSS-API's context initiation calls.

GSS_S_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms' employment of different numbers of messages within their authentication sequences need not be reflected in separate code paths within calling applications. Instead, such cases are accommodated with sequences of continuation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same facility is used to encapsulate mutual authentication within the GSS-API's context initiation calls.

   For mech_types which require interactions with third-party servers in
   order to establish a security context, GSS-API context establishment
   calls may block pending completion of such third-party interactions.
   On the other hand, no GSS-API calls pend on serialized interactions
   with GSS-API peer entities.  As a result, local GSS-API status
   returns cannot reflect unpredictable or asynchronous exceptions
   occurring at remote peers, and reflection of such status information
   is a caller responsibility outside the GSS-API.

For mech_types which require interactions with third-party servers in order to establish a security context, GSS-API context establishment calls may block pending completion of such third-party interactions. On the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote peers, and reflection of such status information is a caller responsibility outside the GSS-API.

1.2.1.2: Optional Service Support

1.2.1.2: Optional Service Support

   A context initiator may request various optional services at context
   establishment time. Each of these services is requested by setting a
   flag in the req_flags input parameter to GSS_Init_sec_context().

A context initiator may request various optional services at context establishment time. Each of these services is requested by setting a flag in the req_flags input parameter to GSS_Init_sec_context().

   The optional services currently defined are:

The optional services currently defined are:

      - Delegation - The (usually temporary) transfer of rights from
      initiator to acceptor, enabling the acceptor to authenticate
      itself as an agent of the initiator.

- Delegation - The (usually temporary) transfer of rights from initiator to acceptor, enabling the acceptor to authenticate itself as an agent of the initiator.

      - Mutual Authentication - In addition to the initiator
      authenticating its identity to the context acceptor, the context
      acceptor should also authenticate itself to the initiator.

- Mutual Authentication - In addition to the initiator authenticating its identity to the context acceptor, the context acceptor should also authenticate itself to the initiator.

      - Replay detection - In addition to providing message integrity
      services, GSS_GetMIC() and GSS_Wrap() should include message
      numbering information to enable GSS_VerifyMIC() and GSS_Unwrap()
      to detect if a message has been duplicated.

- 検出を再演してください--メッセージの保全サービスを提供することに加えて、GSS_GetMIC()とGSS_Wrap()は、GSS_VerifyMIC()とGSS_Unwrap()が、メッセージがコピーされたかどうか検出するのを可能にするためにメッセージ付番情報を含んでいるはずです。

      - Out-of-sequence detection - In addition to providing message
      integrity services, GSS_GetMIC() and GSS_Wrap() should include
      message sequencing information to enable GSS_VerifyMIC() and
      GSS_Unwrap() to detect if a message has been received out of
      sequence.

- メッセージの保全サービスを提供することに加えた順序が狂って検出、GSS_GetMIC()とGSS_Wrap()はGSS_VerifyMIC()とGSS_Unwrap()が、メッセージが順序が狂って受け取られたかどうか検出するのを可能にするためにメッセージ配列情報を含んでいるはずです。

Linn                        Standards Track                    [Page 19]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[19ページ]。

      - Anonymous authentication - The establishment of the security
      context should not reveal the initiator's identity to the context
      acceptor.

- 匿名の認証--セキュリティ文脈の確立は文脈アクセプタへの創始者のアイデンティティを明らかにするべきではありません。

      - Available per-message confidentiality - requests that per-
      message confidentiality services be available on the context.

- 秘密性サービスを通信させてください。1メッセージあたりの利用可能な秘密性--、それを要求する、-、文脈で利用可能であってください。

      - Available per-message integrity - requests that per-message
      integrity services be available on the context.

- 利用可能なメッセージの保全--1メッセージの保全あたりのサービスが文脈で利用可能であるという要求。

   Any currently undefined bits within such flag arguments should be
   ignored by GSS-API implementations when presented by an application,
   and should be set to zero when returned to the application by the
   GSS-API implementation.

そのような旗の議論の中のどんな現在未定義のビットもアプリケーションで提示するとGSS-API実行で無視するべきであり、GSS-API実行でアプリケーションに返すと、ゼロに設定するべきです。

   Some mechanisms may not support all optional services, and some
   mechanisms may only support some services in conjunction with others.
   Both GSS_Init_sec_context() and GSS_Accept_sec_context() inform the
   applications which services will be available from the context when
   the establishment phase is complete, via the ret_flags output
   parameter.  In general, if the security mechanism is capable of
   providing a requested service, it should do so, even if additional
   services must be enabled in order to provide the requested service.
   If the mechanism is incapable of providing a requested service, it
   should proceed without the service, leaving the application to abort
   the context establishment process if it considers the requested
   service to be mandatory.

いくつかのメカニズムがすべての任意のサービスをサポートするかもしれないというわけではありません、そして、いくつかのメカニズムが他のものに関連していくつかのサービスをサポートするだけであるかもしれません。 を通して確立段階が完全であるときに、GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()の両方が、文脈からどのサービスが利用可能になるかをアプリケーションに知らせる、_旗の出力パラメタを浸水させてください。 一般に、セキュリティー対策が要求されたサービスを提供できるなら、そうするべきです、要求されたサービスを提供するために追加サービスを可能にしなければならなくても。 メカニズムが要求されたサービスを提供できないなら、サービスなしで続くべきです、それが、要求されたサービスが義務的であると考えるならアプリケーションが文脈設立プロセスを中止するのを残して。

   Some mechanisms may specify that support for some services is
   optional, and that implementors of the mechanism need not provide it.
   This is most commonly true of the confidentiality service, often
   because of legal restrictions on the use of data-encryption, but may
   apply to any of the services.  Such mechanisms are required to send
   at least one token from acceptor to initiator during context
   establishment when the initiator indicates a desire to use such a
   service, so that the initiating GSS-API can correctly indicate
   whether the service is supported by the acceptor's GSS-API.

いくつかのメカニズムが、いくつかのサービスのサポートが任意であり、メカニズムの作成者がそれを提供する必要はないと指定するかもしれません。 これは秘密性サービスに関して一般的に最も本当です、サービスのどれかに適用するかもしれなくてしばしばデータ暗号化の使用の法的規制のために。 創始者がそのようなサービスを利用する願望を示すとき、そのようなメカニズムは文脈設立の間、少なくとも1つのトークンをアクセプタから創始者に送らなければなりません、開始GSS-APIが、サービスがアクセプタのGSS-APIで後押しされているかどうかを正しく示すことができるように。

1.2.2: Per-Message Security Service Availability

1.2.2: 1メッセージあたりのセキュリティー・サービスの有用性

   When a context is established, two flags are returned to indicate the
   set of per-message protection security services which will be
   available on the context:

文脈を確立するとき、文脈で利用可能になる1メッセージあたりの保護セキュリティー・サービスのセットを示すために2個の旗を返します:

      the integ_avail flag indicates whether per-message integrity and
      data origin authentication services are available

integ_利益旗は、メッセージの保全とデータ発生源認証サービスが利用可能であるかどうかを示します。

Linn                        Standards Track                    [Page 20]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[20ページ]。

      the conf_avail flag indicates whether per-message confidentiality
      services are available, and will never be returned TRUE unless the
      integ_avail flag is also returned TRUE

conf_利益旗は、1メッセージあたりの秘密性サービスが利用可能であるかどうかを示して、また、integ_利益旗にTRUEを返さないと、TRUEを決して返さないでしょう。

   GSS-API callers desiring per-message security services should check
   the values of these flags at context establishment time, and must be
   aware that a returned FALSE value for integ_avail means that
   invocation of GSS_GetMIC() or GSS_Wrap() primitives on the associated
   context will apply no cryptographic protection to user data messages.

1メッセージあたりのセキュリティー・サービスを望んでいるGSS-API訪問者は、文脈設立時間にこれらの旗の値をチェックするべきであり、integ_利益のための返されたFALSE値が、関連文脈に関するGSS_GetMIC()かGSS_Wrap()基関数の実施がどんな暗号の保護も利用者データメッセージに適用しないことを意味するのを意識しているに違いありません。

   The GSS-API per-message integrity and data origin authentication
   services provide assurance to a receiving caller that protection was
   applied to a message by the caller's peer on the security context,
   corresponding to the entity named at context initiation.  The GSS-API
   per-message confidentiality service provides assurance to a sending
   caller that the message's content is protected from access by
   entities other than the context's named peer.

GSS-APIメッセージの保全とデータ発生源認証サービスは保護がセキュリティ文脈の訪問者の同輩によってメッセージに適用されたという受信訪問者への保証を提供します、文脈開始で指定された実体に対応しています。 1メッセージあたりのGSS-API秘密性サービスはメッセージの内容が文脈の命名された同輩以外の実体によってアクセスから保護されるという送付訪問者への保証を提供します。

   The GSS-API per-message protection service primitives, as the
   category name implies, are oriented to operation at the granularity
   of protocol data units. They perform cryptographic operations on the
   data units, transfer cryptographic control information in tokens,
   and, in the case of GSS_Wrap(), encapsulate the protected data unit.
   As such, these primitives are not oriented to efficient data
   protection for stream-paradigm protocols (e.g., Telnet) if
   cryptography must be applied on an octet-by-octet basis.

カテゴリ名が含意するように1メッセージあたりのGSS-API保護サービス基関数はプロトコルデータ単位の粒状で操作に適応します。 GSS_Wrap()の場合では、彼らは、暗号の操作をデータ単位に実行して、トークンで暗号の制御情報を移して、保護されたデータ単位をカプセル化します。 そういうものとして、八重奏による八重奏ベースで暗号を適用しなければならないなら、これらの基関数はストリームパラダイムプロトコル(例えば、Telnet)のために効率的なデータ保護に適応しません。

1.2.3: Per-Message Replay Detection and Sequencing

1.2.3: 1メッセージあたりの再生検出と配列

   Certain underlying mech_types offer support for replay detection
   and/or sequencing of messages transferred on the contexts they
   support. These optionally-selectable protection features are distinct
   from replay detection and sequencing features applied to the context
   establishment operation itself; the presence or absence of context-
   level replay or sequencing features is wholly a function of the
   underlying mech_type's capabilities, and is not selected or omitted
   as a caller option.

ある基本的なmech_タイプはそれらがサポートする文脈で移されたメッセージの再生検出、そして/または、配列のサポートを提供します。 これらの任意に選択可能な保護機能は文脈設立操作自体に適用された再生検出と配列の特徴と異なっています。 文脈レベル再生か配列の特徴の存在か欠如が、訪問者オプションとして完全に基本的なmech_タイプの能力の機能であり、選択されるか、または省略されません。

   The caller initiating a context provides flags (replay_det_req_flag
   and sequence_req_flag) to specify whether the use of per-message
   replay detection and sequencing features is desired on the context
   being established. The GSS-API implementation at the initiator system
   can determine whether these features are supported (and whether they
   are optionally selectable) as a function of the selected mechanism,
   without need for bilateral negotiation with the target. When enabled,
   these features provide recipients with indicators as a result of
   GSS-API processing of incoming messages, identifying whether those
   messages were detected as duplicates or out-of-sequence. Detection of

文脈を開始する訪問者は、1メッセージあたりの再生検出と配列の特徴の使用が確立される文脈で望まれているかどうか指定するために、旗(_req_旗と系列_req_が旗を揚げさせる再生_det)を提供します。 創始者システムのGSS-API実行は、選択されたメカニズムの機能としてこれらの特徴がサポートされるかどうか(それらが任意に選択可能であるか否かに関係なく)決定できます、目標による二国間協議の必要性なしで。 可能にされると、これらの特徴は入力メッセージのGSS-API処理の結果、インディケータを受取人に提供します、それらのメッセージが写しとして順序が狂って検出されたかどうか特定して。 検出

Linn                        Standards Track                    [Page 21]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[21ページ]。

   such events does not prevent a suspect message from being provided to
   a recipient; the appropriate course of action on a suspect message is
   a matter of caller policy.

そのようなイベントは、疑わしいメッセージが受取人に提供されるのを防ぎません。 疑わしいメッセージへの適切な行動は訪問者方針の問題です。

   The semantics of the replay detection and sequencing services applied
   to received messages, as visible across the interface which the GSS-
   API provides to its clients, are as follows:

GSS APIがクライアントに提供するインタフェースの向こう側に目に見えるとして受信されたメッセージに適用された再生検出であって配列サービスの意味論は以下の通りです:

   When replay_det_state is TRUE, the possible major_status returns for
   well-formed and correctly signed messages are as follows:

再生_det_状態がTRUEであるときに、整形式の、そして、正しく署名しているメッセージのための可能な主要な_状態収益は以下の通りです:

      1. GSS_S_COMPLETE, without concurrent indication of
      GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN, indicates that the
      message was within the window (of time or sequence space) allowing
      replay events to be detected, and that the message was not a
      replay of a previously-processed message within that window.

1. GSS_S_COMPLETEは_GSS_S DUPLICATE_TOKENか_GSS_S OLD_TOKENの同時発生のしるしなしで再生イベントが検出されるのを許容しながら窓(時間か系列スペースの)の中にメッセージがあって、メッセージがその窓の中の以前に処理されたメッセージの再生でなかったのを示します。

      2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic
      checkvalue on the received message was correct, but that the
      message was recognized as a duplicate of a previously-processed
      message.  In addition to identifying duplicated tokens originated
      by a context's peer, this status may also be used to identify
      reflected copies of locally-generated tokens; it is recommended
      that mechanism designers include within their protocols facilities
      to detect and report such tokens.

2. GSS_S_DUPLICATE_TOKENは、受信されたメッセージの暗号のcheckvalueが正しかったのですが、メッセージが以前に処理されたメッセージの写しとして認識されたのを示します。 また、文脈の同輩によって溯源されたコピーされたトークンを特定することに加えて、この状態は反射したコピーの局所的に発生しているトークンを特定するのに使用されるかもしれません。 メカニズムデザイナーがそのようなトークンを検出して、報告するために彼らのプロトコルの中で施設を入れるのは、お勧めです。

      3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on
      the received message was correct, but that the message is too old
      to be checked for duplication.

3. GSS_S_OLD_TOKENは、受信されたメッセージの暗号のcheckvalueが正しかったのですが、メッセージが複製がないかどうかチェックできないくらい古いのを示します。

   When sequence_state is TRUE, the possible major_status returns for
   well-formed and correctly signed messages are as follows:

系列_状態がTRUEであるときに、整形式の、そして、正しく署名しているメッセージのための可能な主要な_状態収益は以下の通りです:

      1. GSS_S_COMPLETE, without concurrent indication of
      GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, or
      GSS_S_GAP_TOKEN, indicates that the message was within the window
      (of time or sequence space) allowing replay events to be detected,
      that the message was not a replay of a previously-processed
      message within that window, and that no predecessor sequenced
      messages are missing relative to the last received message (if
      any) processed on the context with a correct cryptographic
      checkvalue.

1. GSS_S_COMPLETEは_GSS_S DUPLICATE_TOKEN、_GSS_S OLD_TOKEN、_GSS_S UNSEQ_TOKEN、または_GSS_S GAP_TOKENの同時発生のしるしなしで再生イベントが検出されるのを許容しながら窓(時間か系列スペースの)の中にメッセージがあって、メッセージがその窓の中の以前に処理されたメッセージの再生でなく、またどんな前任者の配列されたメッセージも文脈で正しい暗号のcheckvalueで処理された最後の受信されたメッセージ(もしあれば)に比例してなくならないのを示します。

      2. GSS_S_DUPLICATE_TOKEN indicates that the integrity check value
      on the received message was correct, but that the message was
      recognized as a duplicate of a previously-processed message.  In
      addition to identifying duplicated tokens originated by a
      context's peer, this status may also be used to identify reflected

2. GSS_S_DUPLICATE_TOKENは、受信されたメッセージの保全チェック価値が適度でしたが、メッセージが以前に処理されたメッセージの写しとして認識されたのを示します。 また、文脈の同輩によって溯源されたコピーされたトークンを特定することに加えて、この状態も反映されて、特定するのにおいて使用されているかもしれません。

Linn                        Standards Track                    [Page 22]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[22ページ]。

      copies of locally-generated tokens; it is recommended that
      mechanism designers include within their protocols facilities to
      detect and report such tokens.

局所的に発生しているトークンのコピー。 メカニズムデザイナーがそのようなトークンを検出して、報告するために彼らのプロトコルの中で施設を入れるのは、お勧めです。

      3. GSS_S_OLD_TOKEN indicates that the integrity check value on the
      received message was correct, but that the token is too old to be
      checked for duplication.

3. GSS_S_OLD_TOKENは、受信されたメッセージの保全チェック価値が適度でしたが、トークンが複製がないかどうかチェックできないくらい古いのを示します。

      4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue
      on the received message was correct, but that it is earlier in a
      sequenced stream than a message already processed on the context.
      [Note: Mechanisms can be architected to provide a stricter form of
      sequencing service, delivering particular messages to recipients
      only after all predecessor messages in an ordered stream have been
      delivered.  This type of support is incompatible with the GSS-API
      paradigm in which recipients receive all messages, whether in
      order or not, and provide them (one at a time, without intra-GSS-
      API message buffering) to GSS-API routines for validation.  GSS-
      API facilities provide supportive functions, aiding clients to
      achieve strict message stream integrity in an efficient manner in
      conjunction with sequencing provisions in communications
      protocols, but the GSS-API does not offer this level of message
      stream integrity service by itself.]

4. GSS_S_UNSEQ_TOKENは、受信されたメッセージの暗号のcheckvalueが正しかったのですが、配列されたストリームがメッセージに文脈で既に処理されたより初期であることを示します。 [以下に注意してください。 より厳しい形式の配列サービスを提供するためにメカニズムをarchitectedされることができます、命令されたストリームにおけるすべての前任者メッセージが提供された後にだけ特定のメッセージを受取人に提供して。 このタイプのサポートは受取人が合法化のためのGSS-APIルーチンに整然とするか否かに関係なく、すべてのメッセージを受け取って、それら(一度に一つ、イントラ-GSS APIがなければ、バッファリングを通信させる)を提供するGSS-APIパラダイムと両立しないです。 しかし、通信規約、GSS-APIで条項を配列することに関連してクライアントが効率的な方法で厳しいメッセージストリーム保全を達成するのを支援して、API施設が支持している機能を供給するGSS自身はこのレベルのメッセージストリーム保全サービスを提供しません。]

      5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on
      the received message was correct, but that one or more predecessor
      sequenced messages have not been successfully processed relative
      to the last received message (if any) processed on the context
      with a correct cryptographic checkvalue.

5. GSS_S_GAP_TOKENは、受信されたメッセージの暗号のcheckvalueが正しかったのですが、1つ以上の前任者の配列されたメッセージが首尾よく文脈で正しい暗号のcheckvalueで処理された最後の受信されたメッセージ(もしあれば)に比例して処理されていないのを示します。

   As the message stream integrity features (especially sequencing) may
   interfere with certain applications' intended communications
   paradigms, and since support for such features is likely to be
   resource intensive, it is highly recommended that mech_types
   supporting these features allow them to be activated selectively on
   initiator request when a context is established. A context initiator
   and target are provided with corresponding indicators
   (replay_det_state and sequence_state), signifying whether these
   features are active on a given context.

メッセージストリーム保全機能(特に配列)が、あるアプリケーションの意図しているコミュニケーションパラダイムを妨げるかもしれなくて、そのような特徴のサポートがリソース徹底的である傾向があるので、文脈が確立されるとき、これらの特徴をサポートするmech_タイプが、それらが創始者要求のときに選択的に動かされるのを許容するのは、非常にお勧めです。 対応するインディケータ(再生_det_州と系列_状態)を文脈創始者と目標に提供します、これらの特徴が与えられた文脈でアクティブであるか否かに関係なく、意味して。

   An example mech_type supporting per-message replay detection could
   (when replay_det_state is TRUE) implement the feature as follows: The
   underlying mechanism would insert timestamps in data elements output
   by GSS_GetMIC() and GSS_Wrap(), and would maintain (within a time-
   limited window) a cache (qualified by originator-recipient pair)
   identifying received data elements processed by GSS_VerifyMIC() and
   GSS_Unwrap(). When this feature is active, exception status returns
   (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when

1メッセージあたりの再生検出をサポートする例のmech_タイプは以下の特徴を実装することができました(再生_det_状態がTRUEであるときに): 発症機序は、GSS_GetMIC()とGSS_Wrap()でデータ要素出力にタイムスタンプを挿入して、GSS_VerifyMIC()とGSS_Unwrap()によって処理された受信データ要素を特定しながら、キャッシュ(創始者受取人組によって資格がある)を維持するでしょう(時間の限られたウィンドウの中で)。 この特徴がアクティブであるときに、状態が返す例外(__GSS_S DUPLICATE_TOKEN、GSS_S OLD_TOKEN)にいつを提供するだろうか。

Linn                        Standards Track                    [Page 23]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[23ページ]。

   GSS_VerifyMIC() or GSS_Unwrap() is presented with a message which is
   either a detected duplicate of a prior message or which is too old to
   validate against a cache of recently received messages.

先のメッセージの検出された写しであるか最近受信されたメッセージでキャッシュに対して有効にすることができないくらい古いメッセージをGSS_VerifyMIC()かGSS_Unwrap()に与えます。

1.2.4:  Quality of Protection

1.2.4: 保護の品質

   Some mech_types provide their users with fine granularity control
   over the means used to provide per-message protection, allowing
   callers to trade off security processing overhead dynamically against
   the protection requirements of particular messages. A per-message
   quality-of-protection parameter (analogous to quality-of-service, or
   QOS) selects among different QOP options supported by that mechanism.
   On context establishment for a multi-QOP mech_type, context-level
   data provides the prerequisite data for a range of protection
   qualities.

何人かのmech_タイプが1メッセージあたりの保護を提供するのに使用される手段のよい粒状コントロールを彼らのユーザに提供します、訪問者がダイナミックに特定のメッセージの保護要件に対してセキュリティ処理オーバヘッドを交換するのを許容して。 保護の1メッセージあたりの品質パラメタ(サービスの質、またはQOSに類似の)は異なったQOPの中でそのメカニズムで後押しされているオプションを選択します。 マルチQOP mech_タイプのための文脈設立では、文脈レベルデータはさまざまな保護品質のための必須のデータを提供します。

   It is expected that the majority of callers will not wish to exert
   explicit mechanism-specific QOP control and will therefore request
   selection of a default QOP. Definitions of, and choices among, non-
   default QOP values are mechanism-specific, and no ordered sequences
   of QOP values can be assumed equivalent across different mechanisms.
   Meaningful use of non-default QOP values demands that callers be
   familiar with the QOP definitions of an underlying mechanism or
   mechanisms, and is therefore a non-portable construct.  The
   GSS_S_BAD_QOP major_status value is defined in order to indicate that
   a provided QOP value is unsupported for a security context, most
   likely because that value is unrecognized by the underlying
   mechanism.

訪問者の大部分が明白なメカニズム特有のQOPコントロールを及ぼすことを願わないで、したがって、デフォルトQOPの選択を要求すると予想されます。 定義、選択、非デフォルトのQOP値はメカニズム特有であり、QOP値の系列が注文されない場合、異なったメカニズムQOPが訪問者が発症機序かメカニズムのQOP定義に詳しいのを要求して、したがって、非携帯用の構造物であることを評価する非デフォルトの重要な使用の向こう側の想定された同等物は特有であることができます。 GSS_S_のBAD_QOPの主要な_状態値はセキュリティ文脈に、提供されたQOP値がサポートされないのを示すために定義されます、たぶんその値が発症機序で認識されていないので。

   In the interests of interoperability, mechanisms which allow optional
   support of particular QOP values shall satisfy one of the following
   conditions.  Either:

相互運用性のために、特定のQOP値の任意のサポートを許すメカニズムは以下の条件の1つを満たすものとします。 どちらか:

      (i) All implementations of the mechanism are required to be
      capable of processing messages protected using any QOP value,
      regardless of whether they can apply protection corresponding to
      that QOP, or

または(i) メカニズムのすべての実装がどんなQOP値も使用することで保護された処理メッセージができるのに必要です、そのQOPに対応する保護を適用できるかどうかにかかわらず。

      (ii) The set of mutually-supported receiver QOP values must be
      determined during context establishment, and messages may be
      protected by either peer using only QOP values from this
      mutually-supported set.

(ii) 互いにサポートしている受信機QOP値のセットは文脈設立の間、決定しているに違いなくて、メッセージは、この互いにサポートしているセットからQOP値だけを使用することでどちらの同輩によっても保護されるかもしれません。

   NOTE: (i) is just a special-case of (ii), where implementations are
   required to support all QOP values on receipt.

以下に注意してください。 (i) まさしく特別なケースは(ii)のものですか?そこでは、実装が、領収書のすべてのQOP値をサポートするのに必要です。

Linn                        Standards Track                    [Page 24]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[24ページ]。

1.2.5: Anonymity Support

1.2.5: 匿名サポート

   In certain situations or environments, an application may wish to
   authenticate a peer and/or protect communications using GSS-API per-
   message services without revealing its own identity.  For example,
   consider an application which provides read access to a research
   database, and which permits queries by arbitrary requestors.  A
   client of such a service might wish to authenticate the service, to
   establish trust in the information received from it, but might not
   wish to disclose its identity to the service for privacy reasons.

GSS-APIを使用することで同輩を認証する、そして/または、ある状況か環境で、アプリケーションがコミュニケーションを保護したがっているかもしれない、-、それ自身のアイデンティティを明らかにすることのないメッセージサービス。 例えば、研究データベースへのアクセスが読まれて、提供して、任意の要請者による質問を可能にするアプリケーションを考えてください。 そのようなサービスのクライアントは、サービスを認証して、それから受け取られた情報に信頼を確立することを願っていますが、プライバシー理由のためのサービスへのアイデンティティを明らかにしたがっていないかもしれません。

   In ordinary GSS-API usage, a context initiator's identity is made
   available to the context acceptor as part of the context
   establishment process.  To provide for anonymity support, a facility
   (input anon_req_flag to GSS_Init_sec_context()) is provided through
   which context initiators may request that their identity not be
   provided to the context acceptor.  Mechanisms are not required to
   honor this request, but a caller will be informed (via returned
   anon_state indicator from GSS_Init_sec_context()) whether or not the
   request is honored. Note that authentication as the anonymous
   principal does not necessarily imply that credentials are not
   required in order to establish a context.

普通のGSS-API用法で、文脈創始者のアイデンティティを文脈設立プロセスの一部として文脈アクセプタに利用可能にします。 匿名サポートに備えてください、施設。(やがて、__秒_文脈())が提供されるGSS_Initへの文脈創始者が、彼らのアイデンティティが文脈アクセプタに提供されないよう要求するかもしれないreq_旗を入力してください。 メカニズムはこの要求を光栄に思う必要はありませんが、訪問者は知識があるようになるでしょう。(やがて返されることを通して、要求が光栄に思っているか否かに関係なく、_はGSS_Init_秒_文脈())よりインディケータを述べます。 匿名の主体が、資格証明書は文脈を確立するのに必要でないことを必ず含意するというわけではないとき、その認証に注意してください。

   Section 4.5 of this document defines the Object Identifier value used
   to identify an anonymous principal.

このドキュメントのセクション4.5は匿名の元本を特定するのに使用されるObject Identifier値を定義します。

   Four possible combinations of anon_state and mutual_state are
   possible, with the following results:

_州と互いの_が以下で可能であると述べるやがての4つの可能な組み合わせが結果として生じます:

      anon_state == FALSE, mutual_state == FALSE: initiator
      authenticated to target.

やがて、_は=FALSE、互いの_州の=FALSEを述べます: 目標に認証された創始者。

      anon_state == FALSE, mutual_state == TRUE: initiator authenticated
      to target, target authenticated to initiator.

やがて、_は=FALSE、互いの_州の=TRUEを述べます: 目標に認証された創始者、創始者に認証された目標。

      anon_state == TRUE, mutual_state == FALSE: initiator authenticated
      as anonymous principal to target.

やがて、_は=TRUE、互いの_州の=FALSEを述べます: 狙う匿名の主体として認証された創始者。

      anon_state == TRUE, mutual_state == TRUE: initiator authenticated
      as anonymous principal to target, target authenticated to
      initiator.

やがて、_は=TRUE、互いの_州の=TRUEを述べます: 狙う匿名の主体、創始者に認証された目標として認証された創始者。

1.2.6: Initialization

1.2.6: 初期設定

   No initialization calls (i.e., calls which must be invoked prior to
   invocation of other facilities in the interface) are defined in GSS-
   API.  As an implication of this fact, GSS-API implementations must
   themselves be self-initializing.

初期化要求(すなわち、インタフェースの他の施設の実施の前に呼び出さなければならない呼び出し)は全くGSS APIで定義されません。 この事実の含意として、GSS-API実行は初期化しなければなりません。自分たちで自己と同じくらい初期設定しています。

Linn                        Standards Track                    [Page 25]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[25ページ]。

1.2.7: Per-Message Protection During Context Establishment

1.2.7: 文脈設立の間の1メッセージあたりの保護

   A facility is defined in GSS-V2 to enable protection and buffering of
   data messages for later transfer while a security context's
   establishment is in GSS_S_CONTINUE_NEEDED status, to be used in cases
   where the caller side already possesses the necessary session key to
   enable this processing. Specifically, a new state Boolean, called
   prot_ready_state, is added to the set of information returned by
   GSS_Init_sec_context(), GSS_Accept_sec_context(), and
   GSS_Inquire_context().

施設は保護を可能にするためにGSS-V2で定義されました、そして、セキュリティ文脈の設立が_GSS_S CONTINUE_にありましたが、後の転送へのデータメッセージのバッファリングは訪問者側が既にこの処理を可能にするために主要な必要なセッションを持っている場合に使用されるために状態を必要としました。 新しい州のブールの、そして、呼ばれた_持ち合わせのprot_は、明確にGSS_Init_秒_文脈()、GSS_Accept_秒_文脈()、およびGSS_Inquire_文脈()によって返された情報のセットに追加されると述べます。

   For context establishment calls, this state Boolean is valid and
   interpretable when the associated major_status is either
   GSS_S_CONTINUE_NEEDED, or GSS_S_COMPLETE.  Callers of GSS-API (both
   initiators and acceptors) can assume that per-message protection (via
   GSS_Wrap(), GSS_Unwrap(), GSS_GetMIC() and GSS_VerifyMIC()) is
   available and ready for use if either: prot_ready_state == TRUE, or
   major_status == GSS_S_COMPLETE, though mutual authentication (if
   requested) cannot be guaranteed until GSS_S_COMPLETE is returned.
   Callers making use of per-message protection services in advance of
   GSS_S_COMPLETE status should be aware of the possibility that a
   subsequent context establishment step may fail, and that certain
   context data (e.g., mech_type) as returned for subsequent calls may
   change.

文脈設立呼び出し、この状態におけるブール、_関連主要な_状態であるなら有効であって、解明できるのは、CONTINUE_が必要としたGSS_S_かGSS_SのどちらかCOMPLETEです。 GSS-API(創始者とアクセプタの両方)の訪問者は、1メッセージあたりそれが保護であると仮定できます。(GSS_Wrap()、GSS_Unwrap()、GSS_GetMIC()、およびGSS_を通して、VerifyMIC())はどちらかなら使用の利用可能であって、準備ができています: _GSS_S_protの_の持ち合わせの_州=のTRUE、または主要な_状態=COMPLETE、GSSまで互いの認証(要求されるなら)を保証できませんが、S_COMPLETEを返します。 GSS_S_COMPLETE状態の前に1メッセージあたりの保護サービスを利用する訪問者はその後の文脈設立ステップが失敗するかもしれなくて、その後の呼び出しのために返されるある文脈データ(例えば、mech_タイプ)が変化するかもしれない可能性を意識しているべきです。

   This approach achieves full, transparent backward compatibility for
   GSS-API V1 callers, who need not even know of the existence of
   prot_ready_state, and who will get the expected behavior from
   GSS_S_COMPLETE, but who will not be able to use per-message
   protection before GSS_S_COMPLETE is returned.

このアプローチはGSS-API V1訪問者のために完全で、透明な後方の互換性を獲得します。(その訪問者は、protの_の持ち合わせの_状態の存在を知る必要さえなくて、_GSS_S COMPLETEから予想された振舞いを得ますが、GSS_S_COMPLETEを返す前に1メッセージあたりの保護を使用できないでしょう)。

   It is not a requirement that GSS-V2 mechanisms ever return TRUE
   prot_ready_state before completion of context establishment (indeed,
   some mechanisms will not evolve usable message protection keys,
   especially at the context acceptor, before context establishment is
   complete).  It is expected but not required that GSS-V2 mechanisms
   will return TRUE prot_ready_state upon completion of context
   establishment if they support per-message protection at all (however
   GSS-V2 applications should not assume that TRUE prot_ready_state will
   always be returned together with the GSS_S_COMPLETE major_status,
   since GSS-V2 implementations may continue to support GSS-V1 mechanism
   code, which will never return TRUE prot_ready_state).

それはGSS-V2メカニズムが文脈設立の完成の前に_持ち合わせの_状態をTRUE protに返すという(本当に、いくつかのメカニズムが使用可能なメッセージ保護キーを発展しないでしょう、特に文脈アクセプタで、文脈設立が完全になる前に)要件ではありません。 予想されますが、全く1メッセージあたりの保護をサポートするなら(しかしながら、GSS-V2アプリケーションは、TRUE protの_の持ち合わせの_状態がGSS_S_のCOMPLETEの主要な_状態と共にいつも返されると仮定するべきではありません、GSS-V2実装が、GSS-V1が_持ち合わせの_状態をTRUE protに決して返さないメカニズムコードであるとサポートし続けるかもしれないので)GSS-V2メカニズムが_文脈設立の完成の持ち合わせの_状態をTRUE protに返すのが必要ではありません。

   When prot_ready_state is returned TRUE, mechanisms shall also set
   those context service indicator flags (deleg_state, mutual_state,
   replay_det_state, sequence_state, anon_state, trans_state,
   conf_avail, integ_avail) which represent facilities confirmed, at
   that time, to be available on the context being established.  In

また、protの_の持ち合わせの_状態にTRUEを返すとき、メカニズムは、その時確認された施設を表すそれらの文脈サービスインディケータ旗(_deleg_状態、互いの_状態、再生_det_状態、系列_状態、やがて、状態、移-_状態、conf_は役に立ちます、integ_利益)に確立される文脈で利用可能であるように設定するものとします。 コネ

Linn                        Standards Track                    [Page 26]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[26ページ]。

   situations where prot_ready_state is returned before GSS_S_COMPLETE,
   it is possible that additional facilities may be confirmed and
   subsequently indicated when GSS_S_COMPLETE is returned.

protの_の持ち合わせの_状態が_GSS_S COMPLETEの前に返される状況、GSS_S_COMPLETEを返すとき、追加の便宜供与が確認されて、次に示されるのは、可能です。

1.2.8: Implementation Robustness

1.2.8: 実装丈夫さ

   This section recommends aspects of GSS-API implementation behavior in
   the interests of overall robustness.

このセクションは総合的な丈夫さのためにGSS-API実行の振舞いの局面を推薦します。

   Invocation of GSS-API calls is to incur no undocumented side effects
   visible at the GSS-API level.

GSS-API呼び出しの実施はGSS-APIレベルで目に見えるどんな正式書類のない副作用も被らないことです。

   If a token is presented for processing on a GSS-API security context
   and that token generates a fatal error in processing or is otherwise
   determined to be invalid for that context, the context's state should
   not be disrupted for purposes of processing subsequent valid tokens.

トークンが処理のためにGSS-APIセキュリティ文脈に示されて、そのトークンが処理における致命的な誤りを生成するか、またはそうでなければ、その文脈に無効であることを決定しているなら、その後の有効なトークンを処理する目的のために文脈の状態を混乱させるべきではありません。

   Certain local conditions at a GSS-API implementation (e.g.,
   unavailability of memory) may preclude, temporarily or permanently,
   the successful processing of tokens on a GSS-API security context,
   typically generating GSS_S_FAILURE major_status returns along with
   locally-significant minor_status.  For robust operation under such
   conditions, the following recommendations are made:

GSS-API実行(例えば、メモリの使用不能)における、ある現地の状況は一時的か永久にGSS-APIセキュリティ文脈におけるトークンのうまくいっている処理を排除するかもしれません、GSS_S_が状態が局所的に重要な小さい方の_状態と共に返すFAILUREの主要な_であると通常生成して。 そのような状態の体力を要している操作において、以下の推薦状をします:

      Failing calls should free any memory they allocate, so that
      callers may retry without causing further loss of resources.

失敗呼び出しは、訪問者がリソースの一層の損失を引き起こさないで再試行できるように、それらが割り当てるどんなメモリも解放するべきです。

      Failure of an individual call on an established context should not
      preclude subsequent calls from succeeding on the same context.

確立した関係における個々の呼び出しの失敗は、同じ文脈で成功するので、その後の呼び出しを排除するべきではありません。

      Whenever possible, it should be possible for
      GSS_Delete_sec_context() calls to be successfully processed even
      if other calls cannot succeed, thereby enabling context-related
      resources to be released.

可能であるときはいつも、GSS_Deleteに、_他の呼び出しが成功できないでも秒_文脈()が首尾よく処理されるために呼ぶのは、可能であるべきです、その結果、文脈関連のリソースが発表されるのを可能にします。

   A failure of GSS_GetMIC() or GSS_Wrap() due to an attempt to use an
   unsupported QOP will not interfere with context validity, nor shall
   such a failure impact the ability of the application to subsequently
   invoke GSS_GetMIC() or GSS_Wrap() using a supported QOP. Any state
   information concerning sequencing of outgoing messages shall be
   unchanged by an unsuccessful call of GSS_GetMIC() or GSS_Wrap().

そのような失敗は、試みによるGSS_GetMIC()かGSS_Wrap()がサポートされないQOPを使用しないと文脈の正当性を妨げないで、またアプリケーションが次にサポートしているQOPを使用することでGSS_GetMIC()かGSS_Wrap()を呼び出す能力に影響を与えないものとします。 送信されるメッセージの配列のどんな州の情報もGSS_GetMIC()かGSS_Wrap()の失敗の呼び出しで変わりがなくなるでしょう。

Linn                        Standards Track                    [Page 27]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[27ページ]。

1.2.9: Delegation

1.2.9: 委譲

   The GSS-API allows delegation to be controlled by the initiating
   application via a Boolean parameter to GSS_Init_sec_context(), the
   routine that establishes a security context.  Some mechanisms do not
   support delegation, and for such mechanisms attempts by an
   application to enable delegation are ignored.

GSS-APIは、委譲がGSS_Init_秒_文脈()(セキュリティ文脈を確立するルーチン)へのブールパラメタを通した開始アプリケーションで制御されるのを許容します。 いくつかのメカニズムが、委譲をサポートしないで、委譲を可能にするアプリケーションによるそのようなメカニズム試みのために無視されます。

   The acceptor of a security context for which the initiator enabled
   delegation will receive (via the delegated_cred_handle parameter of
   GSS_Accept_sec_context()) a credential handle that contains the
   delegated identity, and this credential handle may be used to
   initiate subsequent GSS-API security contexts as an agent or delegate
   of the initiator.  If the original initiator's identity is "A" and
   the delegate's identity is "B", then, depending on the underlying
   mechanism, the identity embodied by the delegated credential may be
   either "A" or "B acting for A".

創始者の可能にされた委譲がそうするセキュリティ文脈のアクセプタは受信されます。(資格証明書が扱うGSS_Accept_秒_文脈())の代表として派遣された_信用_ハンドルパラメタで、それは代表として派遣されたアイデンティティを含んでいて、この資格証明ハンドルは、創始者のエージェントか代表としてその後のGSS-APIセキュリティ文脈を開始するのに使用されるかもしれません。 オリジナルの創始者のアイデンティティが「A」であり、代表のアイデンティティが「B」であるなら、代表として派遣された資格証明書によって具体化されたアイデンティティは、発症機序によって、「A」か「Aの代理をするB」のどちらかであるかもしれません。

   For many mechanisms that support delegation, a simple Boolean does
   not provide enough control.  Examples of additional aspects of
   delegation control that a mechanism might provide to an application
   are duration of delegation, network addresses from which delegation
   is valid, and constraints on the tasks that may be performed by a
   delegate.  Such controls are presently outside the scope of the GSS-
   API.  GSS-API implementations supporting mechanisms offering
   additional controls should provide extension routines that allow
   these controls to be exercised (perhaps by modifying the initiator's
   GSS-API credential prior to its use in establishing a context).
   However, the simple delegation control provided by GSS-API should
   always be able to over-ride other mechanism-specific delegation
   controls; if the application instructs GSS_Init_sec_context() that
   delegation is not desired, then the implementation must not permit
   delegation to occur.  This is an exception to the general rule that a
   mechanism may enable services even if they are not requested;
   delegation may only be provided at the explicit request of the
   application.

多くのメカニズムそのサポート委譲、aに簡単である、ブール、十分なコントロールを提供しません。 メカニズムがアプリケーションに提供するかもしれない委譲コントロールの追加局面に関する例は委譲、委譲が有効であるネットワーク・アドレス、およびタスクにおける代表によって実行されるかもしれない規制の持続時間です。 GSS APIの範囲の外にそのようなコントロールが現在、あります。 追加コントロールを提供するメカニズムをサポートするGSS-API実行はこれらのコントロールが運動させられるのを(恐らく文脈を確立することにおける使用の前に創始者のGSS-API資格証明書を変更することによって)許容する拡大ルーチンを提供するべきです。 しかしながら、GSS-APIによって提供された簡単な委譲コントロールはいつも他のメカニズム特有の委譲コントロールをくつがえすはずであることができます。 アプリケーションが、委譲が望まれていないようGSS_Init_秒_文脈()に命令するなら、実装は、委譲が起こるのを許容してはいけません。 これはそれらが要求されないでもメカニズムがサービスを可能にするかもしれないという一般的な規則への例外です。 アプリケーションの明白な要求によって委譲を提供するだけであるかもしれません。

1.2.10: Interprocess Context Transfer

1.2.10: インタプロセス文脈転送

   GSS-API V2 provides routines (GSS_Export_sec_context() and
   GSS_Import_sec_context()) which allow a security context to be
   transferred between processes on a single machine.  The most common
   use for such a feature is a client-server design where the server is
   implemented as a single process that accepts incoming security
   contexts, which then launches child processes to deal with the data
   on these contexts.  In such a design, the child processes must have
   access to the security context data structure created within the

GSS-API V2はルーチンを提供します。(セキュリティ文脈が単一マシンの上にプロセスの間に移されるのを許容するGSS_Export_秒_文脈()とGSS_Import_秒_文脈())。 そのような特徴の最も一般の使用はこれらの文脈のサーバが入って来るセキュリティ文脈を受け入れて、次にデータに対処するために子プロセスを始める単一のプロセスとして実装されるクライアント/サーバデザインです。 そのようなデザインでは、子プロセスは中で作成されていた状態でセキュリティ文脈データ構造に近づく手段を持たなければなりません。

Linn                        Standards Track                    [Page 28]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[28ページ]。

   parent by its call to GSS_Accept_sec_context() so that they can use
   per-message protection services and delete the security context when
   the communication session ends.

parent by its call to GSS_Accept_sec_context() so that they can use per-message protection services and delete the security context when the communication session ends.

   Since the security context data structure is expected to contain
   sequencing information, it is impractical in general to share a
   context between processes.  Thus GSS-API provides a call
   (GSS_Export_sec_context()) that the process which currently owns the
   context can call to declare that it has no intention to use the
   context subsequently, and to create an inter-process token containing
   information needed by the adopting process to successfully import the
   context.  After successful completion of this call, the original
   security context is made inaccessible to the calling process by GSS-
   API, and any context handles referring to this context are no longer
   valid.  The originating process transfers the inter-process token to
   the adopting process, which passes it to GSS_Import_sec_context(),
   and a fresh context handle is created such that it is functionally
   identical to the original context.

Since the security context data structure is expected to contain sequencing information, it is impractical in general to share a context between processes. Thus GSS-API provides a call (GSS_Export_sec_context()) that the process which currently owns the context can call to declare that it has no intention to use the context subsequently, and to create an inter-process token containing information needed by the adopting process to successfully import the context. After successful completion of this call, the original security context is made inaccessible to the calling process by GSS- API, and any context handles referring to this context are no longer valid. The originating process transfers the inter-process token to the adopting process, which passes it to GSS_Import_sec_context(), and a fresh context handle is created such that it is functionally identical to the original context.

   The inter-process token may contain sensitive data from the original
   security context (including cryptographic keys).  Applications using
   inter-process tokens to transfer security contexts must take
   appropriate steps to protect these tokens in transit.
   Implementations are not required to support the inter-process
   transfer of security contexts.  The ability to transfer a security
   context is indicated when the context is created, by
   GSS_Init_sec_context() or GSS_Accept_sec_context() indicating a TRUE
   trans_state return value.

The inter-process token may contain sensitive data from the original security context (including cryptographic keys). Applications using inter-process tokens to transfer security contexts must take appropriate steps to protect these tokens in transit. Implementations are not required to support the inter-process transfer of security contexts. The ability to transfer a security context is indicated when the context is created, by GSS_Init_sec_context() or GSS_Accept_sec_context() indicating a TRUE trans_state return value.

2:  Interface Descriptions

2: Interface Descriptions

   This section describes the GSS-API's service interface, dividing the
   set of calls offered into four groups. Credential management calls
   are related to the acquisition and release of credentials by
   principals. Context-level calls are related to the management of
   security contexts between principals. Per-message calls are related
   to the protection of individual messages on established security
   contexts. Support calls provide ancillary functions useful to GSS-API
   callers. Table 2 groups and summarizes the calls in tabular fashion.

This section describes the GSS-API's service interface, dividing the set of calls offered into four groups. Credential management calls are related to the acquisition and release of credentials by principals. Context-level calls are related to the management of security contexts between principals. Per-message calls are related to the protection of individual messages on established security contexts. Support calls provide ancillary functions useful to GSS-API callers. Table 2 groups and summarizes the calls in tabular fashion.

   Table 2:  GSS-API Calls

Table 2: GSS-API Calls

   CREDENTIAL MANAGEMENT

CREDENTIAL MANAGEMENT

   GSS_Acquire_cred             acquire credentials for use
   GSS_Release_cred             release credentials after use
   GSS_Inquire_cred             display information about
                                credentials

GSS_Acquire_cred acquire credentials for use GSS_Release_cred release credentials after use GSS_Inquire_cred display information about credentials

Linn                        Standards Track                    [Page 29]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 29] RFC 2743 GSS-API January 2000

   GSS_Add_cred                 construct credentials incrementally
   GSS_Inquire_cred_by_mech     display per-mechanism credential
                                  information

GSS_Add_cred construct credentials incrementally GSS_Inquire_cred_by_mech display per-mechanism credential information

   CONTEXT-LEVEL CALLS

CONTEXT-LEVEL CALLS

   GSS_Init_sec_context         initiate outbound security context
   GSS_Accept_sec_context       accept inbound security context
   GSS_Delete_sec_context       flush context when no longer needed
   GSS_Process_context_token    process received control token on
                                  context
   GSS_Context_time             indicate validity time remaining on
                                     context
   GSS_Inquire_context          display information about context
   GSS_Wrap_size_limit          determine GSS_Wrap token size limit
   GSS_Export_sec_context       transfer context to other process
   GSS_Import_sec_context       import transferred context

GSS_Init_sec_context initiate outbound security context GSS_Accept_sec_context accept inbound security context GSS_Delete_sec_context flush context when no longer needed GSS_Process_context_token process received control token on context GSS_Context_time indicate validity time remaining on context GSS_Inquire_context display information about context GSS_Wrap_size_limit determine GSS_Wrap token size limit GSS_Export_sec_context transfer context to other process GSS_Import_sec_context import transferred context

   PER-MESSAGE CALLS

PER-MESSAGE CALLS

   GSS_GetMIC                   apply integrity check, receive as
                                  token separate from message
   GSS_VerifyMIC                validate integrity check token
                                  along with message
   GSS_Wrap                     sign, optionally encrypt,
                                  encapsulate
   GSS_Unwrap                   decapsulate, decrypt if needed,
                                  validate integrity check

GSS_GetMIC apply integrity check, receive as token separate from message GSS_VerifyMIC validate integrity check token along with message GSS_Wrap sign, optionally encrypt, encapsulate GSS_Unwrap decapsulate, decrypt if needed, validate integrity check

   SUPPORT CALLS

SUPPORT CALLS

   GSS_Display_status           translate status codes to printable
                                  form
   GSS_Indicate_mechs           indicate mech_types supported on
                                  local system
   GSS_Compare_name             compare two names for equality
   GSS_Display_name             translate name to printable form
   GSS_Import_name              convert printable name to
                                  normalized form
   GSS_Release_name             free storage of normalized-form
                                  name
   GSS_Release_buffer           free storage of general GSS-allocated
                                  object
   GSS_Release_OID_set          free storage of OID set object
   GSS_Create_empty_OID_set     create empty OID set
   GSS_Add_OID_set_member       add member to OID set
   GSS_Test_OID_set_member      test if OID is member of OID set
   GSS_Inquire_names_for_mech   indicate name types supported by

GSS_Display_status translate status codes to printable form GSS_Indicate_mechs indicate mech_types supported on local system GSS_Compare_name compare two names for equality GSS_Display_name translate name to printable form GSS_Import_name convert printable name to normalized form GSS_Release_name free storage of normalized-form name GSS_Release_buffer free storage of general GSS-allocated object GSS_Release_OID_set free storage of OID set object GSS_Create_empty_OID_set create empty OID set GSS_Add_OID_set_member add member to OID set GSS_Test_OID_set_member test if OID is member of OID set GSS_Inquire_names_for_mech indicate name types supported by

Linn                        Standards Track                    [Page 30]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 30] RFC 2743 GSS-API January 2000

                                  mechanism
   GSS_Inquire_mechs_for_name   indicates mechanisms supporting name
                                  type
   GSS_Canonicalize_name        translate name to per-mechanism form
   GSS_Export_name              externalize per-mechanism name
   GSS_Duplicate_name           duplicate name object

mechanism GSS_Inquire_mechs_for_name indicates mechanisms supporting name type GSS_Canonicalize_name translate name to per-mechanism form GSS_Export_name externalize per-mechanism name GSS_Duplicate_name duplicate name object

2.1:  Credential management calls

2.1: Credential management calls

   These GSS-API calls provide functions related to the management of
   credentials. Their characterization with regard to whether or not
   they may block pending exchanges with other network entities (e.g.,
   directories or authentication servers) depends in part on OS-specific
   (extra-GSS-API) issues, so is not specified in this document.

These GSS-API calls provide functions related to the management of credentials. Their characterization with regard to whether or not they may block pending exchanges with other network entities (e.g., directories or authentication servers) depends in part on OS-specific (extra-GSS-API) issues, so is not specified in this document.

   The GSS_Acquire_cred() call is defined within the GSS-API in support
   of application portability, with a particular orientation towards
   support of portable server applications. It is recognized that (for
   certain systems and mechanisms) credentials for interactive users may
   be managed differently from credentials for server processes; in such
   environments, it is the GSS-API implementation's responsibility to
   distinguish these cases and the procedures for making this
   distinction are a local matter. The GSS_Release_cred() call provides
   a means for callers to indicate to the GSS-API that use of a
   credentials structure is no longer required. The GSS_Inquire_cred()
   call allows callers to determine information about a credentials
   structure.  The GSS_Add_cred() call enables callers to append
   elements to an existing credential structure, allowing iterative
   construction of a multi-mechanism credential. The
   GSS_Inquire_cred_by_mech() call enables callers to extract per-
   mechanism information describing a credentials structure.

The GSS_Acquire_cred() call is defined within the GSS-API in support of application portability, with a particular orientation towards support of portable server applications. It is recognized that (for certain systems and mechanisms) credentials for interactive users may be managed differently from credentials for server processes; in such environments, it is the GSS-API implementation's responsibility to distinguish these cases and the procedures for making this distinction are a local matter. The GSS_Release_cred() call provides a means for callers to indicate to the GSS-API that use of a credentials structure is no longer required. The GSS_Inquire_cred() call allows callers to determine information about a credentials structure. The GSS_Add_cred() call enables callers to append elements to an existing credential structure, allowing iterative construction of a multi-mechanism credential. The GSS_Inquire_cred_by_mech() call enables callers to extract per- mechanism information describing a credentials structure.

2.1.1:  GSS_Acquire_cred call

2.1.1: GSS_Acquire_cred call

   Inputs:

Inputs:

   o  desired_name INTERNAL NAME, -- NULL requests locally-determined
   -- default

o desired_name INTERNAL NAME, -- NULL requests locally-determined -- default

   o  lifetime_req INTEGER, -- in seconds; 0 requests default

o lifetime_req INTEGER, -- in seconds; 0 requests default

   o  desired_mechs SET OF OBJECT IDENTIFIER, -- NULL requests
   -- system-selected default

o desired_mechs SET OF OBJECT IDENTIFIER, -- NULL requests -- system-selected default

   o  cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
   -- 2=ACCEPT-ONLY

o cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, -- 2=ACCEPT-ONLY

Linn                        Standards Track                    [Page 31]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 31] RFC 2743 GSS-API January 2000

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  output_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL,
   -- caller must release with GSS_Release_cred()

o output_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL, -- caller must release with GSS_Release_cred()

   o  actual_mechs SET OF OBJECT IDENTIFIER, -- if returned non-NULL,
   -- caller must release with GSS_Release_oid_set()

o actual_mechs SET OF OBJECT IDENTIFIER, -- if returned non-NULL, -- caller must release with GSS_Release_oid_set()

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec INTEGER -- in seconds, or reserved value for -- INDEFINITE

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that requested credentials were
   successfully established, for the duration indicated in lifetime_rec,
   suitable for the usage requested in cred_usage, for the set of
   mech_types indicated in actual_mechs, and that those credentials can
   be referenced for subsequent use with the handle returned in
   output_cred_handle.

o GSS_S_COMPLETE indicates that requested credentials were successfully established, for the duration indicated in lifetime_rec, suitable for the usage requested in cred_usage, for the set of mech_types indicated in actual_mechs, and that those credentials can be referenced for subsequent use with the handle returned in output_cred_handle.

   o  GSS_S_BAD_MECH indicates that a mech_type unsupported by the GSS-
   API implementation type was requested, causing the credential
   establishment operation to fail.

o GSS_S_BAD_MECH indicates that a mech_type unsupported by the GSS- API implementation type was requested, causing the credential establishment operation to fail.

   o  GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
   uninterpretable or of a type unsupported by the applicable underlying
   GSS-API mechanism(s), so no credentials could be established for the
   accompanying desired_name.

o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type unsupported by the applicable underlying GSS-API mechanism(s), so no credentials could be established for the accompanying desired_name.

   o  GSS_S_BAD_NAME indicates that the provided desired_name is
   inconsistent in terms of internally-incorporated type specifier
   information, so no credentials could be established for the
   accompanying desired_name.

o GSS_S_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-incorporated type specifier information, so no credentials could be established for the accompanying desired_name.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that underlying credential
   elements corresponding to the requested desired_name have expired, so
   requested credentials could not be established.

o GSS_S_CREDENTIALS_EXPIRED indicates that underlying credential elements corresponding to the requested desired_name have expired, so requested credentials could not be established.

   o GSS_S_NO_CRED indicates that no credential elements corresponding
   to the requested desired_name and usage could be accessed, so
   requested credentials could not be established.  In particular, this
   status should be returned upon temporary user-fixable conditions

o GSS_S_NO_CRED indicates that no credential elements corresponding to the requested desired_name and usage could be accessed, so requested credentials could not be established. In particular, this status should be returned upon temporary user-fixable conditions

Linn                        Standards Track                    [Page 32]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 32] RFC 2743 GSS-API January 2000

   preventing successful credential establishment and upon lack of
   authorization to establish and use credentials associated with the
   identity named in the input desired_name argument.

preventing successful credential establishment and upon lack of authorization to establish and use credentials associated with the identity named in the input desired_name argument.

   o  GSS_S_FAILURE indicates that credential establishment failed for
   reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that credential establishment failed for reasons unspecified at the GSS-API level.

   GSS_Acquire_cred() is used to acquire credentials so that a principal
   can (as a function of the input cred_usage parameter) initiate and/or
   accept security contexts under the identity represented by the
   desired_name input argument. On successful completion, the returned
   output_cred_handle result provides a handle for subsequent references
   to the acquired credentials.  Typically, single-user client processes
   requesting that default credential behavior be applied for context
   establishment purposes will have no need to invoke this call.

GSS_Acquire_cred() is used to acquire credentials so that a principal can (as a function of the input cred_usage parameter) initiate and/or accept security contexts under the identity represented by the desired_name input argument. On successful completion, the returned output_cred_handle result provides a handle for subsequent references to the acquired credentials. Typically, single-user client processes requesting that default credential behavior be applied for context establishment purposes will have no need to invoke this call.

   A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name,
   which will be interpreted as a request for a credential handle that
   will invoke default behavior when passed to GSS_Init_sec_context(),
   if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or
   GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or
   GSS_C_BOTH.  It is possible that multiple pre-established credentials
   may exist for the same principal identity (for example, as a result
   of multiple user login sessions) when GSS_Acquire_cred() is called;
   the means used in such cases to select a specific credential are
   local matters.  The input lifetime_req argument to GSS_Acquire_cred()
   may provide useful information for local GSS-API implementations to
   employ in making this disambiguation in a manner which will best
   satisfy a caller's intent.

A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name, which will be interpreted as a request for a credential handle that will invoke default behavior when passed to GSS_Init_sec_context(), if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH. It is possible that multiple pre-established credentials may exist for the same principal identity (for example, as a result of multiple user login sessions) when GSS_Acquire_cred() is called; the means used in such cases to select a specific credential are local matters. The input lifetime_req argument to GSS_Acquire_cred() may provide useful information for local GSS-API implementations to employ in making this disambiguation in a manner which will best satisfy a caller's intent.

   This routine is expected to be used primarily by context acceptors,
   since implementations are likely to provide mechanism-specific ways
   of obtaining GSS-API initiator credentials from the system login
   process.  Some implementations may therefore not support the
   acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
   GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name
   resulting from applying GSS_Inquire_context() to an active context,
   or a name resulting from applying GSS_Inquire_cred() against a
   credential handle corresponding to default behavior. It is important
   to recognize that the explicit name which is yielded by resolving a
   default reference may change over time, e.g., as a result of local
   credential element management operations outside GSS-API; once
   resolved, however, the value of such an explicit name will remain
   constant.

This routine is expected to be used primarily by context acceptors, since implementations are likely to provide mechanism-specific ways of obtaining GSS-API initiator credentials from the system login process. Some implementations may therefore not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name resulting from applying GSS_Inquire_context() to an active context, or a name resulting from applying GSS_Inquire_cred() against a credential handle corresponding to default behavior. It is important to recognize that the explicit name which is yielded by resolving a default reference may change over time, e.g., as a result of local credential element management operations outside GSS-API; once resolved, however, the value of such an explicit name will remain constant.

   The lifetime_rec result indicates the length of time for which the
   acquired credentials will be valid, as an offset from the present. A
   mechanism may return a reserved value indicating INDEFINITE if no

The lifetime_rec result indicates the length of time for which the acquired credentials will be valid, as an offset from the present. A mechanism may return a reserved value indicating INDEFINITE if no

Linn                        Standards Track                    [Page 33]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 33] RFC 2743 GSS-API January 2000

   constraints on credential lifetime are imposed.  A caller of
   GSS_Acquire_cred() can request a length of time for which acquired
   credentials are to be valid (lifetime_req argument), beginning at the
   present, or can request credentials with a default validity interval.
   (Requests for postdated credentials are not supported within the
   GSS-API.) Certain mechanisms and implementations may bind in
   credential validity period specifiers at a point preliminary to
   invocation of the GSS_Acquire_cred() call (e.g., in conjunction with
   user login procedures). As a result, callers requesting non-default
   values for lifetime_req must recognize that such requests cannot
   always be honored and must be prepared to accommodate the use of
   returned credentials with different lifetimes as indicated in
   lifetime_rec.

constraints on credential lifetime are imposed. A caller of GSS_Acquire_cred() can request a length of time for which acquired credentials are to be valid (lifetime_req argument), beginning at the present, or can request credentials with a default validity interval. (Requests for postdated credentials are not supported within the GSS-API.) Certain mechanisms and implementations may bind in credential validity period specifiers at a point preliminary to invocation of the GSS_Acquire_cred() call (e.g., in conjunction with user login procedures). As a result, callers requesting non-default values for lifetime_req must recognize that such requests cannot always be honored and must be prepared to accommodate the use of returned credentials with different lifetimes as indicated in lifetime_rec.

   The caller of GSS_Acquire_cred() can explicitly specify a set of
   mech_types which are to be accommodated in the returned credentials
   (desired_mechs argument), or can request credentials for a system-
   defined default set of mech_types. Selection of the system-specified
   default set is recommended in the interests of application
   portability. The actual_mechs return value may be interrogated by the
   caller to determine the set of mechanisms with which the returned
   credentials may be used.

The caller of GSS_Acquire_cred() can explicitly specify a set of mech_types which are to be accommodated in the returned credentials (desired_mechs argument), or can request credentials for a system- defined default set of mech_types. Selection of the system-specified default set is recommended in the interests of application portability. The actual_mechs return value may be interrogated by the caller to determine the set of mechanisms with which the returned credentials may be used.

2.1.2:  GSS_Release_cred call

2.1.2: GSS_Release_cred call

   Input:

Input:

   o  cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
   -- is specified, the call will complete successfully, but
   -- will have no effect; no credential elements will be
   -- released.

o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL -- is specified, the call will complete successfully, but -- will have no effect; no credential elements will be -- released.

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER

o minor_status INTEGER

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
   input cred_handle were released for purposes of subsequent access by
   the caller. The effect on other processes which may be authorized
   shared access to such credentials is a local matter.

o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle were released for purposes of subsequent access by the caller. The effect on other processes which may be authorized shared access to such credentials is a local matter.

Linn                        Standards Track                    [Page 34]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 34] RFC 2743 GSS-API January 2000

   o  GSS_S_NO_CRED indicates that no release operation was performed,
   either because the input cred_handle was invalid or because the
   caller lacks authorization to access the referenced credentials.

o GSS_S_NO_CRED indicates that no release operation was performed, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.

   o  GSS_S_FAILURE indicates that the release operation failed for
   reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the release operation failed for reasons unspecified at the GSS-API level.

   Provides a means for a caller to explicitly request that credentials
   be released when their use is no longer required. Note that system-
   specific credential management functions are also likely to exist,
   for example to assure that credentials shared among processes are
   properly deleted when all affected processes terminate, even if no
   explicit release requests are issued by those processes. Given the
   fact that multiple callers are not precluded from gaining authorized
   access to the same credentials, invocation of GSS_Release_cred()
   cannot be assumed to delete a particular set of credentials on a
   system-wide basis.

Provides a means for a caller to explicitly request that credentials be released when their use is no longer required. Note that system- specific credential management functions are also likely to exist, for example to assure that credentials shared among processes are properly deleted when all affected processes terminate, even if no explicit release requests are issued by those processes. Given the fact that multiple callers are not precluded from gaining authorized access to the same credentials, invocation of GSS_Release_cred() cannot be assumed to delete a particular set of credentials on a system-wide basis.

2.1.3:  GSS_Inquire_cred call

2.1.3: GSS_Inquire_cred call

   Input:

Input:

   o  cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
   -- is specified, default initiator credentials are queried

o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL -- is specified, default initiator credentials are queried

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  cred_name INTERNAL NAME,  -- caller must release with
   -- GSS_Release_name()

o cred_name INTERNAL NAME, -- caller must release with -- GSS_Release_name()

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec INTEGER -- in seconds, or reserved value for -- INDEFINITE

   o  cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
   -- 2=ACCEPT-ONLY

o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, -- 2=ACCEPT-ONLY

   o  mech_set SET OF OBJECT IDENTIFIER  -- caller must release
   -- with GSS_Release_oid_set()

o mech_set SET OF OBJECT IDENTIFIER -- caller must release -- with GSS_Release_oid_set()

Linn                        Standards Track                    [Page 35]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 35] RFC 2743 GSS-API January 2000

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
   input cred_handle argument were valid, and that the output cred_name,
   lifetime_rec, and cred_usage values represent, respectively, the
   credentials' associated principal name, remaining lifetime, suitable
   usage modes, and supported mechanism types.

o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle argument were valid, and that the output cred_name, lifetime_rec, and cred_usage values represent, respectively, the credentials' associated principal name, remaining lifetime, suitable usage modes, and supported mechanism types.

   o  GSS_S_NO_CRED indicates that no information could be returned
   about the referenced credentials, either because the input
   cred_handle was invalid or because the caller lacks authorization to
   access the referenced credentials.

o GSS_S_NO_CRED indicates that no information could be returned about the referenced credentials, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced
   credentials are invalid.

o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced credentials are invalid.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the referenced
   credentials have expired.

o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced credentials have expired.

   o  GSS_S_FAILURE indicates that the operation failed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level.

   The GSS_Inquire_cred() call is defined primarily for the use of those
   callers which request use of default credential behavior rather than
   acquiring credentials explicitly with GSS_Acquire_cred().  It enables
   callers to determine a credential structure's associated principal
   name, remaining validity period, usability for security context
   initiation and/or acceptance, and supported mechanisms.

The GSS_Inquire_cred() call is defined primarily for the use of those callers which request use of default credential behavior rather than acquiring credentials explicitly with GSS_Acquire_cred(). It enables callers to determine a credential structure's associated principal name, remaining validity period, usability for security context initiation and/or acceptance, and supported mechanisms.

   For a multi-mechanism credential, the returned "lifetime" specifier
   indicates the shortest lifetime of any of the mechanisms' elements in
   the credential (for either context initiation or acceptance
   purposes).

For a multi-mechanism credential, the returned "lifetime" specifier indicates the shortest lifetime of any of the mechanisms' elements in the credential (for either context initiation or acceptance purposes).

   GSS_Inquire_cred() should indicate INITIATE-AND-ACCEPT for
   "cred_usage" if both of the following conditions hold:

GSS_Inquire_cred() should indicate INITIATE-AND-ACCEPT for "cred_usage" if both of the following conditions hold:

      (1) there exists in the credential an element which allows context
      initiation using some mechanism

(1) there exists in the credential an element which allows context initiation using some mechanism

      (2) there exists in the credential an element which allows context
      acceptance using some mechanism (allowably, but not necessarily,
      one of the same mechanism(s) qualifying for (1)).

(2) there exists in the credential an element which allows context acceptance using some mechanism (allowably, but not necessarily, one of the same mechanism(s) qualifying for (1)).

   If condition (1) holds but not condition (2), GSS_Inquire_cred()
   should indicate INITIATE-ONLY for "cred_usage".  If condition (2)
   holds but not condition (1), GSS_Inquire_cred() should indicate
   ACCEPT-ONLY for "cred_usage".

If condition (1) holds but not condition (2), GSS_Inquire_cred() should indicate INITIATE-ONLY for "cred_usage". If condition (2) holds but not condition (1), GSS_Inquire_cred() should indicate ACCEPT-ONLY for "cred_usage".

Linn                        Standards Track                    [Page 36]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 36] RFC 2743 GSS-API January 2000

   Callers requiring finer disambiguation among available combinations
   of lifetimes, usage modes, and mechanisms should call the
   GSS_Inquire_cred_by_mech() routine, passing that routine one of the
   mech OIDs returned by GSS_Inquire_cred().

Callers requiring finer disambiguation among available combinations of lifetimes, usage modes, and mechanisms should call the GSS_Inquire_cred_by_mech() routine, passing that routine one of the mech OIDs returned by GSS_Inquire_cred().

2.1.4:  GSS_Add_cred call

2.1.4: GSS_Add_cred call

   Inputs:

Inputs:

   o  input_cred_handle CREDENTIAL HANDLE -- handle to credential
   -- structure created with prior GSS_Acquire_cred() or
   -- GSS_Add_cred() call; see text for definition of behavior
   -- when GSS_C_NO_CREDENTIAL provided.

o input_cred_handle CREDENTIAL HANDLE -- handle to credential -- structure created with prior GSS_Acquire_cred() or -- GSS_Add_cred() call; see text for definition of behavior -- when GSS_C_NO_CREDENTIAL provided.

   o  desired_name INTERNAL NAME

o desired_name INTERNAL NAME

   o  initiator_time_req INTEGER -- in seconds; 0 requests default

o initiator_time_req INTEGER -- in seconds; 0 requests default

   o  acceptor_time_req INTEGER -- in seconds; 0 requests default

o acceptor_time_req INTEGER -- in seconds; 0 requests default

   o  desired_mech OBJECT IDENTIFIER

o desired_mech OBJECT IDENTIFIER

   o  cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
   -- 2=ACCEPT-ONLY

o cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, -- 2=ACCEPT-ONLY

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  output_cred_handle CREDENTIAL HANDLE, -- NULL to request that
   -- credential elements be added "in place" to the credential
   -- structure identified by input_cred_handle,
   -- non-NULL pointer to request that
   -- a new credential structure and handle be created.
   -- if credential handle returned, caller must release with
   -- GSS_Release_cred()

o output_cred_handle CREDENTIAL HANDLE, -- NULL to request that -- credential elements be added "in place" to the credential -- structure identified by input_cred_handle, -- non-NULL pointer to request that -- a new credential structure and handle be created. -- if credential handle returned, caller must release with -- GSS_Release_cred()

   o  actual_mechs SET OF OBJECT IDENTIFIER, -- if returned, caller must
   -- release with GSS_Release_oid_set()

o actual_mechs SET OF OBJECT IDENTIFIER, -- if returned, caller must -- release with GSS_Release_oid_set()

   o  initiator_time_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o initiator_time_rec INTEGER -- in seconds, or reserved value for -- INDEFINITE

   o  acceptor_time_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o acceptor_time_rec INTEGER -- in seconds, or reserved value for -- INDEFINITE

Linn                        Standards Track                    [Page 37]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 37] RFC 2743 GSS-API January 2000

   o  cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
   -- 2=ACCEPT-ONLY

o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, -- 2=ACCEPT-ONLY

   o  mech_set SET OF OBJECT IDENTIFIER -- full set of mechanisms
   -- supported by resulting credential.

o mech_set SET OF OBJECT IDENTIFIER -- full set of mechanisms -- supported by resulting credential.

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
   input_cred_handle argument were valid, and that the resulting
   credential from GSS_Add_cred() is valid for the durations indicated
   in initiator_time_rec and acceptor_time_rec, suitable for the usage
   requested in cred_usage, and for the mechanisms indicated in
   actual_mechs.

o GSS_S_COMPLETE indicates that the credentials referenced by the input_cred_handle argument were valid, and that the resulting credential from GSS_Add_cred() is valid for the durations indicated in initiator_time_rec and acceptor_time_rec, suitable for the usage requested in cred_usage, and for the mechanisms indicated in actual_mechs.

   o  GSS_S_DUPLICATE_ELEMENT indicates that the input desired_mech
   specified a mechanism for which the referenced credential already
   contained a credential element with overlapping cred_usage and
   validity time specifiers.

o GSS_S_DUPLICATE_ELEMENT indicates that the input desired_mech specified a mechanism for which the referenced credential already contained a credential element with overlapping cred_usage and validity time specifiers.

   o  GSS_S_BAD_MECH indicates that the input desired_mech specified a
   mechanism unsupported by the GSS-API implementation, causing the
   GSS_Add_cred() operation to fail.

o GSS_S_BAD_MECH indicates that the input desired_mech specified a mechanism unsupported by the GSS-API implementation, causing the GSS_Add_cred() operation to fail.

   o  GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
   uninterpretable or of a type unsupported by the applicable underlying
   GSS-API mechanism(s), so the GSS_Add_cred() operation could not be
   performed for that name.

o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type unsupported by the applicable underlying GSS-API mechanism(s), so the GSS_Add_cred() operation could not be performed for that name.

   o  GSS_S_BAD_NAME indicates that the provided desired_name is
   inconsistent in terms of internally-incorporated type specifier
   information, so the GSS_Add_cred() operation could not be performed
   for that name.

o GSS_S_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-incorporated type specifier information, so the GSS_Add_cred() operation could not be performed for that name.

   o  GSS_S_NO_CRED indicates that the input_cred_handle referenced
   invalid or inaccessible credentials. In particular, this status
   should be returned upon temporary user-fixable conditions preventing
   successful credential establishment or upon lack of authorization to
   establish or use credentials representing the requested identity.

o GSS_S_NO_CRED indicates that the input_cred_handle referenced invalid or inaccessible credentials. In particular, this status should be returned upon temporary user-fixable conditions preventing successful credential establishment or upon lack of authorization to establish or use credentials representing the requested identity.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that referenced credential
   elements have expired, so the GSS_Add_cred() operation could not be
   performed.

o GSS_S_CREDENTIALS_EXPIRED indicates that referenced credential elements have expired, so the GSS_Add_cred() operation could not be performed.

   o  GSS_S_FAILURE indicates that the operation failed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level.

Linn                        Standards Track                    [Page 38]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 38] RFC 2743 GSS-API January 2000

   GSS_Add_cred() enables callers to construct credentials iteratively
   by adding credential elements in successive operations, corresponding
   to different mechanisms.  This offers particular value in multi-
   mechanism environments, as the major_status and minor_status values
   returned on each iteration are individually visible and can therefore
   be interpreted unambiguously on a per-mechanism basis. A credential
   element is identified by the name of the principal to which it
   refers.  GSS-API implementations must impose a local access control
   policy on callers of this routine to prevent unauthorized callers
   from acquiring credential elements to which they are not entitled.
   This routine is not intended to provide a "login to the network"
   function, as such a function would involve the creation of new
   mechanism-specific authentication data, rather than merely acquiring
   a GSS-API handle to existing data.  Such functions, if required,
   should be defined in implementation-specific extension routines.

GSS_Add_cred() enables callers to construct credentials iteratively by adding credential elements in successive operations, corresponding to different mechanisms. This offers particular value in multi- mechanism environments, as the major_status and minor_status values returned on each iteration are individually visible and can therefore be interpreted unambiguously on a per-mechanism basis. A credential element is identified by the name of the principal to which it refers. GSS-API implementations must impose a local access control policy on callers of this routine to prevent unauthorized callers from acquiring credential elements to which they are not entitled. This routine is not intended to provide a "login to the network" function, as such a function would involve the creation of new mechanism-specific authentication data, rather than merely acquiring a GSS-API handle to existing data. Such functions, if required, should be defined in implementation-specific extension routines.

   If credential acquisition is time-consuming for a mechanism, the
   mechanism may choose to delay the actual acquisition until the
   credential is required (e.g. by GSS_Init_sec_context() or
   GSS_Accept_sec_context()).  Such mechanism-specific implementation
   decisions should be invisible to the calling application; thus a call
   of GSS_Inquire_cred() immediately following the call of
   GSS_Acquire_cred() must return valid credential data, and may
   therefore incur the overhead of a deferred credential acquisition.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to delay the actual acquisition until the credential is required (e.g. by GSS_Init_sec_context() or GSS_Accept_sec_context()). Such mechanism-specific implementation decisions should be invisible to the calling application; thus a call of GSS_Inquire_cred() immediately following the call of GSS_Acquire_cred() must return valid credential data, and may therefore incur the overhead of a deferred credential acquisition.

   If GSS_C_NO_CREDENTIAL is specified as input_cred_handle, a non-NULL
   output_cred_handle must be supplied.  For the case of
   GSS_C_NO_CREDENTIAL as input_cred_handle, GSS_Add_cred() will create
   the credential referenced by its output_cred_handle based on default
   behavior.  That is, the call will have the same effect as if the
   caller had previously called GSS_Acquire_cred(), specifying the same
   usage and passing GSS_C_NO_NAME as the desired_name parameter
   (thereby obtaining an explicit credential handle corresponding to
   default behavior), had passed that credential handle to
   GSS_Add_cred(), and had finally called GSS_Release_cred() on the
   credential handle received from GSS_Acquire_cred().

If GSS_C_NO_CREDENTIAL is specified as input_cred_handle, a non-NULL output_cred_handle must be supplied. For the case of GSS_C_NO_CREDENTIAL as input_cred_handle, GSS_Add_cred() will create the credential referenced by its output_cred_handle based on default behavior. That is, the call will have the same effect as if the caller had previously called GSS_Acquire_cred(), specifying the same usage and passing GSS_C_NO_NAME as the desired_name parameter (thereby obtaining an explicit credential handle corresponding to default behavior), had passed that credential handle to GSS_Add_cred(), and had finally called GSS_Release_cred() on the credential handle received from GSS_Acquire_cred().

   This routine is expected to be used primarily by context acceptors,
   since implementations are likely to provide mechanism-specific ways
   of obtaining GSS-API initiator credentials from the system login
   process.  Some implementations may therefore not support the
   acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
   GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name
   resulting from applying GSS_Inquire_context() to an active context,
   or a name resulting from applying GSS_Inquire_cred() against a
   credential handle corresponding to default behavior. It is important
   to recognize that the explicit name which is yielded by resolving a
   default reference may change over time, e.g., as a result of local

This routine is expected to be used primarily by context acceptors, since implementations are likely to provide mechanism-specific ways of obtaining GSS-API initiator credentials from the system login process. Some implementations may therefore not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name resulting from applying GSS_Inquire_context() to an active context, or a name resulting from applying GSS_Inquire_cred() against a credential handle corresponding to default behavior. It is important to recognize that the explicit name which is yielded by resolving a default reference may change over time, e.g., as a result of local

Linn                        Standards Track                    [Page 39]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 39] RFC 2743 GSS-API January 2000

   credential element management operations outside GSS-API; once
   resolved, however, the value of such an explicit name will remain
   constant.

credential element management operations outside GSS-API; once resolved, however, the value of such an explicit name will remain constant.

   A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name,
   which will be interpreted as a request for a credential handle that
   will invoke default behavior when passed to GSS_Init_sec_context(),
   if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or
   GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or
   GSS_C_BOTH.

A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name, which will be interpreted as a request for a credential handle that will invoke default behavior when passed to GSS_Init_sec_context(), if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH.

   The same input desired_name, or default reference, should be used on
   all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a
   particular credential.

The same input desired_name, or default reference, should be used on all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a particular credential.

2.1.5:  GSS_Inquire_cred_by_mech call

2.1.5: GSS_Inquire_cred_by_mech call

   Inputs:

Inputs:

   o  cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
   -- specified, default initiator credentials are queried

o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL -- specified, default initiator credentials are queried

   o  mech_type OBJECT IDENTIFIER  -- specific mechanism for
   -- which credentials are being queried

o mech_type OBJECT IDENTIFIER -- specific mechanism for -- which credentials are being queried

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  cred_name INTERNAL NAME, -- guaranteed to be MN; caller must
   -- release with GSS_Release_name()

o cred_name INTERNAL NAME, -- guaranteed to be MN; caller must -- release with GSS_Release_name()

   o  lifetime_rec_initiate INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec_initiate INTEGER -- in seconds, or reserved value for -- INDEFINITE

   o  lifetime_rec_accept INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec_accept INTEGER -- in seconds, or reserved value for -- INDEFINITE

   o  cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
   -- 2=ACCEPT-ONLY

o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, -- 2=ACCEPT-ONLY

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
   input cred_handle argument were valid, that the mechanism indicated
   by the input mech_type was represented with elements within those

o GSS_S_COMPLETE indicates that the credentials referenced by the input cred_handle argument were valid, that the mechanism indicated by the input mech_type was represented with elements within those

Linn                        Standards Track                    [Page 40]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 40] RFC 2743 GSS-API January 2000

   credentials, and that the output cred_name, lifetime_rec_initiate,
   lifetime_rec_accept, and cred_usage values represent, respectively,
   the credentials' associated principal name, remaining lifetimes, and
   suitable usage modes.

credentials, and that the output cred_name, lifetime_rec_initiate, lifetime_rec_accept, and cred_usage values represent, respectively, the credentials' associated principal name, remaining lifetimes, and suitable usage modes.

   o  GSS_S_NO_CRED indicates that no information could be returned
   about the referenced credentials, either because the input
   cred_handle was invalid or because the caller lacks authorization to
   access the referenced credentials.

o GSS_S_NO_CRED indicates that no information could be returned about the referenced credentials, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced
   credentials are invalid.

o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced credentials are invalid.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the referenced
   credentials have expired.

o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced credentials have expired.

   o  GSS_S_BAD_MECH indicates that the referenced credentials do not
   contain elements for the requested mechanism.

o GSS_S_BAD_MECH indicates that the referenced credentials do not contain elements for the requested mechanism.

   o  GSS_S_FAILURE indicates that the operation failed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the operation failed for reasons unspecified at the GSS-API level.

   The GSS_Inquire_cred_by_mech() call enables callers in multi-
   mechanism environments to acquire specific data about available
   combinations of lifetimes, usage modes, and mechanisms within a
   credential structure.  The lifetime_rec_initiate result indicates the
   available lifetime for context initiation purposes; the
   lifetime_rec_accept result indicates the available lifetime for
   context acceptance purposes.

The GSS_Inquire_cred_by_mech() call enables callers in multi- mechanism environments to acquire specific data about available combinations of lifetimes, usage modes, and mechanisms within a credential structure. The lifetime_rec_initiate result indicates the available lifetime for context initiation purposes; the lifetime_rec_accept result indicates the available lifetime for context acceptance purposes.

2.2:  Context-level calls

2.2: Context-level calls

   This group of calls is devoted to the establishment and management of
   security contexts between peers. A context's initiator calls
   GSS_Init_sec_context(), resulting in generation of a token which the
   caller passes to the target. At the target, that token is passed to
   GSS_Accept_sec_context(). Depending on the underlying mech_type and
   specified options, additional token exchanges may be performed in the
   course of context establishment; such exchanges are accommodated by
   GSS_S_CONTINUE_NEEDED status returns from GSS_Init_sec_context() and
   GSS_Accept_sec_context().

This group of calls is devoted to the establishment and management of security contexts between peers. A context's initiator calls GSS_Init_sec_context(), resulting in generation of a token which the caller passes to the target. At the target, that token is passed to GSS_Accept_sec_context(). Depending on the underlying mech_type and specified options, additional token exchanges may be performed in the course of context establishment; such exchanges are accommodated by GSS_S_CONTINUE_NEEDED status returns from GSS_Init_sec_context() and GSS_Accept_sec_context().

   Either party to an established context may invoke
   GSS_Delete_sec_context() to flush context information when a context
   is no longer required. GSS_Process_context_token() is used to process
   received tokens carrying context-level control information.
   GSS_Context_time() allows a caller to determine the length of time
   for which an established context will remain valid.

Either party to an established context may invoke GSS_Delete_sec_context() to flush context information when a context is no longer required. GSS_Process_context_token() is used to process received tokens carrying context-level control information. GSS_Context_time() allows a caller to determine the length of time for which an established context will remain valid.

Linn                        Standards Track                    [Page 41]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 41] RFC 2743 GSS-API January 2000

   GSS_Inquire_context() returns status information describing context
   characteristics. GSS_Wrap_size_limit() allows a caller to determine
   the size of a token which will be generated by a GSS_Wrap()
   operation.  GSS_Export_sec_context() and GSS_Import_sec_context()
   enable transfer of active contexts between processes on an end
   system.

GSS_Inquire_context() returns status information describing context characteristics. GSS_Wrap_size_limit() allows a caller to determine the size of a token which will be generated by a GSS_Wrap() operation. GSS_Export_sec_context() and GSS_Import_sec_context() enable transfer of active contexts between processes on an end system.

2.2.1:  GSS_Init_sec_context call

2.2.1: GSS_Init_sec_context call

   Inputs:

Inputs:

   o  claimant_cred_handle CREDENTIAL HANDLE, -- NULL specifies "use
   -- default"

o claimant_cred_handle CREDENTIAL HANDLE, -- NULL specifies "use -- default"

   o  input_context_handle CONTEXT HANDLE, -- 0
   -- (GSS_C_NO_CONTEXT) specifies "none assigned yet"

o input_context_handle CONTEXT HANDLE, -- 0 -- (GSS_C_NO_CONTEXT) specifies "none assigned yet"

   o  targ_name INTERNAL NAME,

o targ_name INTERNAL NAME,

   o  mech_type OBJECT IDENTIFIER, -- NULL parameter specifies "use
   -- default"

o mech_type OBJECT IDENTIFIER, -- NULL parameter specifies "use -- default"

   o  deleg_req_flag BOOLEAN,

o deleg_req_flag BOOLEAN,

   o  mutual_req_flag BOOLEAN,

o mutual_req_flag BOOLEAN,

   o  replay_det_req_flag BOOLEAN,

o replay_det_req_flag BOOLEAN,

   o  sequence_req_flag BOOLEAN,

o sequence_req_flag BOOLEAN,

   o  anon_req_flag BOOLEAN,

o anon_req_flag BOOLEAN,

   o  conf_req_flag BOOLEAN,

o conf_req_flag BOOLEAN,

   o  integ_req_flag BOOLEAN,

o integ_req_flag BOOLEAN,

   o  lifetime_req INTEGER, -- 0 specifies default lifetime

o lifetime_req INTEGER, -- 0 specifies default lifetime

   o  chan_bindings OCTET STRING,

o chan_bindings OCTET STRING,

   o  input_token OCTET STRING -- NULL or token received from target

o input_token OCTET STRING -- NULL or token received from target

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

Linn                        Standards Track                    [Page 42]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 42] RFC 2743 GSS-API January 2000

   o  output_context_handle CONTEXT HANDLE,  -- once returned non-NULL,
   -- caller must release with GSS_Delete_sec_context()

o output_context_handle CONTEXT HANDLE, -- once returned non-NULL, -- caller must release with GSS_Delete_sec_context()

   o  mech_type OBJECT IDENTIFIER, -- actual mechanism always
   -- indicated, never NULL; caller should treat as read-only
   -- and should not attempt to release

o mech_type OBJECT IDENTIFIER, -- actual mechanism always -- indicated, never NULL; caller should treat as read-only -- and should not attempt to release

   o  output_token OCTET STRING, -- NULL or token to pass to context
   -- target; caller must release with GSS_Release_buffer()

o output_token OCTET STRING, -- NULL or token to pass to context -- target; caller must release with GSS_Release_buffer()

   o  deleg_state BOOLEAN,

o deleg_state BOOLEAN,

   o  mutual_state BOOLEAN,

o mutual_state BOOLEAN,

   o  replay_det_state BOOLEAN,

o replay_det_state BOOLEAN,

   o  sequence_state BOOLEAN,

o sequence_state BOOLEAN,

   o  anon_state BOOLEAN,

o anon_state BOOLEAN,

   o  trans_state BOOLEAN,

o trans_state BOOLEAN,

   o  prot_ready_state BOOLEAN, -- see Section 1.2.7

o prot_ready_state BOOLEAN, -- see Section 1.2.7

   o  conf_avail BOOLEAN,

o conf_avail BOOLEAN,

   o  integ_avail BOOLEAN,

o integ_avail BOOLEAN,

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec INTEGER -- in seconds, or reserved value for -- INDEFINITE

   This call may block pending network interactions for those mech_types
   in which an authentication server or other network entity must be
   consulted on behalf of a context initiator in order to generate an
   output_token suitable for presentation to a specified target.

This call may block pending network interactions for those mech_types in which an authentication server or other network entity must be consulted on behalf of a context initiator in order to generate an output_token suitable for presentation to a specified target.

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that context-level information was
   successfully initialized, and that the returned output_token will
   provide sufficient information for the target to perform per-message
   processing on the newly-established context.

o GSS_S_COMPLETE indicates that context-level information was successfully initialized, and that the returned output_token will provide sufficient information for the target to perform per-message processing on the newly-established context.

   o  GSS_S_CONTINUE_NEEDED indicates that control information in the
   returned output_token must be sent to the target, and that a reply
   must be received and passed as the input_token argument

o GSS_S_CONTINUE_NEEDED indicates that control information in the returned output_token must be sent to the target, and that a reply must be received and passed as the input_token argument

Linn                        Standards Track                    [Page 43]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 43] RFC 2743 GSS-API January 2000

   to a continuation call to GSS_Init_sec_context(), before per-message
   processing can be performed in conjunction with this context (unless
   the prot_ready_state value is concurrently returned TRUE).

to a continuation call to GSS_Init_sec_context(), before per-message processing can be performed in conjunction with this context (unless the prot_ready_state value is concurrently returned TRUE).

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
   on the input_token failed, preventing further processing from being
   performed based on that token.

o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the input_token failed, preventing further processing from being performed based on that token.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
   performed on the credential structure referenced by
   claimant_cred_handle failed, preventing further processing from being
   performed using that credential structure.

o GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential structure referenced by claimant_cred_handle failed, preventing further processing from being performed using that credential structure.

   o  GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
   input_token contains an incorrect integrity check, so context setup
   cannot be accomplished.

o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received input_token contains an incorrect integrity check, so context setup cannot be accomplished.

   o  GSS_S_NO_CRED indicates that no context was established, either
   because the input cred_handle was invalid, because the referenced
   credentials are valid for context acceptor use only, because the
   caller lacks authorization to access the referenced credentials, or
   because the resolution of default credentials failed.

o GSS_S_NO_CRED indicates that no context was established, either because the input cred_handle was invalid, because the referenced credentials are valid for context acceptor use only, because the caller lacks authorization to access the referenced credentials, or because the resolution of default credentials failed.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
   through the input claimant_cred_handle argument are no longer valid,
   so context establishment cannot be completed.

o GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided through the input claimant_cred_handle argument are no longer valid, so context establishment cannot be completed.

   o  GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-
   provided chan_bindings and those extracted from the input_token was
   detected, signifying a security-relevant event and preventing context
   establishment. (This result will be returned by
   GSS_Init_sec_context() only for contexts where mutual_state is TRUE.)

o GSS_S_BAD_BINDINGS indicates that a mismatch between the caller- provided chan_bindings and those extracted from the input_token was detected, signifying a security-relevant event and preventing context establishment. (This result will be returned by GSS_Init_sec_context() only for contexts where mutual_state is TRUE.)

   o  GSS_S_OLD_TOKEN indicates that the input_token is too old to be
   checked for integrity. This is a fatal error during context
   establishment.

o GSS_S_OLD_TOKEN indicates that the input_token is too old to be checked for integrity. This is a fatal error during context establishment.

   o  GSS_S_DUPLICATE_TOKEN indicates that the input token has a correct
   integrity check, but is a duplicate of a token already processed.
   This is a fatal error during context establishment.

o GSS_S_DUPLICATE_TOKEN indicates that the input token has a correct integrity check, but is a duplicate of a token already processed. This is a fatal error during context establishment.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided; this major status will be
   returned only for successor calls following GSS_S_CONTINUE_ NEEDED
   status returns.

o GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input context_handle provided; this major status will be returned only for successor calls following GSS_S_CONTINUE_ NEEDED status returns.

Linn                        Standards Track                    [Page 44]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 44] RFC 2743 GSS-API January 2000

   o  GSS_S_BAD_NAMETYPE indicates that the provided targ_name is of a
   type uninterpretable or unsupported by the applicable underlying
   GSS-API mechanism(s), so context establishment cannot be completed.

o GSS_S_BAD_NAMETYPE indicates that the provided targ_name is of a type uninterpretable or unsupported by the applicable underlying GSS-API mechanism(s), so context establishment cannot be completed.

   o  GSS_S_BAD_NAME indicates that the provided targ_name is
   inconsistent in terms of internally-incorporated type specifier
   information, so context establishment cannot be accomplished.

o GSS_S_BAD_NAME indicates that the provided targ_name is inconsistent in terms of internally-incorporated type specifier information, so context establishment cannot be accomplished.

   o  GSS_S_BAD_MECH indicates receipt of a context establishment token
   or of a caller request specifying a mechanism unsupported by the
   local system or with the caller's active credentials

o GSS_S_BAD_MECH indicates receipt of a context establishment token or of a caller request specifying a mechanism unsupported by the local system or with the caller's active credentials

   o  GSS_S_FAILURE indicates that context setup could not be
   accomplished for reasons unspecified at the GSS-API level, and that
   no interface-defined recovery action is available.

o GSS_S_FAILURE indicates that context setup could not be accomplished for reasons unspecified at the GSS-API level, and that no interface-defined recovery action is available.

   This routine is used by a context initiator, and ordinarily emits an
   output_token suitable for use by the target within the selected
   mech_type's protocol.  For the case of a multi-step exchange, this
   output_token will be one in a series, each generated by a successive
   call. Using information in the credentials structure referenced by
   claimant_cred_handle, GSS_Init_sec_context() initializes the data
   structures required to establish a security context with target
   targ_name.

This routine is used by a context initiator, and ordinarily emits an output_token suitable for use by the target within the selected mech_type's protocol. For the case of a multi-step exchange, this output_token will be one in a series, each generated by a successive call. Using information in the credentials structure referenced by claimant_cred_handle, GSS_Init_sec_context() initializes the data structures required to establish a security context with target targ_name.

   The targ_name may be any valid INTERNAL NAME; it need not be an MN.
   In addition to support for other name types, it is recommended (newly
   as of GSS-V2, Update 1) that mechanisms be able to accept
   GSS_C_NO_NAME as an input type for targ_name.  While recommended,
   such support is not required, and it is recognized that not all
   mechanisms can construct tokens without explicitly naming the context
   target, even when mutual authentication of the target is not
   obtained.  Callers wishing to make use of this facility and concerned
   with portability should be aware that support for GSS_C_NO_NAME as
   input targ_name type is unlikely to be provided within mechanism
   definitions specified prior to GSS-V2, Update 1.

The targ_name may be any valid INTERNAL NAME; it need not be an MN. In addition to support for other name types, it is recommended (newly as of GSS-V2, Update 1) that mechanisms be able to accept GSS_C_NO_NAME as an input type for targ_name. While recommended, such support is not required, and it is recognized that not all mechanisms can construct tokens without explicitly naming the context target, even when mutual authentication of the target is not obtained. Callers wishing to make use of this facility and concerned with portability should be aware that support for GSS_C_NO_NAME as input targ_name type is unlikely to be provided within mechanism definitions specified prior to GSS-V2, Update 1.

   The claimant_cred_handle must correspond to the same valid
   credentials structure on the initial call to GSS_Init_sec_context()
   and on any successor calls resulting from GSS_S_CONTINUE_NEEDED
   status returns; different protocol sequences modeled by the
   GSS_S_CONTINUE_NEEDED facility will require access to credentials at
   different points in the context establishment sequence.

The claimant_cred_handle must correspond to the same valid credentials structure on the initial call to GSS_Init_sec_context() and on any successor calls resulting from GSS_S_CONTINUE_NEEDED status returns; different protocol sequences modeled by the GSS_S_CONTINUE_NEEDED facility will require access to credentials at different points in the context establishment sequence.

   The caller-provided input_context_handle argument is to be 0
   (GSS_C_NO_CONTEXT), specifying "not yet assigned", on the first
   GSS_Init_sec_context()  call relating to a given context. If
   successful (i.e., if accompanied by major_status GSS_S_COMPLETE or

The caller-provided input_context_handle argument is to be 0 (GSS_C_NO_CONTEXT), specifying "not yet assigned", on the first GSS_Init_sec_context() call relating to a given context. If successful (i.e., if accompanied by major_status GSS_S_COMPLETE or

Linn                        Standards Track                    [Page 45]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 45] RFC 2743 GSS-API January 2000

   GSS_S_CONTINUE_NEEDED), and only if successful, the initial
   GSS_Init_sec_context() call returns a non-zero output_context_handle
   for use in future references to this context.  Once a non-zero
   output_context_handle has been returned, GSS-API callers should call
   GSS_Delete_sec_context() to release context-related resources if
   errors occur in later phases of context establishment, or when an
   established context is no longer required. If GSS_Init_sec_context()
   is passed the handle of a context which is already fully established,
   GSS_S_FAILURE status is returned.

GSS_S_CONTINUE_NEEDED), and only if successful, the initial GSS_Init_sec_context() call returns a non-zero output_context_handle for use in future references to this context. Once a non-zero output_context_handle has been returned, GSS-API callers should call GSS_Delete_sec_context() to release context-related resources if errors occur in later phases of context establishment, or when an established context is no longer required. If GSS_Init_sec_context() is passed the handle of a context which is already fully established, GSS_S_FAILURE status is returned.

   When continuation attempts to GSS_Init_sec_context() are needed to
   perform context establishment, the previously-returned non-zero
   handle value is entered into the input_context_handle argument and
   will be echoed in the returned output_context_handle argument. On
   such continuation attempts (and only on continuation attempts) the
   input_token value is used, to provide the token returned from the
   context's target.

When continuation attempts to GSS_Init_sec_context() are needed to perform context establishment, the previously-returned non-zero handle value is entered into the input_context_handle argument and will be echoed in the returned output_context_handle argument. On such continuation attempts (and only on continuation attempts) the input_token value is used, to provide the token returned from the context's target.

   The chan_bindings argument is used by the caller to provide
   information binding the security context to security-related
   characteristics (e.g., addresses, cryptographic keys) of the
   underlying communications channel. See Section 1.1.6 of this document
   for more discussion of this argument's usage.

The chan_bindings argument is used by the caller to provide information binding the security context to security-related characteristics (e.g., addresses, cryptographic keys) of the underlying communications channel. See Section 1.1.6 of this document for more discussion of this argument's usage.

   The input_token argument contains a message received from the target,
   and is significant only on a call to GSS_Init_sec_context() which
   follows a previous return indicating GSS_S_CONTINUE_NEEDED
   major_status.

The input_token argument contains a message received from the target, and is significant only on a call to GSS_Init_sec_context() which follows a previous return indicating GSS_S_CONTINUE_NEEDED major_status.

   It is the caller's responsibility to establish a communications path
   to the target, and to transmit any returned output_token (independent
   of the accompanying returned major_status value) to the target over
   that path. The output_token can, however, be transmitted along with
   the first application-provided input message to be processed by
   GSS_GetMIC() or GSS_Wrap() in conjunction with a successfully-
   established context. (Note: when the GSS-V2 prot_ready_state
   indicator is returned TRUE, it can be possible to transfer a
   protected message before context establishment is complete:  see also
   Section 1.2.7)

It is the caller's responsibility to establish a communications path to the target, and to transmit any returned output_token (independent of the accompanying returned major_status value) to the target over that path. The output_token can, however, be transmitted along with the first application-provided input message to be processed by GSS_GetMIC() or GSS_Wrap() in conjunction with a successfully- established context. (Note: when the GSS-V2 prot_ready_state indicator is returned TRUE, it can be possible to transfer a protected message before context establishment is complete: see also Section 1.2.7)

   The initiator may request various context-level functions through
   input flags: the deleg_req_flag requests delegation of access rights,
   the mutual_req_flag requests mutual authentication, the
   replay_det_req_flag requests that replay detection features be
   applied to messages transferred on the established context, and the
   sequence_req_flag requests that sequencing be enforced. (See Section

The initiator may request various context-level functions through input flags: the deleg_req_flag requests delegation of access rights, the mutual_req_flag requests mutual authentication, the replay_det_req_flag requests that replay detection features be applied to messages transferred on the established context, and the sequence_req_flag requests that sequencing be enforced. (See Section

Linn                        Standards Track                    [Page 46]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 46] RFC 2743 GSS-API January 2000

   1.2.3 for more information on replay detection and sequencing
   features.)  The anon_req_flag requests that the initiator's identity
   not be transferred within tokens to be sent to the acceptor.

1.2.3 for more information on replay detection and sequencing features.) The anon_req_flag requests that the initiator's identity not be transferred within tokens to be sent to the acceptor.

   The conf_req_flag and integ_req_flag provide informatory inputs to
   the GSS-API implementation as to whether, respectively, per-message
   confidentiality and per-message integrity services will be required
   on the context.  This information is important as an input to
   negotiating mechanisms.  It is important to recognize, however, that
   the inclusion of these flags (which are newly defined for GSS-V2)
   introduces a backward incompatibility with callers implemented to
   GSS-V1, where the flags were not defined.  Since no GSS-V1 callers
   would set these flags, even if per-message services are desired,
   GSS-V2 mechanism implementations which enable such services
   selectively based on the flags' values may fail to provide them to
   contexts established for GSS-V1 callers.  It may be appropriate under
   certain circumstances, therefore, for such mechanism implementations
   to infer these service request flags to be set if a caller is known
   to be implemented to GSS-V1.

The conf_req_flag and integ_req_flag provide informatory inputs to the GSS-API implementation as to whether, respectively, per-message confidentiality and per-message integrity services will be required on the context. This information is important as an input to negotiating mechanisms. It is important to recognize, however, that the inclusion of these flags (which are newly defined for GSS-V2) introduces a backward incompatibility with callers implemented to GSS-V1, where the flags were not defined. Since no GSS-V1 callers would set these flags, even if per-message services are desired, GSS-V2 mechanism implementations which enable such services selectively based on the flags' values may fail to provide them to contexts established for GSS-V1 callers. It may be appropriate under certain circumstances, therefore, for such mechanism implementations to infer these service request flags to be set if a caller is known to be implemented to GSS-V1.

   Not all of the optionally-requestable features will be available in
   all underlying mech_types. The corresponding return state values
   deleg_state, mutual_state, replay_det_state, and sequence_state
   indicate, as a function of mech_type processing capabilities and
   initiator-provided input flags, the set of features which will be
   active on the context.  The returned trans_state value indicates
   whether the context is transferable to other processes through use of
   GSS_Export_sec_context().  These state indicators' values are
   undefined unless either the routine's major_status indicates
   GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with
   GSS_S_CONTINUE_NEEDED major_status; for the latter case, it is
   possible that additional features, not confirmed or indicated along
   with TRUE prot_ready_state, will be confirmed and indicated when
   GSS_S_COMPLETE is subsequently returned.

Not all of the optionally-requestable features will be available in all underlying mech_types. The corresponding return state values deleg_state, mutual_state, replay_det_state, and sequence_state indicate, as a function of mech_type processing capabilities and initiator-provided input flags, the set of features which will be active on the context. The returned trans_state value indicates whether the context is transferable to other processes through use of GSS_Export_sec_context(). These state indicators' values are undefined unless either the routine's major_status indicates GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED major_status; for the latter case, it is possible that additional features, not confirmed or indicated along with TRUE prot_ready_state, will be confirmed and indicated when GSS_S_COMPLETE is subsequently returned.

   The returned anon_state and prot_ready_state values are significant
   for both GSS_S_COMPLETE and GSS_S_CONTINUE_NEEDED major_status
   returns from GSS_Init_sec_context(). When anon_state is returned
   TRUE, this indicates that neither the current token nor its
   predecessors delivers or has delivered the initiator's identity.
   Callers wishing to perform context establishment only if anonymity
   support is provided should transfer a returned token from
   GSS_Init_sec_context() to the peer only if it is accompanied by a
   TRUE anon_state indicator.  When prot_ready_state is returned TRUE in
   conjunction with GSS_S_CONTINUE_NEEDED major_status, this indicates
   that per-message protection operations may be applied on the context:
   see Section 1.2.7 for further discussion of this facility.

The returned anon_state and prot_ready_state values are significant for both GSS_S_COMPLETE and GSS_S_CONTINUE_NEEDED major_status returns from GSS_Init_sec_context(). When anon_state is returned TRUE, this indicates that neither the current token nor its predecessors delivers or has delivered the initiator's identity. Callers wishing to perform context establishment only if anonymity support is provided should transfer a returned token from GSS_Init_sec_context() to the peer only if it is accompanied by a TRUE anon_state indicator. When prot_ready_state is returned TRUE in conjunction with GSS_S_CONTINUE_NEEDED major_status, this indicates that per-message protection operations may be applied on the context: see Section 1.2.7 for further discussion of this facility.

Linn                        Standards Track                    [Page 47]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 47] RFC 2743 GSS-API January 2000

   Failure to provide the precise set of features requested by the
   caller does not cause context establishment to fail; it is the
   caller's prerogative to delete the context if the feature set
   provided is unsuitable for the caller's use.

Failure to provide the precise set of features requested by the caller does not cause context establishment to fail; it is the caller's prerogative to delete the context if the feature set provided is unsuitable for the caller's use.

   The returned mech_type value indicates the specific mechanism
   employed on the context; it will never indicate the value for
   "default".  A valid mech_type result must be returned along with a
   GSS_S_COMPLETE status return; GSS-API implementations may (but are
   not required to) also return mech_type along with predecessor calls
   indicating GSS_S_CONTINUE_NEEDED status or (if a mechanism is
   determinable) in conjunction with fatal error cases.  For the case of
   mechanisms which themselves perform negotiation, the returned
   mech_type result may indicate selection of a mechanism identified by
   an OID different than that passed in the input mech_type argument,
   and the returned value may change between successive calls returning
   GSS_S_CONTINUE_NEEDED and the final call returning GSS_S_COMPLETE.

The returned mech_type value indicates the specific mechanism employed on the context; it will never indicate the value for "default". A valid mech_type result must be returned along with a GSS_S_COMPLETE status return; GSS-API implementations may (but are not required to) also return mech_type along with predecessor calls indicating GSS_S_CONTINUE_NEEDED status or (if a mechanism is determinable) in conjunction with fatal error cases. For the case of mechanisms which themselves perform negotiation, the returned mech_type result may indicate selection of a mechanism identified by an OID different than that passed in the input mech_type argument, and the returned value may change between successive calls returning GSS_S_CONTINUE_NEEDED and the final call returning GSS_S_COMPLETE.

   The conf_avail return value indicates whether the context supports
   per-message confidentiality services, and so informs the caller
   whether or not a request for encryption through the conf_req_flag
   input to GSS_Wrap() can be honored. In similar fashion, the
   integ_avail return value indicates whether per-message integrity
   services are available (through either GSS_GetMIC() or GSS_Wrap()) on
   the established context. These state indicators' values are undefined
   unless either the routine's major_status indicates GSS_S_COMPLETE, or
   TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED
   major_status.

The conf_avail return value indicates whether the context supports per-message confidentiality services, and so informs the caller whether or not a request for encryption through the conf_req_flag input to GSS_Wrap() can be honored. In similar fashion, the integ_avail return value indicates whether per-message integrity services are available (through either GSS_GetMIC() or GSS_Wrap()) on the established context. These state indicators' values are undefined unless either the routine's major_status indicates GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED major_status.

   The lifetime_req input specifies a desired upper bound for the
   lifetime of the context to be established, with a value of 0 used to
   request a default lifetime. The lifetime_rec return value indicates
   the length of time for which the context will be valid, expressed as
   an offset from the present; depending on mechanism capabilities,
   credential lifetimes, and local policy, it may not correspond to the
   value requested in lifetime_req.  If no constraints on context
   lifetime are imposed, this may be indicated by returning a reserved
   value representing INDEFINITE lifetime_req. The value of lifetime_rec
   is undefined unless the routine's major_status indicates
   GSS_S_COMPLETE.

The lifetime_req input specifies a desired upper bound for the lifetime of the context to be established, with a value of 0 used to request a default lifetime. The lifetime_rec return value indicates the length of time for which the context will be valid, expressed as an offset from the present; depending on mechanism capabilities, credential lifetimes, and local policy, it may not correspond to the value requested in lifetime_req. If no constraints on context lifetime are imposed, this may be indicated by returning a reserved value representing INDEFINITE lifetime_req. The value of lifetime_rec is undefined unless the routine's major_status indicates GSS_S_COMPLETE.

   If the mutual_state is TRUE, this fact will be reflected within the
   output_token. A call to GSS_Accept_sec_context() at the target in
   conjunction with such a context will return a token, to be processed
   by a continuation call to GSS_Init_sec_context(), in order to achieve
   mutual authentication.

If the mutual_state is TRUE, this fact will be reflected within the output_token. A call to GSS_Accept_sec_context() at the target in conjunction with such a context will return a token, to be processed by a continuation call to GSS_Init_sec_context(), in order to achieve mutual authentication.

Linn                        Standards Track                    [Page 48]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 48] RFC 2743 GSS-API January 2000

2.2.2:  GSS_Accept_sec_context call

2.2.2: GSS_Accept_sec_context call

   Inputs:

Inputs:

   o  acceptor_cred_handle CREDENTIAL HANDLE, -- NULL specifies
   -- "use default"

o acceptor_cred_handle CREDENTIAL HANDLE, -- NULL specifies -- "use default"

   o  input_context_handle CONTEXT HANDLE, -- 0
   -- (GSS_C_NO_CONTEXT) specifies "not yet assigned"

o input_context_handle CONTEXT HANDLE, -- 0 -- (GSS_C_NO_CONTEXT) specifies "not yet assigned"

   o  chan_bindings OCTET STRING,

o chan_bindings OCTET STRING,

   o  input_token OCTET STRING

o input_token OCTET STRING

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  src_name INTERNAL NAME, -- guaranteed to be MN
   -- once returned, caller must release with GSS_Release_name()

o src_name INTERNAL NAME, -- guaranteed to be MN -- once returned, caller must release with GSS_Release_name()

   o  mech_type OBJECT IDENTIFIER, -- caller should treat as
   -- read-only; does not need to be released

o mech_type OBJECT IDENTIFIER, -- caller should treat as -- read-only; does not need to be released

   o  output_context_handle CONTEXT HANDLE, -- once returned
   -- non-NULL in context establishment sequence, caller
   -- must release with GSS_Delete_sec_context()

o output_context_handle CONTEXT HANDLE, -- once returned -- non-NULL in context establishment sequence, caller -- must release with GSS_Delete_sec_context()

   o  deleg_state BOOLEAN,

o deleg_state BOOLEAN,

   o  mutual_state BOOLEAN,

o mutual_state BOOLEAN,

   o  replay_det_state BOOLEAN,

o replay_det_state BOOLEAN,

   o  sequence_state BOOLEAN,

o sequence_state BOOLEAN,

   o  anon_state BOOLEAN,

o anon_state BOOLEAN,

   o  trans_state BOOLEAN,

o trans_state BOOLEAN,

   o  prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion

o prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion

   o  conf_avail BOOLEAN,

o conf_avail BOOLEAN,

   o  integ_avail BOOLEAN,

o integ_avail BOOLEAN,

Linn                        Standards Track                    [Page 49]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 49] RFC 2743 GSS-API January 2000

   o  lifetime_rec INTEGER, -- in seconds, or reserved value for
   -- INDEFINITE

o lifetime_rec INTEGER, -- in seconds, or reserved value for -- INDEFINITE

   o  delegated_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL,
   -- caller must release with GSS_Release_cred()

o delegated_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL, -- caller must release with GSS_Release_cred()

   o  output_token OCTET STRING -- NULL or token to pass to context
   -- initiator; if returned non-NULL, caller must release with
   -- GSS_Release_buffer()

o output_token OCTET STRING -- NULL or token to pass to context -- initiator; if returned non-NULL, caller must release with -- GSS_Release_buffer()

   This call may block pending network interactions for those mech_types
   in which a directory service or other network entity must be
   consulted on behalf of a context acceptor in order to validate a
   received input_token.

This call may block pending network interactions for those mech_types in which a directory service or other network entity must be consulted on behalf of a context acceptor in order to validate a received input_token.

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that context-level data structures were
   successfully initialized, and that per-message processing can now be
   performed in conjunction with this context.

o GSS_S_COMPLETEは首尾よく文脈レベルデータ構造を初期化して、現在この文脈に関連してメッセージ処理を実行できるのを示します。

   o  GSS_S_CONTINUE_NEEDED indicates that control information in the
   returned output_token must be sent to the initiator, and that a
   response must be received and passed as the input_token argument to a
   continuation call to GSS_Accept_sec_context(), before per-message
   processing can be performed in conjunction with this context.

o CONTINUE_が必要としたGSS_S_は入力_象徴議論としてGSS_Accept_秒_文脈()への継続呼び出しに応答を返された出力_象徴の制御情報を創始者に送らなければならなくて、受けて、通過しなければならないのを示します、この文脈に関連してメッセージ処理を実行できる前に。

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
   on the input_token failed, preventing further processing from being
   performed based on that token.

o GSS_S_DEFECTIVE_TOKENは、一貫性チェックが処理がその象徴に基づいて実行されるのをさらに防いで、失敗された入力_象徴に働いたのを示します。

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
   performed on the credential structure referenced by
   acceptor_cred_handle failed, preventing further processing from being
   performed using that credential structure.

o GSS_S_DEFECTIVE_CREDENTIALは、アクセプタ_信用_ハンドルによって参照をつけられる信任している構造に実行された一貫性チェックが失敗したのを示します、処理がその信任している構造を使用することで実行されるのをさらに防いで。

   o  GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
   input_token contains an incorrect integrity check, so context setup
   cannot be accomplished.

o GSS_S_BAD_SIG(_GSS_S BAD_MIC)が、容認された入力_象徴が不正確な保全チェックを含むのを示すので、文脈セットアップを実行できません。

   o  GSS_S_DUPLICATE_TOKEN indicates that the integrity check on the
   received input_token was correct, but that the input_token was
   recognized as a duplicate of an input_token already processed. No new
   context is established.

o GSS_S_DUPLICATE_TOKENは、容認された入力_象徴の保全チェックが正しかったのですが、入力_象徴の写しに既に処理されたとき入力_象徴が認識されたのを示します。 どんな新しい関係も確立されません。

Linn                        Standards Track                    [Page 50]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[50ページ]。

   o  GSS_S_OLD_TOKEN indicates that the integrity check on the received
   input_token was correct, but that the input_token is too old to be
   checked for duplication against previously-processed input_tokens. No
   new context is established.

o GSS_S_OLD_TOKENは、容認された入力_象徴の保全チェックが正しかったのですが、入力_象徴が複製がないかどうか以前に処理された入力_象徴に対してチェックできないくらい古いのを示します。 どんな新しい関係も確立されません。

   o  GSS_S_NO_CRED indicates that no context was established, either
   because the input cred_handle was invalid, because the referenced
   credentials are valid for context initiator use only, because the
   caller lacks authorization to access the referenced credentials, or
   because the procedure for default credential resolution failed.

o GSS_S_いいえ_CREDは、文脈が全く確立されなかったのを示します、訪問者が参照をつけられた信任状にアクセスする認可を欠いているので文脈創始者使用だけに、参照をつけられた信任状が有効であるので入力信用_ハンドルが無効であったか、またはデフォルト信任状解決のための手順が失敗したので。

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
   through the input acceptor_cred_handle argument are no longer valid,
   so context establishment cannot be completed.

o GSS_S_CREDENTIALS_EXPIREDが、入力アクセプタ_信用_ハンドル議論で提供された信任状がもう有効でないことを示すので、文脈設立は終了できません。

   o  GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-
   provided chan_bindings and those extracted from the input_token was
   detected, signifying a security-relevant event and preventing context
   establishment.

o GSS_S_BAD_BINDINGSは、訪問者の提供されたchan_結合と入力_象徴から抽出されたものの間のミスマッチが検出されたのを示します、セキュリティ関連している出来事を意味して、文脈設立を防いで。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided; this major status will be
   returned only for successor calls following GSS_S_CONTINUE_ NEEDED
   status returns.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 この主要な状態は_S_CONTINUE_が状態リターンを必要としたという後継者呼び出しの次のGSSのためだけに返されるでしょう。

   o  GSS_S_BAD_MECH indicates receipt of a context establishment token
   specifying a mechanism unsupported by the local system or with the
   caller's active credentials.

o GSS_S_BAD_MECHはローカルシステムでサポートされないメカニズムを指定する文脈設立象徴か訪問者のアクティブな信任状で領収書を示します。

   o  GSS_S_FAILURE indicates that context setup could not be
   accomplished for reasons unspecified at the GSS-API level, and that
   no interface-defined recovery action is available.

o GSS_S_FAILUREはGSS-APIレベルで不特定の理由で文脈セットアップを実行できないで、どんなインタフェースで定義された回復動作も利用可能でないことを示します。

   The GSS_Accept_sec_context() routine is used by a context target.
   Using information in the credentials structure referenced by the
   input acceptor_cred_handle, it verifies the incoming input_token and
   (following the successful completion of a context establishment
   sequence) returns the authenticated src_name and the mech_type used.
   The returned src_name is guaranteed to be an MN, processed by the
   mechanism under which the context was established. The
   acceptor_cred_handle must correspond to the same valid credentials
   structure on the initial call to GSS_Accept_sec_context() and on any
   successor calls resulting from GSS_S_CONTINUE_NEEDED status returns;
   different protocol sequences modeled by the GSS_S_CONTINUE_NEEDED
   mechanism will require access to credentials at different points in
   the context establishment sequence.

GSS_Accept_秒_文脈()ルーチンは文脈目標によって使用されます。 入力アクセプタ_信用_ハンドルによって参照をつけられる信任状構造で情報を使用して、入って来る入力_象徴について確かめます、そして、(文脈設立系列の無事終了に続きます)は認証されたsrc_名とタイプが使用したmech_を返します。 返されたsrc_名前は、文脈が確立されたメカニズムによって処理されたミネソタになるように保証されます。 アクセプタ_信用_ハンドルはGSS_Accept_秒_文脈()への初期の呼び出しの同じ正当な証明書構造に対応しなければなりません、そして、CONTINUE_が必要としたGSS_S_から生じるどんな後継者呼び出しのときにも、状態は戻ります。 文脈設立系列でCONTINUE_が必要としたGSS_S_によってモデル化された異なったプロトコル系列は異なるところでポイントに信任状にアクセスしますメカニズムが、必要である。

Linn                        Standards Track                    [Page 51]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[51ページ]。

   The caller-provided input_context_handle argument is to be 0
   (GSS_C_NO_CONTEXT), specifying "not yet assigned", on the first
   GSS_Accept_sec_context() call relating to a given context. If
   successful (i.e., if accompanied by major_status GSS_S_COMPLETE or
   GSS_S_CONTINUE_NEEDED), and only if successful, the initial
   GSS_Accept_sec_context() call returns a non-zero
   output_context_handle for use in future references to this context.
   Once a non-zero output_context_handle has been returned, GSS-API
   callers should call GSS_Delete_sec_context() to release context-
   related resources if errors occur in later phases of context
   establishment, or when an established context is no longer required.
   If GSS_Accept_sec_context() is passed the handle of a context which
   is already fully established, GSS_S_FAILURE status is returned.

訪問者によって提供された入力_文脈_ハンドル議論は0(_GSS_Cいいえ_CONTEXT)、指定である「まだ割り当てられなかった」ことです、与えられた文脈に関連する最初のGSS_Accept_秒の_文脈()呼び出しに関して。 うまくいくなら(すなわち、GSS__S COMPLETEか_GSS_S CONTINUE_が必要とした主要な_状態によって伴われるなら)、うまくいく場合にだけ、初期のGSS_Accept_秒_文脈()呼び出しは非ゼロ出力_文脈_を返します。この文脈の後学における使用のために、扱います。 確立した関係はもう必要でないときに、いったん非ゼロ出力_文脈_ハンドルを返すと、誤りが文脈設立の後期で発生するなら、GSS-API訪問者は、GSS_Delete_をリリース文脈関連するリソースに秒_文脈()と呼ぶべきです。 既に完全に確立される文脈のハンドルがGSS_Accept_秒_文脈()に渡されるなら、GSS_S_FAILURE状態は返されます。

   The chan_bindings argument is used by the caller to provide
   information binding the security context to security-related
   characteristics (e.g., addresses, cryptographic keys) of the
   underlying communications channel. See Section 1.1.6 of this document
   for more discussion of this argument's usage.

chan_結合議論は、基本的なコミュニケーションチャンネルのセキュリティ関連の特性(例えば、アドレス、暗号化キー)にセキュリティ文脈を縛る情報を提供するのに訪問者によって使用されます。 この議論の用法の、より多くの議論のためのこの.6通のセクション1.1ドキュメントを見てください。

   The returned state results (deleg_state, mutual_state,
   replay_det_state, sequence_state, anon_state, trans_state, and
   prot_ready_state) reflect the same information as described for
   GSS_Init_sec_context(), and their values are significant under the
   same return state conditions.

返された州の結果(deleg_状態、互いの_状態、再生_det_状態、系列_はやがて、_州、移-_州、およびprotの_の持ち合わせの_が述べると述べる)はGSS_Init_秒_文脈()のための説明されるのと同じ情報を反映します、そして、彼らの値は同じリターン州の状態の下で重要です。

   The conf_avail return value indicates whether the context supports
   per-message confidentiality services, and so informs the caller
   whether or not a request for encryption through the conf_req_flag
   input to GSS_Wrap() can be honored. In similar fashion, the
   integ_avail return value indicates whether per-message integrity
   services are available (through either GSS_GetMIC()  or GSS_Wrap())
   on the established context.  These values are significant under the
   same return state conditions as described under
   GSS_Init_sec_context().

文脈が1メッセージあたりの秘密性サービスを支持するかどうかを示すので、conf_利益リターン価値は、GSS_Wrap()へのconf_req_旗の入力による暗号化を求める要求を光栄に思うことができるかどうかを訪問者に知らせます。 同様に、integ_利益リターン価値は、1メッセージの保全あたりのサービスが利用可能であるかどうかを示します。(確立した関係のGSS_GetMIC()かGSS_Wrap())のどちらかを通して。 これらの値はGSS_Init_秒_文脈()の下で説明されるのと同じリターン州の状態の下で重要です。

   The lifetime_rec return value is significant only in conjunction with
   GSS_S_COMPLETE major_status, and indicates the length of time for
   which the context will be valid, expressed as an offset from the
   present.

生涯_recリターン価値は、GSS_S_のCOMPLETEの主要な_状態に関連してだけ重要であり、プレゼントから有効で、言い表す文脈がオフセットとしてなる時間の長さを示します。

   The returned mech_type value indicates the specific mechanism
   employed on the context; it will never indicate the value for
   "default".  A valid mech_type result must be returned whenever
   GSS_S_COMPLETE status is indicated; GSS-API implementations may (but
   are not required to) also return mech_type along with predecessor
   calls indicating GSS_S_CONTINUE_NEEDED status or (if a mechanism is
   determinable) in conjunction with fatal error cases.  For the case of

返されたmech_タイプ値は文脈で使われた特定のメカニズムを示します。 それは「デフォルト」のために値を決して示さないでしょう。 GSS_S_COMPLETE状態が示されるときはいつも、有効なmech_タイプ結果を返さなければなりません。 または、また、GSS-API実行がGSS_S_CONTINUE_が状態を必要としたのを示す前任者呼び出しに伴うmech_タイプを返すかもしれない、(しかし、必要ではありません)(メカニズムが決定できるなら) 致命的な誤り事件に関連して。 ケース

Linn                        Standards Track                    [Page 52]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[52ページ]。

   mechanisms which themselves perform negotiation, the returned
   mech_type result may indicate selection of a mechanism identified by
   an OID different than that passed in the input mech_type argument,
   and the returned value may change between successive calls returning
   GSS_S_CONTINUE_NEEDED and the final call returning GSS_S_COMPLETE.

自分たちで交渉を実行するメカニズム、返されたmech_タイプ結果はそれが入力mech_タイプ議論で通ったより異なったOIDによって特定されたメカニズムの選択を示すかもしれません、そして、戻り値は、_GSS_S COMPLETEを返しながらCONTINUE_が必要とした_と最終案内をGSS_Sに返しながら、連続した呼び出しの間で変化するかもしれません。

   The delegated_cred_handle result is significant only when deleg_state
   is TRUE, and provides a means for the target to reference the
   delegated credentials. The output_token result, when non-NULL,
   provides a context-level token to be returned to the context
   initiator to continue a multi-step context establishment sequence. As
   noted with GSS_Init_sec_context(), any returned token should be
   transferred to the context's peer (in this case, the context
   initiator), independent of the value of the accompanying returned
   major_status.

代表として派遣された_信用_ハンドル結果は、deleg_状態がTRUEであるときにだけ、重要であり、参照への目標のための手段に代表として派遣された信任状を提供します。 非NULLであるときに、出力_象徴結果は多段階文脈設立系列を続けるために文脈創始者に返される文脈レベル象徴を提供します。 GSS_Init_秒_文脈()で注意されるように、文脈の同輩(この場合文脈創始者)にどんな返された象徴も移すべきです、付随の返された主要な_状態の値の如何にかかわらず。

   Note: A target must be able to distinguish a context-level
   input_token, which is passed to GSS_Accept_sec_context(), from the
   per-message data elements passed to GSS_VerifyMIC()  or GSS_Unwrap().
   These data elements may arrive in a single application message, and
   GSS_Accept_sec_context() must be performed before per-message
   processing can be performed successfully.

以下に注意してください。 目標は文脈レベル入力_象徴を区別できなければなりません、GSS_VerifyMIC()かGSS_Unwrap()に渡された1メッセージあたりのデータ要素から。(象徴はGSS_Accept_秒_文脈()に渡されます)。 これらのデータ要素はただ一つのアプリケーションメッセージに届くかもしれません、そして、首尾よくメッセージ処理を実行できる前にGSS_Accept_秒_文脈()を実行しなければなりません。

2.2.3: GSS_Delete_sec_context call

2.2.3: GSS_Delete_秒_文脈呼び出し

   Input:

以下を入力してください。

   o  context_handle CONTEXT HANDLE

o 文脈_ハンドルCONTEXT HANDLE

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  output_context_token OCTET STRING

o 出力_文脈_象徴OCTET STRING

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the context was recognized, and that
   relevant context-specific information was flushed.  If the caller
   provides a non-null buffer to receive an output_context_token, and
   the mechanism returns a non-NULL token into that buffer, the returned
   output_context_token is ready for transfer to the context's peer.

o GSS_S_COMPLETEは、文脈が認識されて、関連文脈特殊情報が洗い流されたのを示します。 訪問者が出力_文脈_象徴を受け取るために非ヌルバッファを提供して、メカニズムが非NULL象徴をそのバッファの中に返すなら、返された出力_文脈_象徴は文脈の同輩への転送の準備ができています。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided, so no deletion was performed.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったので削除が全く実行されなかったのを示します。

Linn                        Standards Track                    [Page 53]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[53ページ]。

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the GSS_Delete_sec_context() operation could not be performed for
   reasons unspecified at the GSS-API level.

o GSS_S_FAILUREは、文脈が認識されましたが、GSS-APIレベルで不特定の理由でGSS_Delete_秒_文脈()操作を実行できなかったのを示します。

   This call can be made by either peer in a security context, to flush
   context-specific information. Once a non-zero output_context_handle
   has been returned by context establishment calls, GSS-API callers
   should call GSS_Delete_sec_context() to release context-related
   resources if errors occur in later phases of context establishment,
   or when an established context is no longer required.  This call may
   block pending network interactions for mech_types in which active
   notification must be made to a central server when a security context
   is to be deleted.

どちらの同輩も、文脈特殊情報を洗い流すためにセキュリティ文脈でこの電話をかけることができます。 確立した関係はもう必要でないときに、文脈設立呼び出しでいったん非ゼロ出力_文脈_ハンドルを返すと、誤りが文脈設立の後期で発生するなら、GSS-API訪問者は、GSS_Delete_を文脈関連のリソースを発表する秒_文脈()と呼ぶべきです。 この呼び出しはセキュリティ文脈が削除されることであるときに活発な通知をセントラルサーバーにしなければならないmech_タイプのために未定のネットワーク相互作用を妨げるかもしれません。

   If a non-null output_context_token parameter is provided by the
   caller, an output_context_token may be returned to the caller.  If an
   output_context_token is provided to the caller, it can be passed to
   the context's peer to inform the peer's GSS-API implementation that
   the peer's corresponding context information can also be flushed.
   (Once a context is established, the peers involved are expected to
   retain cached credential and context-related information until the
   information's expiration time is reached or until a
   GSS_Delete_sec_context() call is made.)

訪問者が非ヌル出力_文脈_象徴パラメタを提供するなら、出力_文脈_象徴を訪問者に返すかもしれません。 出力_文脈_象徴を訪問者に提供するなら、また、同輩の対応する文脈情報を洗い流すことができることを同輩のGSS-API実行に知らせるために文脈の同輩にそれを渡すことができます。 (文脈がいったん確立されると、かかわった同輩が情報の満了時間に達しているか、またはGSS_Delete_秒_文脈()電話をかけるまでキャッシュされた信任していて文脈関連の情報を保有すると予想されます。)

   The facility for context_token usage to signal context deletion is
   retained for compatibility with GSS-API Version 1.  For current
   usage, it is recommended that both peers to a context invoke
   GSS_Delete_sec_context() independently, passing a null
   output_context_token buffer to indicate that no context_token is
   required.  Implementations of GSS_Delete_sec_context() should delete
   relevant locally-stored context information.

文脈_象徴用法が文脈削除を示す施設はGSS-APIバージョン1との互換性のために保有されます。 現在の用法に、文脈への両方の同輩が独自にGSS_Delete_秒_文脈()を呼び出すのは、お勧めです、文脈_象徴は全く必要でないことを示すためにヌル出力_文脈_象徴バッファを渡して。 GSS_Delete_秒_文脈()の実現は関連局所的に格納された文脈情報を削除するべきです。

   Attempts to perform per-message processing on a deleted context will
   result in error returns.

削除された文脈にメッセージ処理を実行する試みは誤りリターンをもたらすでしょう。

2.2.4:  GSS_Process_context_token call

2.2.4: GSS_Process_文脈_象徴呼び出し

   Inputs:

入力:

   o  context_handle CONTEXT HANDLE,

o 文脈_ハンドルCONTEXT HANDLE

   o  input_context_token OCTET STRING

o 入力_文脈_象徴OCTET STRING

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

Linn                        Standards Track                    [Page 54]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[54ページ]。

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the input_context_token was
   successfully processed in conjunction with the context referenced by
   context_handle.

o GSS_S_COMPLETEは、入力_文脈_象徴が首尾よく文脈_ハンドルによって参照をつけられる文脈に関連して処理されたのを示します。

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
   on the received context_token failed, preventing further processing
   from being performed with that token.

o GSS_S_DEFECTIVE_TOKENは、一貫性チェックが処理がその象徴で実行されるのをさらに防いで、失敗された容認された文脈_象徴に働いたのを示します。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the GSS_Process_context_token() operation could not be performed for
   reasons unspecified at the GSS-API level.

o GSS_S_FAILUREは、文脈が認識されましたが、GSS-APIレベルで不特定の理由でGSS_Process_文脈_象徴()操作を実行できなかったのを示します。

   This call is used to process context_tokens received from a peer once
   a context has been established, with corresponding impact on
   context-level state information. One use for this facility is
   processing of the context_tokens generated by
   GSS_Delete_sec_context(); GSS_Process_context_token() will not block
   pending network interactions for that purpose. Another use is to
   process tokens indicating remote-peer context establishment failures
   after the point where the local GSS-API implementation has already
   indicated GSS_S_COMPLETE status.

この呼び出しは文脈がいったん確立されると同輩から受け取られた文脈_象徴を処理するのに使用されます、文脈レベル州の情報への対応する影響で。 この施設の1つの使用がGSS_Delete_秒_文脈()で発生する文脈_象徴の処理です。 GSS_Process_文脈_象徴()はそのために未定のネットワーク相互作用を妨げないでしょう。 別の使用はポイントのときに地方のGSS-API実行が既にGSS_S_COMPLETE状態を示した後リモート同輩文脈設立失敗を示す象徴を処理することです。

2.2.5:  GSS_Context_time call

2.2.5: GSS_Context_時間呼び出し

   Input:

以下を入力してください。

   o  context_handle CONTEXT HANDLE,

o 文脈_ハンドルCONTEXT HANDLE

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE

o 秒、または予約された値における生涯_rec INTEGER、--、INDEFINITE

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the referenced context is valid, and
   will remain valid for the amount of time indicated in lifetime_rec.

o GSS_S_COMPLETEは参照をつけられた文脈が有効であることを示して、生涯_recで示された時間、有効なままで残るでしょう。

Linn                        Standards Track                    [Page 55]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[55ページ]。

   o  GSS_S_CONTEXT_EXPIRED indicates that data items related to the
   referenced context have expired.

o GSS_S_CONTEXT_EXPIREDは、参照をつけられた文脈に関連するデータ項目が期限が切れたのを示します。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level.

o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。

   This call is used to determine the amount of time for which a
   currently established context will remain valid.

この呼び出しは、現在確立した関係が有効なままで残っている時間を決定するのに使用されます。

2.2.6: GSS_Inquire_context call

2.2.6: GSS_Inquire_文脈呼び出し

   Input:

以下を入力してください。

   o  context_handle CONTEXT HANDLE,

o 文脈_ハンドルCONTEXT HANDLE

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  src_name INTERNAL NAME,  -- name of context initiator,
   -- guaranteed to be MN;
   -- caller must release with GSS_Release_name() if returned

o src_名前INTERNAL NAME(文脈創始者の名前)は、ミネソタであることを保証しました。 -- 返すなら、訪問者はGSSと共に_Release_名前()をリリースしなければなりません。

   o  targ_name INTERNAL NAME,  -- name of context target,
   -- guaranteed to be MN;
   -- caller must release with GSS_Release_name() if returned

o targ_名前INTERNAL NAME(文脈目標の名前)は、ミネソタであることを保証しました。 -- 返すなら、訪問者はGSSと共に_Release_名前()をリリースしなければなりません。

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
   -- INDEFINITE or EXPIRED

o 秒、または予約された値における生涯_rec INTEGER、--、INDEFINITEかEXPIRED

   o  mech_type OBJECT IDENTIFIER, -- the mechanism supporting this
   -- security context; caller should treat as read-only and not
   -- attempt to release

o mech_タイプOBJECT IDENTIFIER--これを支持するメカニズム--セキュリティ文脈。 そして、訪問者が書き込み禁止として扱うべきである、--、リリースするのを試みます。

   o  deleg_state BOOLEAN,

o deleg_州のブールです。

   o  mutual_state BOOLEAN,

o 互いの_州のブールです。

   o  replay_det_state BOOLEAN,

o ブールであることで_det_状態を再演してください。

   o  sequence_state BOOLEAN,

o 系列_州のブールです。

   o  anon_state BOOLEAN,

o やがて、_州のブールです。

Linn                        Standards Track                    [Page 56]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[56ページ]。

   o  trans_state BOOLEAN,

o 移-_州のブールです。

   o  prot_ready_state BOOLEAN,

o protの_の持ち合わせの_州のブールです。

   o  conf_avail BOOLEAN,

o conf_利益ブールです。

   o  integ_avail BOOLEAN,

o integ_利益ブールです。

   o  locally_initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor

o 局所的にブールで開始された_--、TRUE、創始者、FALSEである、アクセプタです。

   o  open BOOLEAN, -- TRUE if context fully established, FALSE
   -- if partly established (in CONTINUE_NEEDED state)

o ブールで、開いてください--、TRUE、完全に確立された文脈、FALSEであるなら、設立します、--一部設立されます。(CONTINUEでは、_は状態を必要としました)

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the referenced context is valid and
   that deleg_state, mutual_state, replay_det_state, sequence_state,
   anon_state, trans_state, prot_ready_state, conf_avail, integ_avail,
   locally_initiated, and open return values describe the corresponding
   characteristics of the context.  If open is TRUE, lifetime_rec is
   also returned: if open is TRUE and the context peer's name is known,
   src_name and targ_name are valid in addition to the values listed
   above.  The mech_type value must be returned for contexts where open
   is TRUE and may be returned for contexts where open is FALSE.

o GSS_S_COMPLETEは、系列_が、参照をつけられた文脈が有効であり、delegがやがて文脈の対応する特性について説明すると述べるのを_州、移-_州、protの_の持ち合わせの_州、conf_利益、integ_利益、局所的に開始された_、および開いているリターンが、評価する_状態、互いの_状態、再生_det_が、述べる示します。 また、戸外がTRUEであるなら、生涯_recを返します: 戸外がTRUEであり、文脈同輩の名前が知られているなら、src_名とtarg_名は上に記載された値に加えて妥当です。 mech_タイプ値を戸外がTRUEである文脈のために返さなければならなくて、戸外がFALSEである文脈のために返すかもしれません。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided. Return values other than
   major_status and minor_status are undefined.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.

o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   This call is used to extract information describing characteristics
   of a security context.  Note that GSS-API implementations are
   expected to retain inquirable context data on a context until the
   context is released by a caller, even after the context has expired,
   although underlying cryptographic data elements may be deleted after
   expiration in order to limit their exposure.

この呼び出しは、セキュリティ文脈の特性について説明する情報を抜粋するのに使用されます。 文脈が訪問者によって発表されるまでGSS-API実行が文脈に関する照会可能文脈データを保有すると予想されることに注意してください、文脈が期限が切れた後にさえ、基本的な暗号のデータ要素は満了の後にそれらの露出を制限するために削除されるかもしれませんが。

2.2.7:   GSS_Wrap_size_limit call

2.2.7: GSS_Wrap_サイズ_限界呼び出し

   Inputs:

入力:

   o  context_handle CONTEXT HANDLE,

o 文脈_ハンドルCONTEXT HANDLE

   o  conf_req_flag BOOLEAN,

o conf_req_旗のブールです。

Linn                        Standards Track                    [Page 57]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[57ページ]。

   o  qop INTEGER,

o qop INTEGER

   o  output_size INTEGER

o 出力_サイズINTEGER

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  max_input_size INTEGER

o 最大_入力_サイズINTEGER

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates a successful token size determination:
   an input message with a length in octets equal to the returned
   max_input_size value will, when passed to GSS_Wrap() for processing
   on the context identified by the context_handle parameter with the
   confidentiality request state as provided in conf_req_flag and with
   the quality of protection specifier provided in the qop parameter,
   yield an output token no larger than the value of the provided
   output_size parameter.

o GSS_S_COMPLETEはうまくいっている象徴サイズ決断を示します: 処理のためにGSS_Wrap()に秘密性要求状態と共にconf_req_旗に供給するように文脈_ハンドルパラメタによって特定された文脈と保護特許説明書の作成書の品質をqopパラメタに提供している状態で通過されると、返された最大_入力_サイズ価値と等しい八重奏における長さがある入力メッセージは提供された出力_サイズ・パラメータの値ほど大きくない出力象徴をもたらすでしょう。

   o  GSS_S_CONTEXT_EXPIRED indicates that the provided input
   context_handle is recognized, but that the referenced context has
   expired.  Return values other than major_status and minor_status are
   undefined.

o GSS_S_CONTEXT_EXPIREDは、提供された入力文脈_ハンドルが認識されますが、参照をつけられた文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided. Return values other than
   major_status and minor_status are undefined.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
   recognized or supported for the context.

o GSS_S_BAD_QOPは、提供されたQOP値が文脈のために認識もされませんし、支持もされないのを示します。

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.

o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   This call is used to determine the largest input datum which may be
   passed to GSS_Wrap() without yielding an output token larger than a
   caller-specified value.

この呼び出しは、訪問者規定値より大きい出力象徴をもたらさないでGSS_Wrap()に通過されるかもしれない中で最も大きい入力データを決定するのに使用されます。

Linn                        Standards Track                    [Page 58]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[58ページ]。

2.2.8:   GSS_Export_sec_context call

2.2.8: GSS_Export_秒_文脈呼び出し

   Inputs:

入力:

   o  context_handle CONTEXT HANDLE

o 文脈_ハンドルCONTEXT HANDLE

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  interprocess_token OCTET STRING  -- caller must release
   -- with GSS_Release_buffer()

o 訪問者がリリースしなければならないというGSS_Release_バッファがあるインタプロセス_象徴OCTET STRING()

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the referenced context has been
   successfully exported to a representation in the interprocess_token,
   and is no longer available for use by the caller.

o GSS_S_COMPLETEは参照をつけられた文脈が首尾よくインタプロセス_象徴の表現に輸出されて、もう訪問者による使用に利用可能でないことを示します。

   o  GSS_S_UNAVAILABLE indicates that the context export facility is
   not available for use on the referenced context.  (This status should
   occur only for contexts for which the trans_state value is FALSE.)
   Return values other than major_status and minor_status are undefined.

o GSS_S_UNAVAILABLEは、参照をつけられた文脈のにおける使用について、文脈輸出施設がないのを示します。 (この状態は移-_州の価値がFALSEである文脈のためだけに起こるべきです。) 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_CONTEXT_EXPIRED indicates that the provided input
   context_handle is recognized, but that the referenced context has
   expired.  Return values other than major_status and minor_status are
   undefined.

o GSS_S_CONTEXT_EXPIREDは、提供された入力文脈_ハンドルが認識されますが、参照をつけられた文脈が期限が切れたのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided. Return values other than
   major_status and minor_status are undefined.

o GSS_S_いいえ_CONTEXTは、どんな有効な文脈も提供された入力文脈_ハンドルとして認識されなかったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.

o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   This call generates an interprocess token for transfer to another
   process within an end system, in order to transfer control of a
   security context to that process.  The recipient of the interprocess
   token will call GSS_Import_sec_context() to accept the transfer.  The
   GSS_Export_sec_context() operation is defined for use only with
   security contexts which are fully and successfully established (i.e.,
   those for which GSS_Init_sec_context() and GSS_Accept_sec_context()
   have returned GSS_S_COMPLETE major_status).

この呼び出しは別の過程への転送のためにエンドシステムの中でインタプロセス象徴を発生させます、セキュリティ文脈のコントロールをその過程に移すために。 インタプロセス象徴の受取人は、GSS_Import_を転送を受け入れる秒_文脈()と呼ぶでしょう。 GSS_Export_秒_文脈()操作は使用のために単に完全に首尾よく確立されるセキュリティ文脈(すなわち、GSS_Init_秒_文脈()とGSS_Accept_秒_文脈()が_S_COMPLETEの主要な_状態をGSSに返したそれら)で定義されます。

Linn                        Standards Track                    [Page 59]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[59ページ]。

   A successful GSS_Export_sec_context() operation deactivates the
   security context for the calling process; for this case, the GSS-API
   implementation shall deallocate all process-wide resources associated
   with the security context and shall set the context_handle to
   GSS_C_NO_CONTEXT.  In the event of an error that makes it impossible
   to complete export of the security context, the GSS-API
   implementation must not return an interprocess token and should
   strive to leave the security context referenced by the context_handle
   untouched.  If this is impossible, it is permissible for the
   implementation to delete the security context, provided that it also
   sets the context_handle parameter to GSS_C_NO_CONTEXT.

うまくいっているGSS_Export_秒_文脈()操作は呼び出しプロセスのためのセキュリティ文脈を非活性化します。 このような場合、GSS-API実行は、セキュリティ文脈に関連しているすべての過程全体のリソースを「反-割り当て」て、_GSS_Cいいえ_CONTEXTに文脈_ハンドルを設定するものとします。 セキュリティ文脈の輸出を終了するのを不可能にする誤りの場合、GSS-API実行は、インタプロセス象徴を返してはいけなくて、文脈_ハンドルによって参照をつけられるセキュリティ文脈を触れない状態でおくように努力するべきです。 これが不可能であるなら、実現がセキュリティ文脈を削除するのは、許されています、また、_GSS_Cいいえ_CONTEXTに文脈_ハンドルパラメタを設定すれば。

   Portable callers must not assume that a given interprocess token can
   be imported by GSS_Import_sec_context() more than once, thereby
   creating multiple instantiations of a single context.  GSS-API
   implementations may detect and reject attempted multiple imports, but
   are not required to do so.

携帯用の訪問者は、一度より多くのGSS_Import_秒_文脈()で与えられたインタプロセス象徴を輸入できると仮定してはいけません、その結果、ただ一つの文脈の複数の具体化を作成します。 GSS-API実行は、試みられた倍数輸入を検出して、拒絶するかもしれませんが、そうするのに必要ではありません。

   The internal representation contained within the interprocess token
   is an implementation-defined local matter.  Interprocess tokens
   cannot be assumed to be transferable across different GSS-API
   implementations.

インタプロセス象徴の中に含まれた内部の表現は実現で定義された地域にかかわる事柄です。 インタプロセス象徴が異なったGSS-API実行の向こう側に移転可能であると思うことができません。

   It is recommended that GSS-API implementations adopt policies suited
   to their operational environments in order to define the set of
   processes eligible to import a context, but specific constraints in
   this area are local matters.  Candidate examples include transfers
   between processes operating on behalf of the same user identity, or
   processes comprising a common job.  However, it may be impossible to
   enforce such policies in some implementations.

GSS-API実行が文脈を輸入する資格がある過程のセットを定義するために彼らの運用環境に合う方針を採りますが、この領域での特定の規制が地域にかかわる事柄であることはお勧めです。 候補の例は、同じユーザアイデンティティ、または一般的な仕事を包括する過程を代表して作動しながら、過程の間に転送を含んでいます。 しかしながら、いくつかの実現におけるそのような方針を実施するのは不可能であるかもしれません。

   In support of the above goals, implementations may protect the
   transferred context data by using cryptography to protect data within
   the interprocess token, or by using interprocess tokens as a means to
   reference local interprocess communication facilities (protected by
   other means) rather than storing the context data directly within the
   tokens.

上の目標を支持して、実現は、象徴の直接中に文脈データを格納するよりインタプロセス象徴の中にデータを保護するのに暗号を使用するか、または手段として参照の地方のプロセス間通信施設(他の手段で、保護される)にインタプロセス象徴を使用することによって、わたっている文脈データをむしろ保護するかもしれません。

   Transfer of an open context may, for certain mechanisms and
   implementations, reveal data about the credential which was used to
   establish the context.  Callers should, therefore, be cautious about
   the trustworthiness of processes to which they transfer contexts.
   Although the GSS-API implementation may provide its own set of
   protections over the exported context, the caller is responsible for
   protecting the interprocess token from disclosure, and for taking
   care that the context is transferred to an appropriate destination
   process.

あるメカニズムと実現のために、開いている文脈の転送は文脈を証明するのに使用された信任状に関するデータを明らかにするかもしれません。 したがって、訪問者はそれらが文脈を移す過程の信頼できることに関して用心深いはずです。 GSS-API実行はそれ自身の保護のセットを輸出された文脈の上に提供するかもしれませんが、公開からインタプロセス象徴を保護して、文脈が適切な目的地の過程に移されることに注意するのに訪問者は責任があります。

Linn                        Standards Track                    [Page 60]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[60ページ]。

2.2.9:   GSS_Import_sec_context call

2.2.9: GSS_Import_秒_文脈呼び出し

   Inputs:

入力:

   o  interprocess_token OCTET STRING

o インタプロセス_象徴OCTET STRING

   Outputs:

出力:

   o  major_status INTEGER,

o 主要な_状態INTEGER

   o  minor_status INTEGER,

o 小さい方の_状態INTEGER

   o  context_handle CONTEXT HANDLE  -- if successfully returned,
   -- caller must release with GSS_Delete_sec_context()

o 首尾よく返すなら、文脈_はCONTEXT HANDLEを扱います--訪問者はGSS_Deleteと共に_秒_文脈を発表しなければなりません。()

   Return major_status codes:

主要な_ステータスコードを返してください:

   o  GSS_S_COMPLETE indicates that the context represented by the input
   interprocess_token has been successfully transferred to the caller,
   and is available for future use via the output context_handle.

o GSS_S_COMPLETEは入力インタプロセス_象徴によって表された文脈が首尾よく訪問者に移されて、出力文脈_ハンドルを通して今後の使用に利用可能であることを示します。

   o  GSS_S_NO_CONTEXT indicates that the context represented by the
   input interprocess_token was invalid. Return values other than
   major_status and minor_status are undefined.

o GSS_S_いいえ_CONTEXTは、入力インタプロセス_象徴によって表された文脈が無効であったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_DEFECTIVE_TOKEN indicates that the input interprocess_token
   was defective.  Return values other than major_status and
   minor_status are undefined.

o GSS_S_DEFECTIVE_TOKENは、入力インタプロセス_象徴は欠陥があったのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_UNAVAILABLE indicates that the context import facility is
   not available for use on the referenced context.  Return values other
   than major_status and minor_status are undefined.

o GSS_S_UNAVAILABLEは、参照をつけられた文脈のにおける使用について、文脈輸入施設がないのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_UNAUTHORIZED indicates that the context represented by the
   input interprocess_token is unauthorized for transfer to the caller.
   Return values other than major_status and minor_status are undefined.

o GSS_S_UNAUTHORIZEDは、入力インタプロセス_象徴によって表された文脈が訪問者への転送のために権限がないのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.

o GSS_S_FAILUREは、要求された操作がGSS-APIレベルで不特定の理由で失敗したのを示します。 主要な_状態と小さい方の_状態以外のリターン値は未定義です。

   This call processes an interprocess token generated by
   GSS_Export_sec_context(), making the transferred context available
   for use by the caller.  After a successful GSS_Import_sec_context()
   operation, the imported context is available for use by the importing
   process. In particular, the imported context is usable for all per-
   message operations and may be deleted or exported by its importer.
   The inability to receive delegated credentials through

This call processes an interprocess token generated by GSS_Export_sec_context(), making the transferred context available for use by the caller. After a successful GSS_Import_sec_context() operation, the imported context is available for use by the importing process. In particular, the imported context is usable for all per- message operations and may be deleted or exported by its importer. The inability to receive delegated credentials through

Linn                        Standards Track                    [Page 61]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 61] RFC 2743 GSS-API January 2000

   gss_import_sec_context() precludes establishment of new contexts
   based on information delegated to the importer's end system within
   the context which is being imported, unless those delegated
   credentials are obtained through separate routines (e.g., XGSS-API
   calls) outside the GSS-V2 definition.

gss_import_sec_context() precludes establishment of new contexts based on information delegated to the importer's end system within the context which is being imported, unless those delegated credentials are obtained through separate routines (e.g., XGSS-API calls) outside the GSS-V2 definition.

   For further discussion of the security and authorization issues
   regarding this call, please see the discussion in Section 2.2.8.

For further discussion of the security and authorization issues regarding this call, please see the discussion in Section 2.2.8.

2.3:  Per-message calls

2.3: Per-message calls

   This group of calls is used to perform per-message protection
   processing on an established security context. None of these calls
   block pending network interactions. These calls may be invoked by a
   context's initiator or by the context's target.  The four members of
   this group should be considered as two pairs; the output from
   GSS_GetMIC() is properly input to GSS_VerifyMIC(), and the output
   from GSS_Wrap() is properly input to GSS_Unwrap().

This group of calls is used to perform per-message protection processing on an established security context. None of these calls block pending network interactions. These calls may be invoked by a context's initiator or by the context's target. The four members of this group should be considered as two pairs; the output from GSS_GetMIC() is properly input to GSS_VerifyMIC(), and the output from GSS_Wrap() is properly input to GSS_Unwrap().

   GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication
   and data integrity services. When GSS_GetMIC() is invoked on an input
   message, it yields a per-message token containing data items which
   allow underlying mechanisms to provide the specified security
   services. The original message, along with the generated per-message
   token, is passed to the remote peer; these two data elements are
   processed by GSS_VerifyMIC(), which validates the message in
   conjunction with the separate token.

GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication and data integrity services. When GSS_GetMIC() is invoked on an input message, it yields a per-message token containing data items which allow underlying mechanisms to provide the specified security services. The original message, along with the generated per-message token, is passed to the remote peer; these two data elements are processed by GSS_VerifyMIC(), which validates the message in conjunction with the separate token.

   GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality
   in addition to the data origin authentication and data integrity
   services offered by GSS_GetMIC() and GSS_VerifyMIC(). GSS_Wrap()
   outputs a single data element, encapsulating optionally enciphered
   user data as well as associated token data items.  The data element
   output from GSS_Wrap() is passed to the remote peer and processed by
   GSS_Unwrap() at that system. GSS_Unwrap() combines decipherment (as
   required) with validation of data items related to authentication and
   integrity.

GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality in addition to the data origin authentication and data integrity services offered by GSS_GetMIC() and GSS_VerifyMIC(). GSS_Wrap() outputs a single data element, encapsulating optionally enciphered user data as well as associated token data items. The data element output from GSS_Wrap() is passed to the remote peer and processed by GSS_Unwrap() at that system. GSS_Unwrap() combines decipherment (as required) with validation of data items related to authentication and integrity.

   Although zero-length tokens are never returned by GSS calls for
   transfer to a context's peer, a zero-length object may be passed by a
   caller into GSS_Wrap(), in which case the corresponding peer calling
   GSS_Unwrap() on the transferred token will receive a zero-length
   object as output from GSS_Unwrap().  Similarly, GSS_GetMIC() can be
   called on an empty object, yielding a MIC which GSS_VerifyMIC() will
   successfully verify against the active security context in
   conjunction with a zero-length object.

Although zero-length tokens are never returned by GSS calls for transfer to a context's peer, a zero-length object may be passed by a caller into GSS_Wrap(), in which case the corresponding peer calling GSS_Unwrap() on the transferred token will receive a zero-length object as output from GSS_Unwrap(). Similarly, GSS_GetMIC() can be called on an empty object, yielding a MIC which GSS_VerifyMIC() will successfully verify against the active security context in conjunction with a zero-length object.

Linn                        Standards Track                    [Page 62]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 62] RFC 2743 GSS-API January 2000

2.3.1:  GSS_GetMIC call

2.3.1: GSS_GetMIC call

   Note: This call is functionally equivalent to the GSS_Sign call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Sign are deprecated.

Note: This call is functionally equivalent to the GSS_Sign call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Sign are deprecated.

   Inputs:

Inputs:

   o  context_handle CONTEXT HANDLE,

o context_handle CONTEXT HANDLE,

   o  qop_req INTEGER, -- 0 specifies default QOP

o qop_req INTEGER, -- 0 specifies default QOP

   o  message OCTET STRING

o message OCTET STRING

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  per_msg_token OCTET STRING  -- caller must release
   -- with GSS_Release_buffer()

o per_msg_token OCTET STRING -- caller must release -- with GSS_Release_buffer()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that an integrity check, suitable for an
   established security context, was successfully applied and that the
   message and corresponding per_msg_token are ready for transmission.

o GSS_S_COMPLETE indicates that an integrity check, suitable for an established security context, was successfully applied and that the message and corresponding per_msg_token are ready for transmission.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data items
   have expired, so that the requested operation cannot be performed.

o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no context was recognized for the
   input context_handle provided.

o GSS_S_NO_CONTEXT indicates that no context was recognized for the input context_handle provided.

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
   recognized or supported for the context.

o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the requested operation could not be performed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the context is recognized, but that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Using the security context referenced by context_handle, apply an
   integrity check to the input message (along with timestamps and/or
   other data included in support of mech_type-specific mechanisms) and
   (if GSS_S_COMPLETE status is indicated) return the result in

Using the security context referenced by context_handle, apply an integrity check to the input message (along with timestamps and/or other data included in support of mech_type-specific mechanisms) and (if GSS_S_COMPLETE status is indicated) return the result in

Linn                        Standards Track                    [Page 63]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 63] RFC 2743 GSS-API January 2000

   per_msg_token. The qop_req parameter, interpretation of which is
   discussed in Section 1.2.4, allows quality-of-protection control. The
   caller passes the message and the per_msg_token to the target.

per_msg_token. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control. The caller passes the message and the per_msg_token to the target.

   The GSS_GetMIC() function completes before the message and
   per_msg_token is sent to the peer; successful application of
   GSS_GetMIC() does not guarantee that a corresponding GSS_VerifyMIC()
   has been (or can necessarily be) performed successfully when the
   message arrives at the destination.

The GSS_GetMIC() function completes before the message and per_msg_token is sent to the peer; successful application of GSS_GetMIC() does not guarantee that a corresponding GSS_VerifyMIC() has been (or can necessarily be) performed successfully when the message arrives at the destination.

   Mechanisms which do not support per-message protection services
   should return GSS_S_FAILURE if this routine is called.

Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.

2.3.2:  GSS_VerifyMIC call

2.3.2: GSS_VerifyMIC call

   Note: This call is functionally equivalent to the GSS_Verify call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Verify are deprecated.

Note: This call is functionally equivalent to the GSS_Verify call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Verify are deprecated.

   Inputs:

Inputs:

   o  context_handle CONTEXT HANDLE,

o context_handle CONTEXT HANDLE,

   o  message OCTET STRING,

o message OCTET STRING,

   o  per_msg_token OCTET STRING

o per_msg_token OCTET STRING

   Outputs:

Outputs:

   o  qop_state INTEGER,

o qop_state INTEGER,

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the message was successfully
   verified.

o GSS_S_COMPLETE indicates that the message was successfully verified.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
   on the received per_msg_token failed, preventing further processing
   from being performed with that token.

o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the received per_msg_token failed, preventing further processing from being performed with that token.

   o  GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
   per_msg_token contains an incorrect integrity check for the message.

o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received per_msg_token contains an incorrect integrity check for the message.

Linn                        Standards Track                    [Page 64]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 64] RFC 2743 GSS-API January 2000

   o  GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
   GSS_S_GAP_TOKEN values appear in conjunction with the optional per-
   message replay detection features described in Section 1.2.3; their
   semantics are described in that section.

o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per- message replay detection features described in Section 1.2.3; their semantics are described in that section.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data items
   have expired, so that the requested operation cannot be performed.

o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no context was recognized for the
   input context_handle provided.

o GSS_S_NO_CONTEXT indicates that no context was recognized for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the GSS_VerifyMIC() operation could not be performed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_VerifyMIC() operation could not be performed for reasons unspecified at the GSS-API level.

   Using the security context referenced by context_handle, verify that
   the input per_msg_token contains an appropriate integrity check for
   the input message, and apply any active replay detection or
   sequencing features. Returns an indication of the quality-of-
   protection applied to the processed message in the qop_state result.

Using the security context referenced by context_handle, verify that the input per_msg_token contains an appropriate integrity check for the input message, and apply any active replay detection or sequencing features. Returns an indication of the quality-of- protection applied to the processed message in the qop_state result.

   Mechanisms which do not support per-message protection services
   should return GSS_S_FAILURE if this routine is called.

Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.

2.3.3: GSS_Wrap call

2.3.3: GSS_Wrap call

   Note: This call is functionally equivalent to the GSS_Seal call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Seal are deprecated.

Note: This call is functionally equivalent to the GSS_Seal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Seal are deprecated.

   Inputs:

Inputs:

   o  context_handle CONTEXT HANDLE,

o context_handle CONTEXT HANDLE,

   o  conf_req_flag BOOLEAN,

o conf_req_flag BOOLEAN,

   o  qop_req INTEGER, -- 0 specifies default QOP

o qop_req INTEGER, -- 0 specifies default QOP

   o  input_message OCTET STRING

o input_message OCTET STRING

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

Linn                        Standards Track                    [Page 65]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 65] RFC 2743 GSS-API January 2000

   o  conf_state BOOLEAN,

o conf_state BOOLEAN,

   o  output_message OCTET STRING  -- caller must release with
   -- GSS_Release_buffer()

o output_message OCTET STRING -- caller must release with -- GSS_Release_buffer()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_message was successfully
   processed and that the output_message is ready for transmission.

o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the output_message is ready for transmission.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data items
   have expired, so that the requested operation cannot be performed.

o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no context was recognized for the
   input context_handle provided.

o GSS_S_NO_CONTEXT indicates that no context was recognized for the input context_handle provided.

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
   recognized or supported for the context.

o GSS_S_BAD_QOP indicates that the provided QOP value is not recognized or supported for the context.

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the GSS_Wrap() operation could not be performed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Wrap() operation could not be performed for reasons unspecified at the GSS-API level.

   Performs the data origin authentication and data integrity functions
   of GSS_GetMIC().  If the input conf_req_flag is TRUE, requests that
   confidentiality be applied to the input_message.  Confidentiality may
   not be supported in all mech_types or by all implementations; the
   returned conf_state flag indicates whether confidentiality was
   provided for the input_message. The qop_req parameter, interpretation
   of which is discussed in Section 1.2.4, allows quality-of-protection
   control.

Performs the data origin authentication and data integrity functions of GSS_GetMIC(). If the input conf_req_flag is TRUE, requests that confidentiality be applied to the input_message. Confidentiality may not be supported in all mech_types or by all implementations; the returned conf_state flag indicates whether confidentiality was provided for the input_message. The qop_req parameter, interpretation of which is discussed in Section 1.2.4, allows quality-of-protection control.

   When GSS_S_COMPLETE status is returned, the GSS_Wrap() call yields a
   single output_message data element containing (optionally enciphered)
   user data as well as control information.

When GSS_S_COMPLETE status is returned, the GSS_Wrap() call yields a single output_message data element containing (optionally enciphered) user data as well as control information.

   Mechanisms which do not support per-message protection services
   should return GSS_S_FAILURE if this routine is called.

Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.

2.3.4: GSS_Unwrap call

2.3.4: GSS_Unwrap call

   Note: This call is functionally equivalent to the GSS_Unseal call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Unseal are deprecated.

Note: This call is functionally equivalent to the GSS_Unseal call as defined in previous versions of this specification. In the interests of backward compatibility, it is recommended that implementations support this function under both names for the present; future references to this function as GSS_Unseal are deprecated.

Linn                        Standards Track                    [Page 66]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 66] RFC 2743 GSS-API January 2000

   Inputs:

Inputs:

   o  context_handle CONTEXT HANDLE,

o context_handle CONTEXT HANDLE,

   o  input_message OCTET STRING

o input_message OCTET STRING

   Outputs:

Outputs:

   o  conf_state BOOLEAN,

o conf_state BOOLEAN,

   o  qop_state INTEGER,

o qop_state INTEGER,

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  output_message OCTET STRING  -- caller must release with
   -- GSS_Release_buffer()

o output_message OCTET STRING -- caller must release with -- GSS_Release_buffer()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_message was successfully
   processed and that the resulting output_message is available.

o GSS_S_COMPLETE indicates that the input_message was successfully processed and that the resulting output_message is available.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
   on the per_msg_token extracted from the input_message failed,
   preventing further processing from being performed.

o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the per_msg_token extracted from the input_message failed, preventing further processing from being performed.

   o  GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that an incorrect
   integrity check was detected for the message.

o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that an incorrect integrity check was detected for the message.

   o  GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
   GSS_S_GAP_TOKEN values appear in conjunction with the optional per-
   message replay detection features described in Section 1.2.3; their
   semantics are described in that section.

o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN values appear in conjunction with the optional per- message replay detection features described in Section 1.2.3; their semantics are described in that section.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data items
   have expired, so that the requested operation cannot be performed.

o GSS_S_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no context was recognized for the
   input context_handle provided.

o GSS_S_NO_CONTEXT indicates that no context was recognized for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the context is recognized, but that
   the GSS_Unwrap() operation could not be performed for reasons
   unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the context is recognized, but that the GSS_Unwrap() operation could not be performed for reasons unspecified at the GSS-API level.

Linn                        Standards Track                    [Page 67]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 67] RFC 2743 GSS-API January 2000

   Processes a data element generated (and optionally enciphered) by
   GSS_Wrap(), provided as input_message. The returned conf_state value
   indicates whether confidentiality was applied to the input_message.
   If conf_state is TRUE, GSS_Unwrap() has deciphered the input_message.
   Returns an indication of the quality-of-protection applied to the
   processed message in the qop_state result. GSS_Unwrap() performs the
   data integrity and data origin authentication checking functions of
   GSS_VerifyMIC() on the plaintext data. Plaintext data is returned in
   output_message.

Processes a data element generated (and optionally enciphered) by GSS_Wrap(), provided as input_message. The returned conf_state value indicates whether confidentiality was applied to the input_message. If conf_state is TRUE, GSS_Unwrap() has deciphered the input_message. Returns an indication of the quality-of-protection applied to the processed message in the qop_state result. GSS_Unwrap() performs the data integrity and data origin authentication checking functions of GSS_VerifyMIC() on the plaintext data. Plaintext data is returned in output_message.

   Mechanisms which do not support per-message protection services
   should return GSS_S_FAILURE if this routine is called.

Mechanisms which do not support per-message protection services should return GSS_S_FAILURE if this routine is called.

2.4:  Support calls

2.4: Support calls

   This group of calls provides support functions useful to GSS-API
   callers, independent of the state of established contexts. Their
   characterization with regard to blocking or non-blocking status in
   terms of network interactions is unspecified.

This group of calls provides support functions useful to GSS-API callers, independent of the state of established contexts. Their characterization with regard to blocking or non-blocking status in terms of network interactions is unspecified.

2.4.1:  GSS_Display_status call

2.4.1: GSS_Display_status call

   Inputs:

Inputs:

   o  status_value INTEGER, -- GSS-API major_status or minor_status
   -- return value

o status_value INTEGER, -- GSS-API major_status or minor_status -- return value

   o  status_type INTEGER, -- 1 if major_status, 2 if minor_status

o status_type INTEGER, -- 1 if major_status, 2 if minor_status

   o  mech_type OBJECT IDENTIFIER -- mech_type to be used for
   -- minor_status translation

o mech_type OBJECT IDENTIFIER -- mech_type to be used for -- minor_status translation

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  status_string_set SET OF OCTET STRING  -- required calls for
   -- release by caller are specific to language bindings

o status_string_set SET OF OCTET STRING -- required calls for -- release by caller are specific to language bindings

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid printable status
   representation (possibly representing more than one status event
   encoded within the status_value) is available in the returned
   status_string_set.

o GSS_S_COMPLETE indicates that a valid printable status representation (possibly representing more than one status event encoded within the status_value) is available in the returned status_string_set.

Linn                        Standards Track                    [Page 68]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 68] RFC 2743 GSS-API January 2000

   o  GSS_S_BAD_MECH indicates that translation in accordance with an
   unsupported mech_type was requested, so translation could not be
   performed.

o GSS_S_BAD_MECH indicates that translation in accordance with an unsupported mech_type was requested, so translation could not be performed.

   o  GSS_S_BAD_STATUS indicates that the input status_value was
   invalid, or that the input status_type carried a value other than 1
   or 2, so translation could not be performed.

o GSS_S_BAD_STATUS indicates that the input status_value was invalid, or that the input status_type carried a value other than 1 or 2, so translation could not be performed.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Provides a means for callers to translate GSS-API-returned major and
   minor status codes into printable string representations.  Note: some
   language bindings may employ an iterative approach in order to emit
   successive status components; this approach is acceptable but not
   required for conformance with the current specification.

Provides a means for callers to translate GSS-API-returned major and minor status codes into printable string representations. Note: some language bindings may employ an iterative approach in order to emit successive status components; this approach is acceptable but not required for conformance with the current specification.

   Although not contemplated in [RFC-2078], it has been observed that
   some existing GSS-API implementations return GSS_S_CONTINUE_NEEDED
   status when iterating through successive messages returned from
   GSS_Display_status(). This behavior is deprecated;
   GSS_S_CONTINUE_NEEDED should be returned only by
   GSS_Init_sec_context() and GSS_Accept_sec_context().  For maximal
   portability, however, it is recommended that defensive callers be
   able to accept and ignore GSS_S_CONTINUE_NEEDED status if indicated
   by GSS_Display_status() or any other call other than
   GSS_Init_sec_context() or GSS_Accept_sec_context().

Although not contemplated in [RFC-2078], it has been observed that some existing GSS-API implementations return GSS_S_CONTINUE_NEEDED status when iterating through successive messages returned from GSS_Display_status(). This behavior is deprecated; GSS_S_CONTINUE_NEEDED should be returned only by GSS_Init_sec_context() and GSS_Accept_sec_context(). For maximal portability, however, it is recommended that defensive callers be able to accept and ignore GSS_S_CONTINUE_NEEDED status if indicated by GSS_Display_status() or any other call other than GSS_Init_sec_context() or GSS_Accept_sec_context().

2.4.2:  GSS_Indicate_mechs call

2.4.2: GSS_Indicate_mechs call

   Input:

Input:

   o  (none)

o (none)

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  mech_set SET OF OBJECT IDENTIFIER  -- caller must release
   -- with GSS_Release_oid_set()

o mech_set SET OF OBJECT IDENTIFIER -- caller must release -- with GSS_Release_oid_set()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a set of available mechanisms has
   been returned in mech_set.

o GSS_S_COMPLETE indicates that a set of available mechanisms has been returned in mech_set.

Linn                        Standards Track                    [Page 69]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 69] RFC 2743 GSS-API January 2000

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to determine the set of mechanism types available on
   the local system. This call is intended for support of specialized
   callers who need to request non-default mech_type sets from GSS-API
   calls which accept input mechanism type specifiers.

Allows callers to determine the set of mechanism types available on the local system. This call is intended for support of specialized callers who need to request non-default mech_type sets from GSS-API calls which accept input mechanism type specifiers.

2.4.3:  GSS_Compare_name call

2.4.3: GSS_Compare_name call

   Inputs:

Inputs:

   o  name1 INTERNAL NAME,

o name1 INTERNAL NAME,

   o  name2 INTERNAL NAME

o name2 INTERNAL NAME

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  name_equal BOOLEAN

o name_equal BOOLEAN

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that name1 and name2 were comparable, and
   that the name_equal result indicates whether name1 and name2
   represent the same entity.

o GSS_S_COMPLETE indicates that name1 and name2 were comparable, and that the name_equal result indicates whether name1 and name2 represent the same entity.

   o  GSS_S_BAD_NAMETYPE indicates that the two input names' types are
   different and incomparable, so that the comparison operation could
   not be completed.

o GSS_S_BAD_NAMETYPE indicates that the two input names' types are different and incomparable, so that the comparison operation could not be completed.

   o  GSS_S_BAD_NAME indicates that one or both of the input names was
   ill-formed in terms of its internal type specifier, so the comparison
   operation could not be completed.

o GSS_S_BAD_NAME indicates that one or both of the input names was ill-formed in terms of its internal type specifier, so the comparison operation could not be completed.

   o  GSS_S_FAILURE indicates that the call's operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the call's operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to compare two internal name representations to
   determine whether they refer to the same entity.  If either name
   presented to GSS_Compare_name() denotes an anonymous principal,
   GSS_Compare_name() shall indicate FALSE.  It is not required that
   either or both inputs name1 and name2 be MNs; for some

Allows callers to compare two internal name representations to determine whether they refer to the same entity. If either name presented to GSS_Compare_name() denotes an anonymous principal, GSS_Compare_name() shall indicate FALSE. It is not required that either or both inputs name1 and name2 be MNs; for some

Linn                        Standards Track                    [Page 70]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 70] RFC 2743 GSS-API January 2000

   implementations and cases, GSS_S_BAD_NAMETYPE may be returned,
   indicating name incomparability, for the case where neither input
   name is an MN.

implementations and cases, GSS_S_BAD_NAMETYPE may be returned, indicating name incomparability, for the case where neither input name is an MN.

2.4.4:  GSS_Display_name call

2.4.4: GSS_Display_name call

   Inputs:

Inputs:

   o  name INTERNAL NAME

o name INTERNAL NAME

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  name_string OCTET STRING, -- caller must release
   -- with GSS_Release_buffer()

o name_string OCTET STRING, -- caller must release -- with GSS_Release_buffer()

   o  name_type OBJECT IDENTIFIER  -- caller should treat
   -- as read-only; does not need to be released

o name_type OBJECT IDENTIFIER -- caller should treat -- as read-only; does not need to be released

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid printable name
   representation is available in the returned name_string.

o GSS_S_COMPLETE indicates that a valid printable name representation is available in the returned name_string.

   o  GSS_S_BAD_NAME indicates that the contents of the provided name
   were inconsistent with the internally-indicated name type, so no
   printable representation could be generated.

o GSS_S_BAD_NAME indicates that the contents of the provided name were inconsistent with the internally-indicated name type, so no printable representation could be generated.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to translate an internal name representation into a
   printable form with associated namespace type descriptor. The syntax
   of the printable form is a local matter.

Allows callers to translate an internal name representation into a printable form with associated namespace type descriptor. The syntax of the printable form is a local matter.

   If the input name represents an anonymous identity, a reserved value
   (GSS_C_NT_ANONYMOUS) shall be returned for name_type.

If the input name represents an anonymous identity, a reserved value (GSS_C_NT_ANONYMOUS) shall be returned for name_type.

   The GSS_C_NO_OID name type is to be returned only when the
   corresponding internal name was created through import with
   GSS_C_NO_OID. It is acceptable for mechanisms to normalize names
   imported with GSS_C_NO_OID into other supported types and, therefore,
   to display them with types other than GSS_C_NO_OID.

The GSS_C_NO_OID name type is to be returned only when the corresponding internal name was created through import with GSS_C_NO_OID. It is acceptable for mechanisms to normalize names imported with GSS_C_NO_OID into other supported types and, therefore, to display them with types other than GSS_C_NO_OID.

Linn                        Standards Track                    [Page 71]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 71] RFC 2743 GSS-API January 2000

2.4.5:  GSS_Import_name call

2.4.5: GSS_Import_name call

   Inputs:

Inputs:

   o  input_name_string OCTET STRING,

o input_name_string OCTET STRING,

   o  input_name_type OBJECT IDENTIFIER

o input_name_type OBJECT IDENTIFIER

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  output_name INTERNAL NAME  -- caller must release with
   -- GSS_Release_name()

o output_name INTERNAL NAME -- caller must release with -- GSS_Release_name()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid name representation is
   output in output_name and described by the type value in
   output_name_type.

o GSS_S_COMPLETE indicates that a valid name representation is output in output_name and described by the type value in output_name_type.

   o  GSS_S_BAD_NAMETYPE indicates that the input_name_type is
   unsupported by the applicable underlying GSS-API mechanism(s), so the
   import operation could not be completed.

o GSS_S_BAD_NAMETYPE indicates that the input_name_type is unsupported by the applicable underlying GSS-API mechanism(s), so the import operation could not be completed.

   o  GSS_S_BAD_NAME indicates that the provided input_name_string is
   ill-formed in terms of the input_name_type, so the import operation
   could not be completed.

o GSS_S_BAD_NAME indicates that the provided input_name_string is ill-formed in terms of the input_name_type, so the import operation could not be completed.

   o  GSS_S_BAD_MECH indicates that the input presented for import was
   an exported name object and that its enclosed mechanism type was not
   recognized or was unsupported by the GSS-API implementation.

o GSS_S_BAD_MECH indicates that the input presented for import was an exported name object and that its enclosed mechanism type was not recognized or was unsupported by the GSS-API implementation.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to provide a name representation as a contiguous octet
   string, designate the type of namespace in conjunction with which it
   should be parsed, and convert that representation to an internal form
   suitable for input to other GSS-API routines.  The syntax of the
   input_name_string is defined in conjunction with its associated name
   type; depending on the input_name_type, the associated
   input_name_string may or may not be a printable string.  If the
   input_name_type's value is GSS_C_NO_OID, a mechanism-specific default
   printable syntax (which shall be specified in the corresponding GSS-
   V2 mechanism specification) is assumed for the input_name_string;

Allows callers to provide a name representation as a contiguous octet string, designate the type of namespace in conjunction with which it should be parsed, and convert that representation to an internal form suitable for input to other GSS-API routines. The syntax of the input_name_string is defined in conjunction with its associated name type; depending on the input_name_type, the associated input_name_string may or may not be a printable string. If the input_name_type's value is GSS_C_NO_OID, a mechanism-specific default printable syntax (which shall be specified in the corresponding GSS- V2 mechanism specification) is assumed for the input_name_string;

Linn                        Standards Track                    [Page 72]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 72] RFC 2743 GSS-API January 2000

   other input_name_type values as registered by GSS-API implementations
   can be used to indicate specific non-default name syntaxes. Note: The
   input_name_type argument serves to describe and qualify the
   interpretation of the associated input_name_string; it does not
   specify the data type of the returned output_name.

other input_name_type values as registered by GSS-API implementations can be used to indicate specific non-default name syntaxes. Note: The input_name_type argument serves to describe and qualify the interpretation of the associated input_name_string; it does not specify the data type of the returned output_name.

   If a mechanism claims support for a particular name type, its
   GSS_Import_name() operation shall be able to accept all possible
   values conformant to the external name syntax as defined for that
   name type.  These imported values may correspond to:

If a mechanism claims support for a particular name type, its GSS_Import_name() operation shall be able to accept all possible values conformant to the external name syntax as defined for that name type. These imported values may correspond to:

      (1) locally registered entities (for which credentials may be
      acquired),

(1) locally registered entities (for which credentials may be acquired),

      (2) non-local entities (for which local credentials cannot be
      acquired, but which may be referenced as targets of initiated
      security contexts or initiators of accepted security contexts), or
      to

(2) non-local entities (for which local credentials cannot be acquired, but which may be referenced as targets of initiated security contexts or initiators of accepted security contexts), or to

      (3) neither of the above.

(3) neither of the above.

   Determination of whether a particular name belongs to class (1), (2),
   or (3) as described above is not guaranteed to be performed by the
   GSS_Import_name() function.

Determination of whether a particular name belongs to class (1), (2), or (3) as described above is not guaranteed to be performed by the GSS_Import_name() function.

   The internal name generated by a GSS_Import_name() operation may be a
   single-mechanism MN, and is likely to be an MN within a single-
   mechanism implementation, but portable callers must not depend on
   this property (and must not, therefore, assume that the output from
   GSS_Import_name() can be passed directly to GSS_Export_name() without
   first being processed through GSS_Canonicalize_name()).

The internal name generated by a GSS_Import_name() operation may be a single-mechanism MN, and is likely to be an MN within a single- mechanism implementation, but portable callers must not depend on this property (and must not, therefore, assume that the output from GSS_Import_name() can be passed directly to GSS_Export_name() without first being processed through GSS_Canonicalize_name()).

2.4.6: GSS_Release_name call

2.4.6: GSS_Release_name call

   Inputs:

Inputs:

   o  name INTERNAL NAME

o name INTERNAL NAME

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER

o minor_status INTEGER

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
   input name was successfully released.

o GSS_S_COMPLETE indicates that the storage associated with the input name was successfully released.

Linn                        Standards Track                    [Page 73]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 73] RFC 2743 GSS-API January 2000

   o  GSS_S_BAD_NAME indicates that the input name argument did not
   contain a valid name.

o GSS_S_BAD_NAME indicates that the input name argument did not contain a valid name.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an internal
   name representation.  This call's specific behavior depends on the
   language and programming environment within which a GSS-API
   implementation operates, and is therefore detailed within applicable
   bindings specifications; in particular, implementation and invocation
   of this call may be superfluous (and may be omitted) within bindings
   where memory management is automatic.

Allows callers to release the storage associated with an internal name representation. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, implementation and invocation of this call may be superfluous (and may be omitted) within bindings where memory management is automatic.

2.4.7: GSS_Release_buffer call

2.4.7: GSS_Release_buffer call

   Inputs:

Inputs:

   o  buffer OCTET STRING

o buffer OCTET STRING

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER

o minor_status INTEGER

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
   input buffer was successfully released.

o GSS_S_COMPLETE indicates that the storage associated with the input buffer was successfully released.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an OCTET STRING
   buffer allocated by another GSS-API call.  This call's specific
   behavior depends on the language and programming environment within
   which a GSS-API implementation operates, and is therefore detailed
   within applicable bindings specifications; in particular,
   implementation and invocation of this call may be superfluous (and
   may be omitted) within bindings where memory management is automatic.

Allows callers to release the storage associated with an OCTET STRING buffer allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, implementation and invocation of this call may be superfluous (and may be omitted) within bindings where memory management is automatic.

2.4.8: GSS_Release_OID_set call

2.4.8: GSS_Release_OID_set call

   Inputs:

Inputs:

   o  buffer SET OF OBJECT IDENTIFIER

o buffer SET OF OBJECT IDENTIFIER

Linn                        Standards Track                    [Page 74]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 74] RFC 2743 GSS-API January 2000

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER

o minor_status INTEGER

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
   input object identifier set was successfully released.

o GSS_S_COMPLETE indicates that the storage associated with the input object identifier set was successfully released.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an object
   identifier set object allocated by another GSS-API call.  This call's
   specific behavior depends on the language and programming environment
   within which a GSS-API implementation operates, and is therefore
   detailed within applicable bindings specifications; in particular,
   implementation and invocation of this call may be superfluous (and
   may be omitted) within bindings where memory management is automatic.

Allows callers to release the storage associated with an object identifier set object allocated by another GSS-API call. This call's specific behavior depends on the language and programming environment within which a GSS-API implementation operates, and is therefore detailed within applicable bindings specifications; in particular, implementation and invocation of this call may be superfluous (and may be omitted) within bindings where memory management is automatic.

2.4.9: GSS_Create_empty_OID_set call

2.4.9: GSS_Create_empty_OID_set call

   Inputs:

Inputs:

   o  (none)

o (none)

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  oid_set SET OF OBJECT IDENTIFIER  -- caller must release
   -- with GSS_Release_oid_set()

o oid_set SET OF OBJECT IDENTIFIER -- caller must release -- with GSS_Release_oid_set()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

o GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed

o GSS_S_FAILURE indicates that the operation failed

   Creates an object identifier set containing no object identifiers, to
   which members may be subsequently added using the
   GSS_Add_OID_set_member() routine.  These routines are intended to be
   used to construct sets of mechanism object identifiers, for input to
   GSS_Acquire_cred().

Creates an object identifier set containing no object identifiers, to which members may be subsequently added using the GSS_Add_OID_set_member() routine. These routines are intended to be used to construct sets of mechanism object identifiers, for input to GSS_Acquire_cred().

Linn                        Standards Track                    [Page 75]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 75] RFC 2743 GSS-API January 2000

2.4.10: GSS_Add_OID_set_member call

2.4.10: GSS_Add_OID_set_member call

   Inputs:

Inputs:

   o  member_oid OBJECT IDENTIFIER,

o member_oid OBJECT IDENTIFIER,

   o  oid_set SET OF OBJECT IDENTIFIER

o oid_set SET OF OBJECT IDENTIFIER

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

o GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed

o GSS_S_FAILURE indicates that the operation failed

   Adds an Object Identifier to an Object Identifier set.  This routine
   is intended for use in conjunction with GSS_Create_empty_OID_set()
   when constructing a set of mechanism OIDs for input to
   GSS_Acquire_cred().

Adds an Object Identifier to an Object Identifier set. This routine is intended for use in conjunction with GSS_Create_empty_OID_set() when constructing a set of mechanism OIDs for input to GSS_Acquire_cred().

2.4.11: GSS_Test_OID_set_member call

2.4.11: GSS_Test_OID_set_member call

   Inputs:

Inputs:

   o  member OBJECT IDENTIFIER,

o member OBJECT IDENTIFIER,

   o  set SET OF OBJECT IDENTIFIER

o set SET OF OBJECT IDENTIFIER

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  present BOOLEAN

o present BOOLEAN

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

o GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed

o GSS_S_FAILURE indicates that the operation failed

Linn                        Standards Track                    [Page 76]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 76] RFC 2743 GSS-API January 2000

   Interrogates an Object Identifier set to determine whether a
   specified Object Identifier is a member.  This routine is intended to
   be used with OID sets returned by GSS_Indicate_mechs(),
   GSS_Acquire_cred(), and GSS_Inquire_cred().

Interrogates an Object Identifier set to determine whether a specified Object Identifier is a member. This routine is intended to be used with OID sets returned by GSS_Indicate_mechs(), GSS_Acquire_cred(), and GSS_Inquire_cred().

2.4.12:  GSS_Inquire_names_for_mech call

2.4.12: GSS_Inquire_names_for_mech call

   Input:

Input:

   o  input_mech_type OBJECT IDENTIFIER, -- mechanism type

o input_mech_type OBJECT IDENTIFIER, -- mechanism type

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  name_type_set SET OF OBJECT IDENTIFIER -- caller must release
   -- with GSS_Release_oid_set()

o name_type_set SET OF OBJECT IDENTIFIER -- caller must release -- with GSS_Release_oid_set()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that the output name_type_set contains a
   list of name types which are supported by the locally available
   mechanism identified by input_mech_type.

o GSS_S_COMPLETE indicates that the output name_type_set contains a list of name types which are supported by the locally available mechanism identified by input_mech_type.

   o  GSS_S_BAD_MECH indicates that the mechanism identified by
   input_mech_type was unsupported within the local implementation,
   causing the query to fail.

o GSS_S_BAD_MECH indicates that the mechanism identified by input_mech_type was unsupported within the local implementation, causing the query to fail.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   Allows callers to determine the set of name types which are
   supportable by a specific locally-available mechanism.

Allows callers to determine the set of name types which are supportable by a specific locally-available mechanism.

2.4.13: GSS_Inquire_mechs_for_name call

2.4.13: GSS_Inquire_mechs_for_name call

   Inputs:

Inputs:

   o  input_name INTERNAL NAME,

o input_name INTERNAL NAME,

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

Linn                        Standards Track                    [Page 77]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 77] RFC 2743 GSS-API January 2000

   o  mech_types SET OF OBJECT IDENTIFIER  -- caller must release
   -- with GSS_Release_oid_set()

o mech_types SET OF OBJECT IDENTIFIER -- caller must release -- with GSS_Release_oid_set()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a set of object identifiers,
   corresponding to the set of mechanisms suitable for processing the
   input_name, is available in mech_types.

o GSS_S_COMPLETE indicates that a set of object identifiers, corresponding to the set of mechanisms suitable for processing the input_name, is available in mech_types.

   o  GSS_S_BAD_NAME indicates that the input_name was ill-formed and
   could not be processed.

o GSS_S_BAD_NAME indicates that the input_name was ill-formed and could not be processed.

   o  GSS_S_BAD_NAMETYPE indicates that the input_name parameter
   contained an invalid name type or a name type unsupported by the
   GSS-API implementation.

o GSS_S_BAD_NAMETYPE indicates that the input_name parameter contained an invalid name type or a name type unsupported by the GSS-API implementation.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   This routine returns the mechanism set with which the input_name may
   be processed.

This routine returns the mechanism set with which the input_name may be processed.

   Each mechanism returned will recognize at least one element within
   the name. It is permissible for this routine to be implemented within
   a mechanism-independent GSS-API layer, using the type information
   contained within the presented name, and based on registration
   information provided by individual mechanism implementations.  This
   means that the returned mech_types result may indicate that a
   particular mechanism will understand a particular name when in fact
   it would refuse to accept that name as input to
   GSS_Canonicalize_name(), GSS_Init_sec_context(), GSS_Acquire_cred(),
   or GSS_Add_cred(), due to some property of the particular name rather
   than a property of the name type.  Thus, this routine should be used
   only as a pre-filter for a call to a subsequent mechanism-specific
   routine.

Each mechanism returned will recognize at least one element within the name. It is permissible for this routine to be implemented within a mechanism-independent GSS-API layer, using the type information contained within the presented name, and based on registration information provided by individual mechanism implementations. This means that the returned mech_types result may indicate that a particular mechanism will understand a particular name when in fact it would refuse to accept that name as input to GSS_Canonicalize_name(), GSS_Init_sec_context(), GSS_Acquire_cred(), or GSS_Add_cred(), due to some property of the particular name rather than a property of the name type. Thus, this routine should be used only as a pre-filter for a call to a subsequent mechanism-specific routine.

2.4.14: GSS_Canonicalize_name call

2.4.14: GSS_Canonicalize_name call

   Inputs:

Inputs:

   o  input_name INTERNAL NAME,

o input_name INTERNAL NAME,

   o  mech_type OBJECT IDENTIFIER  -- must be explicit mechanism,
   -- not "default" specifier or identifier of negotiating mechanism

o mech_type OBJECT IDENTIFIER -- must be explicit mechanism, -- not "default" specifier or identifier of negotiating mechanism

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

Linn                        Standards Track                    [Page 78]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 78] RFC 2743 GSS-API January 2000

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  output_name INTERNAL NAME  -- caller must release with
   -- GSS_Release_name()

o output_name INTERNAL NAME -- caller must release with -- GSS_Release_name()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a mechanism-specific reduction of
   the input_name, as processed by the mechanism identified by
   mech_type, is available in output_name.

o GSS_S_COMPLETE indicates that a mechanism-specific reduction of the input_name, as processed by the mechanism identified by mech_type, is available in output_name.

   o  GSS_S_BAD_MECH indicates that the identified mechanism is
   unsupported for this operation; this may correspond either to a
   mechanism wholly unsupported by the local GSS-API implementation or
   to a negotiating mechanism with which the canonicalization operation
   cannot be performed.

o GSS_S_BAD_MECH indicates that the identified mechanism is unsupported for this operation; this may correspond either to a mechanism wholly unsupported by the local GSS-API implementation or to a negotiating mechanism with which the canonicalization operation cannot be performed.

   o  GSS_S_BAD_NAMETYPE indicates that the input name does not contain
   an element with suitable type for processing by the identified
   mechanism.

o GSS_S_BAD_NAMETYPE indicates that the input name does not contain an element with suitable type for processing by the identified mechanism.

   o  GSS_S_BAD_NAME indicates that the input name contains an element
   with suitable type for processing by the identified mechanism, but
   that this element could not be processed successfully.

o GSS_S_BAD_NAME indicates that the input name contains an element with suitable type for processing by the identified mechanism, but that this element could not be processed successfully.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   This routine reduces a GSS-API internal name input_name, which may in
   general contain elements corresponding to multiple mechanisms, to a
   mechanism-specific Mechanism Name (MN) output_name by applying the
   translations corresponding to the mechanism identified by mech_type.
   The contents of input_name are unaffected by the
   GSS_Canonicalize_name() operation.  References to output_name will
   remain valid until output_name is released, independent of whether or
   not input_name is subsequently released.

This routine reduces a GSS-API internal name input_name, which may in general contain elements corresponding to multiple mechanisms, to a mechanism-specific Mechanism Name (MN) output_name by applying the translations corresponding to the mechanism identified by mech_type. The contents of input_name are unaffected by the GSS_Canonicalize_name() operation. References to output_name will remain valid until output_name is released, independent of whether or not input_name is subsequently released.

2.4.15: GSS_Export_name call

2.4.15: GSS_Export_name call

   Inputs:

Inputs:

   o  input_name INTERNAL NAME, -- required to be MN

o input_name INTERNAL NAME, -- required to be MN

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

Linn                        Standards Track                    [Page 79]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 79] RFC 2743 GSS-API January 2000

   o  output_name OCTET STRING  -- caller must release
   -- with GSS_Release_buffer()

o output_name OCTET STRING -- caller must release -- with GSS_Release_buffer()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that a flat representation of the input
   name is available in output_name.

o GSS_S_COMPLETE indicates that a flat representation of the input name is available in output_name.

   o  GSS_S_NAME_NOT_MN indicates that the input name contained elements
   corresponding to multiple mechanisms, so cannot be exported into a
   single-mechanism flat form.

o GSS_S_NAME_NOT_MN indicates that the input name contained elements corresponding to multiple mechanisms, so cannot be exported into a single-mechanism flat form.

   o  GSS_S_BAD_NAME indicates that the input name was an MN, but could
   not be processed.

o GSS_S_BAD_NAME indicates that the input name was an MN, but could not be processed.

   o  GSS_S_BAD_NAMETYPE indicates that the input name was an MN, but
   that its type is unsupported by the GSS-API implementation.

o GSS_S_BAD_NAMETYPE indicates that the input name was an MN, but that its type is unsupported by the GSS-API implementation.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   This routine creates a flat name representation, suitable for
   bytewise comparison or for input to GSS_Import_name() in conjunction
   with the reserved GSS-API Exported Name Object OID, from a internal-
   form Mechanism Name (MN) as emitted, e.g., by GSS_Canonicalize_name()
   or GSS_Accept_sec_context().

This routine creates a flat name representation, suitable for bytewise comparison or for input to GSS_Import_name() in conjunction with the reserved GSS-API Exported Name Object OID, from a internal- form Mechanism Name (MN) as emitted, e.g., by GSS_Canonicalize_name() or GSS_Accept_sec_context().

   The emitted GSS-API Exported Name Object is self-describing; no
   associated parameter-level OID need be emitted by this call.  This
   flat representation consists of a mechanism-independent wrapper
   layer, defined in Section 3.2 of this document, enclosing a
   mechanism-defined name representation.

The emitted GSS-API Exported Name Object is self-describing; no associated parameter-level OID need be emitted by this call. This flat representation consists of a mechanism-independent wrapper layer, defined in Section 3.2 of this document, enclosing a mechanism-defined name representation.

   In all cases, the flat name output by GSS_Export_name() to correspond
   to a particular input MN must be invariant over time within a
   particular installation.

In all cases, the flat name output by GSS_Export_name() to correspond to a particular input MN must be invariant over time within a particular installation.

   The GSS_S_NAME_NOT_MN status code is provided to enable
   implementations to reject input names which are not MNs.  It is not,
   however, required for purposes of conformance to this specification
   that all non-MN input names must necessarily be rejected.

The GSS_S_NAME_NOT_MN status code is provided to enable implementations to reject input names which are not MNs. It is not, however, required for purposes of conformance to this specification that all non-MN input names must necessarily be rejected.

2.4.16: GSS_Duplicate_name call

2.4.16: GSS_Duplicate_name call

   Inputs:

Inputs:

   o  src_name INTERNAL NAME

o src_name INTERNAL NAME

Linn                        Standards Track                    [Page 80]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 80] RFC 2743 GSS-API January 2000

   Outputs:

Outputs:

   o  major_status INTEGER,

o major_status INTEGER,

   o  minor_status INTEGER,

o minor_status INTEGER,

   o  dest_name INTERNAL NAME  -- caller must release
   -- with GSS_Release_name()

o dest_name INTERNAL NAME -- caller must release -- with GSS_Release_name()

   Return major_status codes:

Return major_status codes:

   o  GSS_S_COMPLETE indicates that dest_name references an internal
   name object containing the same name as passed to src_name.

o GSS_S_COMPLETE indicates that dest_name references an internal name object containing the same name as passed to src_name.

   o  GSS_S_BAD_NAME indicates that the input name was invalid.

o GSS_S_BAD_NAME indicates that the input name was invalid.

   o  GSS_S_FAILURE indicates that the requested operation could not be
   performed for reasons unspecified at the GSS-API level.

o GSS_S_FAILURE indicates that the requested operation could not be performed for reasons unspecified at the GSS-API level.

   This routine takes input internal name src_name, and returns another
   reference (dest_name) to that name which can be used even if src_name
   is later freed.  (Note: This may be implemented by copying or through
   use of reference counts.)

This routine takes input internal name src_name, and returns another reference (dest_name) to that name which can be used even if src_name is later freed. (Note: This may be implemented by copying or through use of reference counts.)

3: Data Structure Definitions for GSS-V2 Usage

3: Data Structure Definitions for GSS-V2 Usage

   Subsections of this section define, for interoperability and
   portability purposes, certain data structures for use with GSS-V2.

Subsections of this section define, for interoperability and portability purposes, certain data structures for use with GSS-V2.

3.1: Mechanism-Independent Token Format

3.1: Mechanism-Independent Token Format

   This section specifies a mechanism-independent level of encapsulating
   representation for the initial token of a GSS-API context
   establishment sequence, incorporating an identifier of the mechanism
   type to be used on that context and enabling tokens to be interpreted
   unambiguously at GSS-API peers. Use of this format is required for
   initial context establishment tokens of Internet standards-track
   GSS-API mechanisms; use in non-initial tokens is optional.

This section specifies a mechanism-independent level of encapsulating representation for the initial token of a GSS-API context establishment sequence, incorporating an identifier of the mechanism type to be used on that context and enabling tokens to be interpreted unambiguously at GSS-API peers. Use of this format is required for initial context establishment tokens of Internet standards-track GSS-API mechanisms; use in non-initial tokens is optional.

   The encoding format for the token tag is derived from ASN.1 and DER
   (per illustrative ASN.1 syntax included later within this
   subsection), but its concrete representation is defined directly in
   terms of octets rather than at the ASN.1 level in order to facilitate
   interoperable implementation without use of general ASN.1 processing
   code.  The token tag consists of the following elements, in order:

The encoding format for the token tag is derived from ASN.1 and DER (per illustrative ASN.1 syntax included later within this subsection), but its concrete representation is defined directly in terms of octets rather than at the ASN.1 level in order to facilitate interoperable implementation without use of general ASN.1 processing code. The token tag consists of the following elements, in order:

      1. 0x60 -- Tag for [APPLICATION 0] SEQUENCE; indicates that
      -- constructed form, definite length encoding follows.

1. 0x60 -- Tag for [APPLICATION 0] SEQUENCE; indicates that -- constructed form, definite length encoding follows.

Linn                        Standards Track                    [Page 81]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 81] RFC 2743 GSS-API January 2000

      2. Token length octets, specifying length of subsequent data
      (i.e., the summed lengths of elements 3-5 in this list, and of the
      mechanism-defined token object following the tag).  This element
      comprises a variable number of octets:

2. Token length octets, specifying length of subsequent data (i.e., the summed lengths of elements 3-5 in this list, and of the mechanism-defined token object following the tag). This element comprises a variable number of octets:

         2a. If the indicated value is less than 128, it shall be
         represented in a single octet with bit 8 (high order) set to
         "0" and the remaining bits representing the value.

2a. If the indicated value is less than 128, it shall be represented in a single octet with bit 8 (high order) set to "0" and the remaining bits representing the value.

         2b. If the indicated value is 128 or more, it shall be
         represented in two or more octets, with bit 8 of the first
         octet set to "1" and the remaining bits of the first octet
         specifying the number of additional octets.  The subsequent
         octets carry the value, 8 bits per octet, most significant
         digit first.  The minimum number of octets shall be used to
         encode the length (i.e., no octets representing leading zeros
         shall be included within the length encoding).

2b. If the indicated value is 128 or more, it shall be represented in two or more octets, with bit 8 of the first octet set to "1" and the remaining bits of the first octet specifying the number of additional octets. The subsequent octets carry the value, 8 bits per octet, most significant digit first. The minimum number of octets shall be used to encode the length (i.e., no octets representing leading zeros shall be included within the length encoding).

      3. 0x06 -- Tag for OBJECT IDENTIFIER

3. 0x06 -- Tag for OBJECT IDENTIFIER

      4. Object identifier length -- length (number of octets) of
      -- the encoded object identifier contained in element 5,
      -- encoded per rules as described in 2a. and 2b. above.

4. Object identifier length -- length (number of octets) of -- the encoded object identifier contained in element 5, -- encoded per rules as described in 2a. and 2b. above.

      5. Object identifier octets -- variable number of octets,
      -- encoded per ASN.1 BER rules:

5. Object identifier octets -- variable number of octets, -- encoded per ASN.1 BER rules:

         5a. The first octet contains the sum of two values: (1) the
         top-level object identifier component, multiplied by 40
         (decimal), and (2) the second-level object identifier
         component.  This special case is the only point within an
         object identifier encoding where a single octet represents
         contents of more than one component.

5a. The first octet contains the sum of two values: (1) the top-level object identifier component, multiplied by 40 (decimal), and (2) the second-level object identifier component. This special case is the only point within an object identifier encoding where a single octet represents contents of more than one component.

         5b. Subsequent octets, if required, encode successively-lower
         components in the represented object identifier.  A component's
         encoding may span multiple octets, encoding 7 bits per octet
         (most significant bits first) and with bit 8 set to "1" on all
         but the final octet in the component's encoding.  The minimum
         number of octets shall be used to encode each component (i.e.,
         no octets representing leading zeros shall be included within a
         component's encoding).

5b. Subsequent octets, if required, encode successively-lower components in the represented object identifier. A component's encoding may span multiple octets, encoding 7 bits per octet (most significant bits first) and with bit 8 set to "1" on all but the final octet in the component's encoding. The minimum number of octets shall be used to encode each component (i.e., no octets representing leading zeros shall be included within a component's encoding).

      (Note: In many implementations, elements 3-5 may be stored and
      referenced as a contiguous string constant.)

(Note: In many implementations, elements 3-5 may be stored and referenced as a contiguous string constant.)

Linn                        Standards Track                    [Page 82]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 82] RFC 2743 GSS-API January 2000

   The token tag is immediately followed by a mechanism-defined token
   object.  Note that no independent size specifier intervenes following
   the object identifier value to indicate the size of the mechanism-
   defined token object.  While ASN.1 usage within mechanism-defined
   tokens is permitted, there is no requirement that the mechanism-
   specific innerContextToken, innerMsgToken, and sealedUserData data
   elements must employ ASN.1 BER/DER encoding conventions.

The token tag is immediately followed by a mechanism-defined token object. Note that no independent size specifier intervenes following the object identifier value to indicate the size of the mechanism- defined token object. While ASN.1 usage within mechanism-defined tokens is permitted, there is no requirement that the mechanism- specific innerContextToken, innerMsgToken, and sealedUserData data elements must employ ASN.1 BER/DER encoding conventions.

   The following ASN.1 syntax is included for descriptive purposes only,
   to illustrate structural relationships among token and tag objects.
   For interoperability purposes, token and tag encoding shall be
   performed using the concrete encoding procedures described earlier in
   this subsection.

The following ASN.1 syntax is included for descriptive purposes only, to illustrate structural relationships among token and tag objects. For interoperability purposes, token and tag encoding shall be performed using the concrete encoding procedures described earlier in this subsection.

      GSS-API DEFINITIONS ::=

GSS-API DEFINITIONS ::=

      BEGIN

BEGIN

      MechType ::= OBJECT IDENTIFIER
      -- data structure definitions
      -- callers must be able to distinguish among
      -- InitialContextToken, SubsequentContextToken,
      -- PerMsgToken, and SealedMessage data elements
      -- based on the usage in which they occur

MechType ::= OBJECT IDENTIFIER -- data structure definitions -- callers must be able to distinguish among -- InitialContextToken, SubsequentContextToken, -- PerMsgToken, and SealedMessage data elements -- based on the usage in which they occur

      InitialContextToken ::=
      -- option indication (delegation, etc.) indicated within
      -- mechanism-specific token
      [APPLICATION 0] IMPLICIT SEQUENCE {
              thisMech MechType,
              innerContextToken ANY DEFINED BY thisMech
                 -- contents mechanism-specific
                 -- ASN.1 structure not required
              }

InitialContextToken ::= -- option indication (delegation, etc.) indicated within -- mechanism-specific token [APPLICATION 0] IMPLICIT SEQUENCE { thisMech MechType, innerContextToken ANY DEFINED BY thisMech -- contents mechanism-specific -- ASN.1 structure not required }

      SubsequentContextToken ::= innerContextToken ANY
      -- interpretation based on predecessor InitialContextToken
      -- ASN.1 structure not required

SubsequentContextToken ::= innerContextToken ANY -- interpretation based on predecessor InitialContextToken -- ASN.1 structure not required

      PerMsgToken ::=
      -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC
      -- ASN.1 structure not required
              innerMsgToken ANY

PerMsgToken ::= -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC -- ASN.1 structure not required innerMsgToken ANY

      SealedMessage ::=
      -- as emitted by GSS_Wrap and processed by GSS_Unwrap
      -- includes internal, mechanism-defined indicator
      -- of whether or not encrypted

SealedMessage ::= -- as emitted by GSS_Wrap and processed by GSS_Unwrap -- includes internal, mechanism-defined indicator -- of whether or not encrypted

Linn                        Standards Track                    [Page 83]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 83] RFC 2743 GSS-API January 2000

      -- ASN.1 structure not required
              sealedUserData ANY

-- ASN.1 structure not required sealedUserData ANY

      END

END

3.2: Mechanism-Independent Exported Name Object Format

3.2: Mechanism-Independent Exported Name Object Format

   This section specifies a mechanism-independent level of encapsulating
   representation for names exported via the GSS_Export_name() call,
   including an object identifier representing the exporting mechanism.
   The format of names encapsulated via this representation shall be
   defined within individual mechanism drafts.  The Object Identifier
   value to indicate names of this type is defined in Section 4.7 of
   this document.

This section specifies a mechanism-independent level of encapsulating representation for names exported via the GSS_Export_name() call, including an object identifier representing the exporting mechanism. The format of names encapsulated via this representation shall be defined within individual mechanism drafts. The Object Identifier value to indicate names of this type is defined in Section 4.7 of this document.

   No name type OID is included in this mechanism-independent level of
   format definition, since (depending on individual mechanism
   specifications) the enclosed name may be implicitly typed or may be
   explicitly typed using a means other than OID encoding.

No name type OID is included in this mechanism-independent level of format definition, since (depending on individual mechanism specifications) the enclosed name may be implicitly typed or may be explicitly typed using a means other than OID encoding.

   The bytes within MECH_OID_LEN and NAME_LEN elements are represented
   most significant byte first (equivalently, in IP network byte order).

The bytes within MECH_OID_LEN and NAME_LEN elements are represented most significant byte first (equivalently, in IP network byte order).

        Length    Name          Description

Length Name Description

        2               TOK_ID          Token Identifier
                                        For exported name objects, this
                                        must be hex 04 01.
        2               MECH_OID_LEN    Length of the Mechanism OID
        MECH_OID_LEN    MECH_OID        Mechanism OID, in DER
        4               NAME_LEN        Length of name
        NAME_LEN        NAME            Exported name; format defined in
                                        applicable mechanism draft.

2 TOK_ID Token Identifier For exported name objects, this must be hex 04 01. 2 MECH_OID_LEN Length of the Mechanism OID MECH_OID_LEN MECH_OID Mechanism OID, in DER 4 NAME_LEN Length of name NAME_LEN NAME Exported name; format defined in applicable mechanism draft.

   A concrete example of the contents of an exported name object,
   derived from the Kerberos Version 5 mechanism, is as follows:

A concrete example of the contents of an exported name object, derived from the Kerberos Version 5 mechanism, is as follows:

   04 01 00 0B 06 09 2A 86 48 86 F7 12 01 02 02 hx xx xx xl pp qq ... zz

04 01 00 0B 06 09 2A 86 48 86 F7 12 01 02 02 hx xx xx xl pp qq ... zz

   04 01        mandatory token identifier

04 01 mandatory token identifier

   00 0B        2-byte length of the immediately following DER-encoded
                ASN.1 value of type OID, most significant octet first

00 0B 2-byte length of the immediately following DER-encoded ASN.1 value of type OID, most significant octet first

Linn                        Standards Track                    [Page 84]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 84] RFC 2743 GSS-API January 2000

   06 09 2A 86 48 86 F7 12 01 02 02    DER-encoded ASN.1 value
                                       of type OID; Kerberos V5
                                       mechanism OID indicates
                                       Kerberos V5 exported name

06 09 2A 86 48 86 F7 12 01 02 02 DER-encoded ASN.1 value of type OID; Kerberos V5 mechanism OID indicates Kerberos V5 exported name

          in Detail:      06                  Identifier octet (6=OID)
                          09                           Length octet(s)
                          2A 86 48 86 F7 12 01 02 02   Content octet(s)

in Detail: 06 Identifier octet (6=OID) 09 Length octet(s) 2A 86 48 86 F7 12 01 02 02 Content octet(s)

   hx xx xx xl   4-byte length of the immediately following exported
                 name blob, most significant octet first

hx xx xx xl 4-byte length of the immediately following exported name blob, most significant octet first

   pp qq ... zz  exported name blob of specified length,
                 bits and bytes specified in the
                 (Kerberos 5) GSS-API v2 mechanism spec

pp qq ... zz exported name blob of specified length, bits and bytes specified in the (Kerberos 5) GSS-API v2 mechanism spec

4: Name Type Definitions

4: Name Type Definitions

   This section includes definitions for name types and associated
   syntaxes which are defined in a mechanism-independent fashion at the
   GSS-API level rather than being defined in individual mechanism
   specifications.

This section includes definitions for name types and associated syntaxes which are defined in a mechanism-independent fashion at the GSS-API level rather than being defined in individual mechanism specifications.

4.1: Host-Based Service Name Form

4.1: Host-Based Service Name Form

   This name form shall be represented by the Object Identifier:

This name form shall be represented by the Object Identifier:

   {iso(1) member-body(2) United States(840) mit(113554) infosys(1)
   "gssapi(2) generic(1) service_name(4)}.

{iso(1) member-body(2) United States(840) mit(113554) infosys(1) "gssapi(2) generic(1) service_name(4)}.

   The recommended symbolic name for this type is
   "GSS_C_NT_HOSTBASED_SERVICE".

The recommended symbolic name for this type is "GSS_C_NT_HOSTBASED_SERVICE".

   For reasons of compatibility with existing implementations, it is
   recommended that this OID be used rather than the alternate value as
   included in [RFC-2078]:

For reasons of compatibility with existing implementations, it is recommended that this OID be used rather than the alternate value as included in [RFC-2078]:

   {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
   2(gss-host-based-services)}

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes), 2(gss-host-based-services)}

   While it is not recommended that this alternate value be emitted on
   output by GSS implementations, it is recommended that it be accepted
   on input as equivalent to the recommended value.

While it is not recommended that this alternate value be emitted on output by GSS implementations, it is recommended that it be accepted on input as equivalent to the recommended value.

Linn                        Standards Track                    [Page 85]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 85] RFC 2743 GSS-API January 2000

   This name type is used to represent services associated with host
   computers.  Support for this name form is recommended to mechanism
   designers in the interests of portability, but is not mandated by
   this specification. This name form is constructed using two elements,
   "service" and "hostname", as follows:

This name type is used to represent services associated with host computers. Support for this name form is recommended to mechanism designers in the interests of portability, but is not mandated by this specification. This name form is constructed using two elements, "service" and "hostname", as follows:

   service@hostname

service@hostname

   When a reference to a name of this type is resolved, the "hostname"
   may (as an example implementation strategy) be canonicalized by
   attempting a DNS lookup and using the fully-qualified domain name
   which is returned, or by using the "hostname" as provided if the DNS
   lookup fails.  The canonicalization operation also maps the host's
   name into lower-case characters.

When a reference to a name of this type is resolved, the "hostname" may (as an example implementation strategy) be canonicalized by attempting a DNS lookup and using the fully-qualified domain name which is returned, or by using the "hostname" as provided if the DNS lookup fails. The canonicalization operation also maps the host's name into lower-case characters.

   The "hostname" element may be omitted. If no "@" separator is
   included, the entire name is interpreted as the service specifier,
   with the "hostname" defaulted to the canonicalized name of the local
   host.

The "hostname" element may be omitted. If no "@" separator is included, the entire name is interpreted as the service specifier, with the "hostname" defaulted to the canonicalized name of the local host.

   Documents specifying means for GSS integration into a particular
   protocol should state either:

Documents specifying means for GSS integration into a particular protocol should state either:

      (a) that a specific IANA-registered name associated with that
      protocol shall be used for the "service" element (this admits, if
      needed, the possibility that a single name can be registered and
      shared among a related set of protocols), or

(a) that a specific IANA-registered name associated with that protocol shall be used for the "service" element (this admits, if needed, the possibility that a single name can be registered and shared among a related set of protocols), or

      (b) that the generic name "host" shall be used for the "service"
      element, or

(b) that the generic name "host" shall be used for the "service" element, or

      (c) that, for that protocol, fallback in specified order (a, then
      b) or (b, then a) shall be applied.

(c) that, for that protocol, fallback in specified order (a, then b) or (b, then a) shall be applied.

   IANA registration of specific names per (a) should be handled in
   accordance with the "Specification Required" assignment policy,
   defined by BCP 26, RFC 2434 as follows: "Values and their meaning
   must be documented in an RFC or other available reference, in
   sufficient detail so that interoperability between independent
   implementations is possible."

IANA registration of specific names per (a) should be handled in accordance with the "Specification Required" assignment policy, defined by BCP 26, RFC 2434 as follows: "Values and their meaning must be documented in an RFC or other available reference, in sufficient detail so that interoperability between independent implementations is possible."

4.2: User Name Form

4.2: User Name Form

   This name form shall be represented by the Object Identifier {iso(1)
   member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
   generic(1) user_name(1)}. The recommended mechanism-independent
   symbolic name for this type is "GSS_C_NT_USER_NAME". (Note: the same

This name form shall be represented by the Object Identifier {iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2) generic(1) user_name(1)}. The recommended mechanism-independent symbolic name for this type is "GSS_C_NT_USER_NAME". (Note: the same

Linn                        Standards Track                    [Page 86]

RFC 2743                        GSS-API                     January 2000

Linn Standards Track [Page 86] RFC 2743 GSS-API January 2000

   name form and OID is defined within the Kerberos V5 GSS-API
   mechanism, but the symbolic name recommended there begins with a
   "GSS_KRB5_NT_" prefix.)

name form and OID is defined within the Kerberos V5 GSS-API mechanism, but the symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)

   This name type is used to indicate a named user on a local system.
   Its syntax and interpretation may be OS-specific. This name form is
   constructed as:

This name type is used to indicate a named user on a local system. Its syntax and interpretation may be OS-specific. This name form is constructed as:

   username

username

4.3: Machine UID Form

4.3: Machine UID Form

   This name form shall be represented by the Object Identifier {iso(1)
   member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
   generic(1) machine_uid_name(2)}.  The recommended mechanism-
   independent symbolic name for this type is
   "GSS_C_NT_MACHINE_UID_NAME".  (Note: the same name form and OID is
   defined within the Kerberos V5 GSS-API mechanism, but the symbolic
   name recommended there begins with a "GSS_KRB5_NT_" prefix.)

この名前書式はiso(1)メンバーボディー(2)合衆国(840)mit(113554) infosys(1) gssapi(2)ジェネリック(1)マシン_uid_が(2)と命名するObject Identifierによって表されるものとします。 このタイプにおけるお勧めのメカニズム独立している英字名は「GSS_C_NT_マシン_UID_名」です。 (注意: 同じ名前のフォームとOIDはケルベロスV5 GSS-APIメカニズムの中で定義されますが、そこのお勧めの英字名は「GSS_KRB5_NT_」接頭語で始まります。)

   This name type is used to indicate a numeric user identifier
   corresponding to a user on a local system.  Its interpretation is
   OS-specific.  The gss_buffer_desc representing a name of this type
   should contain a locally-significant user ID, represented in host
   byte order.  The GSS_Import_name() operation resolves this uid into a
   username, which is then treated as the User Name Form.

この名前タイプは、ユーザにとって、ローカルシステムで対応する数値ユーザ識別子を示すのに使用されます。 解釈はOS特有です。 このタイプの名前を表すgss_バッファ_descはホストバイトオーダーで表された局所的に重要なユーザIDを含むはずです。 GSS_Import_名前()操作はこのuidにユーザ名に変えます。(次に、それは、User Name Formとして扱われます)。

4.4: String UID Form

4.4: ストリングUIDフォーム

   This name form shall be represented by the Object Identifier {iso(1)
   member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
   generic(1) string_uid_name(3)}.  The recommended symbolic name for
   this type is "GSS_C_NT_STRING_UID_NAME".  (Note: the same name form
   and OID is defined within the Kerberos V5 GSS-API mechanism, but the
   symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)

この名前書式はiso(1)メンバーボディー(2)合衆国(840)mit(113554) infosys(1) gssapi(2)ジェネリック(1)ストリング_uid_が(3)と命名するObject Identifierによって表されるものとします。 このタイプにおけるお勧めの英字名は「GSS_C_NT_ストリング_UID_名」です。 (注意: 同じ名前のフォームとOIDはケルベロスV5 GSS-APIメカニズムの中で定義されますが、そこのお勧めの英字名は「GSS_KRB5_NT_」接頭語で始まります。)

   This name type is used to indicate a string of digits representing
   the numeric user identifier of a user on a local system.  Its
   interpretation is OS-specific. This name type is similar to the
   Machine UID Form, except that the buffer contains a string
   representing the user ID.

この名前タイプは、ローカルシステムにユーザの数値ユーザ識別子を表す一連のケタを示すのに使用されます。 解釈はOS特有です。 この名前タイプはMachine UID Formと同様です、バッファがユーザIDを表すストリングを入れてあるのを除いて。

4.5: Anonymous Nametype

4.5: 匿名のNametype

   The following Object Identifier value is provided as a means to
   identify anonymous names, and can be compared against in order to
   determine, in a mechanism-independent fashion, whether a name refers
   to an anonymous principal:

名前が匿名の元本について言及するかどうかメカニズムから独立しているファッションで決定するために以下のObject Identifier値を匿名の名前を特定する手段として提供して、比較できます:

Linn                        Standards Track                    [Page 87]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[87ページ]。

   {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
   3(gss-anonymous-name)}

1(iso)、3(org)、6(dod)、1(インターネット)、5(セキュリティ)、6(nametypes)、3(gssの匿名の名)

   The recommended symbolic name corresponding to this definition is
   GSS_C_NT_ANONYMOUS.

この定義に対応するお勧めの英字名はGSS_C_NT_更生会です。

4.6: GSS_C_NO_OID

4.6: _GSS_Cいいえ_OID

   The recommended symbolic name GSS_C_NO_OID corresponds to a null
   input value instead of an actual object identifier.  Where specified,
   it indicates interpretation of an associated name based on a
   mechanism-specific default printable syntax.

お勧めの英字名GSS_C_いいえ_OIDは実際のオブジェクト識別子の代わりにヌル入力値に対応しています。 指定されているところで、それは、関連名前の解釈が構文を印刷可能なメカニズム特有のデフォルトに基礎づけたのを示します。

4.7: Exported Name Object

4.7: 名前オブジェクトであるとエクスポートされます。

   Name objects of the Mechanism-Independent Exported Name Object type,
   as defined in Section 3.2 of this document, will be identified with
   the following Object Identifier:

このドキュメントのセクション3.2で定義されるMechanismから独立しているExported Name Objectタイプの名前オブジェクトは以下のObject Identifierと同一視されるでしょう:

   {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
   4(gss-api-exported-name)}

1(iso)、3(org)、6(dod)、1(インターネット)、5(セキュリティ)、6(nametypes)、4(名前であるとエクスポートされたgss-api)

   The recommended symbolic name corresponding to this definition is
   GSS_C_NT_EXPORT_NAME.

この定義に対応するお勧めの英字名はGSS_C_NT_EXPORT_NAMEです。

4.8: GSS_C_NO_NAME

4.8: GSS_C_いいえ_名

   The recommended symbolic name GSS_C_NO_NAME indicates that no name is
   being passed within a particular value of a parameter used for the
   purpose of transferring names. Note: GSS_C_NO_NAME is not an actual
   name type, and is not represented by an OID; its acceptability in
   lieu of an actual name is confined to specific calls
   (GSS_Acquire_cred(), GSS_Add_cred(), and GSS_Init_sec_context()) with
   usages as identified within this specification.

名前が全くパラメタの特定の値の中で通過されていないNAMEが示すお勧めの英字名GSS_C_ノー_は移す目的に名前を使用しました。 以下に注意してください。 GSS_C_いいえ_NAMEは実際の名前タイプでなく、またOIDによって表されません。 閉じ込められた実際の名前の代わりに受容性は特有に呼びます。(この仕様の中の特定されるとしての用法があるGSS_Acquire_信用()、GSS_Add_信用()、およびGSS_Init_秒_文脈())。

5:  Mechanism-Specific Example Scenarios

5: メカニズム特有の例のシナリオ

   This section provides illustrative overviews of the use of various
   candidate mechanism types to support the GSS-API. These discussions
   are intended primarily for readers familiar with specific security
   technologies, demonstrating how GSS-API functions can be used and
   implemented by candidate underlying mechanisms. They should not be
   regarded as constrictive to implementations or as defining the only
   means through which GSS-API functions can be realized with a
   particular underlying technology, and do not demonstrate all GSS-API
   features with each technology.

このセクションは、GSS-APIをサポートするために様々な候補メカニズムタイプの使用の説明に役立った概要を提供します。 これらの議論は主として特定のセキュリティー技術に詳しい読者のために意図します、候補発症機序でどうGSS-API関数を使用して、実装することができるかを示して。それらを実装への圧縮か各技術でGSS-API関数が特定の基本的な技術で実現できて、すべてのGSS-APIの特徴を示すというわけではない唯一の手段を定義すると見なすべきではありません。

Linn                        Standards Track                    [Page 88]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[88ページ]。

5.1: Kerberos V5, single-TGT

5.1: ケルベロスV5、独身のTGT

   OS-specific login functions yield a TGT to the local realm Kerberos
   server; TGT is placed in a credentials structure for the client.
   Client calls GSS_Acquire_cred()  to acquire a cred_handle in order to
   reference the credentials for use in establishing security contexts.

OS特有のログイン機能はローカルの分野ケルベロスサーバにTGTを譲ります。 TGTはクライアントのために資格証明書構造に置かれます。 クライアントは、GSS_をセキュリティ文脈を確立することにおける使用のために資格証明書に参照をつけるために信用_ハンドルを入手するAcquire_信用()と呼びます。

   Client calls GSS_Init_sec_context().  If the requested service is
   located in a different realm, GSS_Init_sec_context()  gets the
   necessary TGT/key pairs needed to traverse the path from local to
   target realm; these data are placed in the owner's TGT cache. After
   any needed remote realm resolution, GSS_Init_sec_context() yields a
   service ticket to the requested service with a corresponding session
   key; these data are stored in conjunction with the context. GSS-API
   code sends KRB_TGS_REQ request(s) and receives KRB_TGS_REP
   response(s) (in the successful case) or KRB_ERROR.

クライアントは、GSS_Init_を秒_文脈()と呼びます。 要求されたサービスが異なった分野に位置しているなら、GSS_Init_秒_文脈()は分野を狙うためには地方から経路を横断するのが必要である必要なTGT/主要な組を得ます。 これらのデータは所有者のTGTキャッシュに置かれます。 どんな必要なリモート分野解決の後にも、GSS_Init_秒_文脈()は対応するセッションキーで要求されたサービスにサービスチケットを譲ります。 これらのデータは文脈に関連して保存されます。 GSS-APIコードは、_TGS_REQ要求をKRBに送って、KRB_TGS_REP応答(うまくいっている場合における)かKRB_ERRORを受けます。

   Assuming success, GSS_Init_sec_context()  builds a Kerberos-formatted
   KRB_AP_REQ message, and returns it in output_token.  The client sends
   the output_token to the service.

成功を仮定して、GSS_Init_秒_文脈()は、ケルベロスでフォーマットされたKRB_AP_REQメッセージを築き上げて、出力_トークンでそれを返します。 クライアントは出力_トークンをサービスに送ります。

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context(),  which verifies the authenticator, provides
   the service with the client's authenticated name, and returns an
   output_context_handle.

サービスは、GSS_Accept_秒_文脈()への入力_トークン議論がクライアントの認証された名前をサービスに提供するのに応じて容認されたトークンを通過して、出力_文脈_ハンドルを返します。文脈は固有識別文字について確かめます。

   Both parties now hold the session key associated with the service
   ticket, and can use this key in subsequent GSS_GetMIC(),
   GSS_VerifyMIC(),  GSS_Wrap(), and GSS_Unwrap() operations.

双方は、現在サービスチケットに関連しているセッションかぎを握って、その後のGSS_GetMIC()、GSS_VerifyMIC()、GSS_Wrap()、およびGSS_Unwrap()操作にこのキーを使用できます。

5.2: Kerberos V5, double-TGT

5.2: ケルベロスV5、二重TGT

   TGT acquisition as above.

上のTGT獲得。

   Note: To avoid unnecessary frequent invocations of error paths when
   implementing the GSS-API atop Kerberos V5, it seems appropriate to
   represent "single-TGT K-V5" and "double-TGT K-V5" with separate
   mech_types, and this discussion makes that assumption.

以下に注意してください。 ケルベロスV5の上でGSS-APIを実装するとき、誤り経路の不要な頻繁な実施を避けるために、表すのが適切に見える、「独身のTGT K-V5"、「別々のmech_と二重TGT K-V5"はタイプします、そして、この議論はそれを仮定にします」。

   Based on the (specified or defaulted) mech_type,
   GSS_Init_sec_context()  determines that the double-TGT protocol
   should be employed for the specified target. GSS_Init_sec_context()
   returns GSS_S_CONTINUE_NEEDED major_status, and its returned
   output_token contains a request to the service for the service's TGT.
   (If a service TGT with suitably long remaining lifetime already
   exists in a cache, it may be usable, obviating the need for this
   step.) The client passes the output_token to the service.  Note: this
   scenario illustrates a different use for the GSS_S_CONTINUE_NEEDED

(指定するか、またはデフォルトとします)mech_タイプに基づいて、GSS_Init_秒_文脈()は、二重TGTプロトコルが指定された目標に使われるべきであることを決定します。 GSS_Init_秒_文脈()はCONTINUE_が必要としたGSS_S_に主要な_状態を返します、そして、返された出力_トークンはサービスのTGTのためのサービスに要求を含んでいます。 (適当に長い残っている生涯があるサービスTGTがキャッシュで既に存在しているなら、使用可能であるかもしれません、このステップの必要性を取り除いて。) クライアントは出力_トークンをサービスに通過します。 以下に注意してください。 このシナリオはCONTINUE_が必要としたGSS_S_の異なった使用を例証します。

Linn                        Standards Track                    [Page 89]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[89ページ]。

   status return facility than for support of mutual authentication;
   note that both uses can coexist as successive operations within a
   single context establishment operation.

状態は互いの認証のサポートより施設を返します。 両方の用途が連続した操作としてただ一つの文脈設立操作の中に共存できることに注意してください。

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context(),  which recognizes it as a request for TGT.
   (Note that current Kerberos V5 defines no intra-protocol mechanism to
   represent such a request.) GSS_Accept_sec_context() returns
   GSS_S_CONTINUE_NEEDED major_status and provides the service's TGT in
   its output_token. The service sends the output_token to the client.

サービスは入力_トークン議論としてGSS_Accept_秒_文脈()に容認されたトークンを通過します。(それは、TGTを求めてそれが要求であると認めます)。 (現在のケルベロスV5がそのような要求を表すためにイントラプロトコルメカニズムを全く定義しないことに注意してください。) GSS_Accept_秒_文脈()は、CONTINUE_が必要としたGSS_S_に主要な_状態を返して、出力_トークンにサービスのTGTを提供します。 サービスは出力_トークンをクライアントに送ります。

   The client passes the received token as the input_token argument to a
   continuation of GSS_Init_sec_context(). GSS_Init_sec_context() caches
   the received service TGT and uses it as part of a service ticket
   request to the Kerberos authentication server, storing the returned
   service ticket and session key in conjunction with the context.
   GSS_Init_sec_context() builds a Kerberos-formatted authenticator, and
   returns it in output_token along with GSS_S_COMPLETE return
   major_status. The client sends the output_token to the service.

クライアントは入力_トークン議論としてGSS_Init_秒_文脈()の継続に容認されたトークンを通過します。 GSS_Init_秒_文脈()は、ケルベロス認証サーバに容認されたサービスTGTをキャッシュして、サービスチケット要求の一部としてそれを使用します、文脈に関連して主要な返されたサービスチケットとセッションを保存して。 GSS_Init_秒_文脈()は、ケルベロスでフォーマットされた固有識別文字を築き上げて、GSS_S_COMPLETEリターン少佐_状態に伴う出力_トークンでそれを返します。 クライアントは出力_トークンをサービスに送ります。

   Service passes the received token as the input_token argument to a
   continuation call to GSS_Accept_sec_context().
   GSS_Accept_sec_context()  verifies the authenticator, provides the
   service with the client's authenticated name, and returns
   major_status GSS_S_COMPLETE.

サービスは入力_トークン議論としてGSS_Accept_秒_文脈()への継続呼び出しに容認されたトークンを通過します。 GSS_Accept_秒_文脈()は、固有識別文字について確かめて、クライアントの認証された名前をサービスに提供して、_主要な_状態GSS_S COMPLETEを返します。

   GSS_GetMIC(),  GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap()  as
   above.

GSS_GetMIC()、GSS_VerifyMIC()、GSS_Wrap()、および上のGSS_Unwrap()。

5.3:  X.509 Authentication Framework

5.3: X.509認証フレームワーク

   This example illustrates use of the GSS-API in conjunction with
   public-key mechanisms, consistent with the X.509 Directory
   Authentication Framework.

この例はX.509ディレクトリAuthentication Frameworkと一致した公開鍵メカニズムに関連してGSS-APIの使用を例証します。

   The GSS_Acquire_cred() call establishes a credentials structure,
   making the client's private key accessible for use on behalf of the
   client.

クライアントの秘密鍵をクライアントを代表して使用にアクセスしやすくして、GSS_Acquire_信用()呼び出しは資格証明書構造を確立します。

   The client calls GSS_Init_sec_context(), which interrogates the
   Directory to acquire (and validate) a chain of public-key
   certificates, thereby collecting the public key of the service.  The
   certificate validation operation determines that suitable integrity
   checks were applied by trusted authorities and that those
   certificates have not expired. GSS_Init_sec_context() generates a
   secret key for use in per-message protection operations on the
   context, and enciphers that secret key under the service's public
   key.

クライアントが、GSS_Init_を取得するディレクトリについて査問する秒_文脈()と呼ぶ、(有効にする、)、その結果サービスの公開鍵を集める公開鍵証明書のチェーン。 証明書合法化操作は適当な保全チェックが信じられた当局によって適用されて、それらの証明書が呼吸が絶えていないことを決定します。 GSS_Init_秒_文脈()は、文脈で1メッセージあたりの保護操作における使用のための秘密鍵を生成して、サービスの公開鍵の下でその秘密鍵を暗号化します。

Linn                        Standards Track                    [Page 90]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[90ページ]。

   The enciphered secret key, along with an authenticator quantity
   signed with the client's private key, is included in the output_token
   from GSS_Init_sec_context().  The output_token also carries a
   certification path, consisting of a certificate chain leading from
   the service to the client; a variant approach would defer this path
   resolution to be performed by the service instead of being asserted
   by the client. The client application sends the output_token to the
   service.

暗号化された秘密鍵はクライアントの秘密鍵を契約された固有識別文字量と共に出力_トークンにGSS_Init_秒_文脈()から含まれています。 また、クライアントに対するサービスから導く証明書チェーンから成って、出力_トークンは証明経路を運びます。 異形アプローチはこのクライアントによって断言されることの代わりにサービスで実行されるべき経路解決を延期するでしょう。 クライアントアプリケーションは出力_トークンをサービスに送ります。

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context(). GSS_Accept_sec_context() validates the
   certification path, and as a result determines a certified binding
   between the client's distinguished name and the client's public key.
   Given that public key, GSS_Accept_sec_context() can process the
   input_token's authenticator quantity and verify that the client's
   private key was used to sign the input_token. At this point, the
   client is authenticated to the service. The service uses its private
   key to decipher the enciphered secret key provided to it for per-
   message protection operations on the context.

サービスは入力_トークン議論としてGSS_Accept_秒_文脈()に容認されたトークンを通過します。 GSS_Accept_秒_文脈()は、証明経路を有効にして、その結果クライアントの分類名とクライアントの公開鍵の間の公認された結合を決定します。 その公開鍵を考えて、GSS_Accept_秒_文脈()は、入力_トークンの固有識別文字量を処理して、クライアントの秘密鍵が入力_トークンに署名するのに使用されたことを確かめることができます。 ここに、クライアントはサービスに認証されます。 サービスが暗号化された秘密鍵がそれに提供した暗号文の解読に秘密鍵を使用する、-、文脈におけるメッセージ保護操作。

   The client calls GSS_GetMIC() or GSS_Wrap() on a data message, which
   causes per-message authentication, integrity, and (optional)
   confidentiality facilities to be applied to that message. The service
   uses the context's shared secret key to perform corresponding
   GSS_VerifyMIC()  and GSS_Unwrap() calls.

クライアントは、データメッセージにGSS_GetMIC()かGSS_をWrap()と呼びます。(それは、通報認証、保全、および(任意)の秘密性施設をそのメッセージに適用します)。 サービスは文脈の対応するGSS_VerifyMIC()を実行するために主要な共有秘密キーを使用します、そして、GSS_Unwrap()は呼びます。

6:  Security Considerations

6: セキュリティ問題

   This document specifies a service interface for security facilities
   and services; as such, security considerations are considered
   throughout the specification.  Nonetheless, it is appropriate to
   summarize certain specific points relevant to GSS-API implementors
   and calling applications.  Usage of the GSS-API interface does not in
   itself provide security services or assurance; instead, these
   attributes are dependent on the underlying mechanism(s) which support
   a GSS-API implementation.  Callers must be attentive to the requests
   made to GSS-API calls and to the status indicators returned by GSS-
   API, as these specify the security service characteristics which
   GSS-API will provide.  When the interprocess context transfer
   facility is used, appropriate local controls should be applied to
   constrain access to interprocess tokens and to the sensitive data
   which they contain.

このドキュメントはセキュリティ施設とサービスにサービスインタフェースを指定します。 そういうものとして、セキュリティ問題は仕様中で考えられます。 それにもかかわらず、GSS-API作成者と呼ぶアプリケーションに関連しているある一定の特定のポイントをまとめるのは適切です。 GSS-APIインタフェースの用法は本来セキュリティー・サービスか保証を提供しません。 代わりに、これらの属性はGSS-API実行をサポートする発症機序に依存しています。 訪問者はGSS-API呼び出しにされた要求と、そして、GSS APIによって返された自動運転表示灯に注意深いに違いありません、これらがGSS-APIが提供するセキュリティー・サービスの特性を指定するとき。 インタプロセス文脈中継設備が使用されているとき、適切な現場制御は、インタプロセストークンと、そして、極秘データへのそれらが含むアクセスを抑制するために適用されるべきです。

Linn                        Standards Track                    [Page 91]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[91ページ]。

7:  Related Activities

7: 関連活動

   In order to implement the GSS-API atop existing, emerging, and future
   security mechanisms:

存在、現れ、および将来のセキュリティー対策の上でGSS-APIを実装してください:

      object identifiers must be assigned to candidate GSS-API
      mechanisms and the name types which they support

候補GSS-APIメカニズムとタイプというそれらがサポートする名前にオブジェクト識別子を割り当てなければなりません。

      concrete data element formats and processing procedures must be
      defined for candidate mechanisms

候補メカニズムのために具体的なデータ要素形式と現像処理を定義しなければなりません。

   Calling applications must implement formatting conventions which will
   enable them to distinguish GSS-API tokens from other data carried in
   their application protocols.

アプリケーションと呼ぶのが彼らがそれらのアプリケーション・プロトコルで運ばれた他のデータとGSS-APIトークンを区別するのを可能にする形式コンベンションを実装しなければなりません。

   Concrete language bindings are required for the programming
   environments in which the GSS-API is to be employed, as [RFC-1509]
   defines for the C programming language and GSS-V1.  C Language
   bindings for GSS-V2 are defined in [RFC-2744].

具体的な言語結合がGSS-APIが採用していることになっているプログラミング環境に必要です、[RFC-1509]がCのためにプログラミング言語とGSS-V1を定義するとき。 GSS-V2のためのC言語結合は[RFC-2744]で定義されます。

Linn                        Standards Track                    [Page 92]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[92ページ]。

8:  Referenced Documents

8: 参照をつけられたドキュメント

   [ISO-7498-2]  International Standard ISO 7498-2-1988(E), Security
                 Architecture.

[ISO-7498-2]世界規格ISO7498-2-1988(E)、セキュリティー体系。

   [ISOIEC-8824] ISO/IEC 8824, "Specification of Abstract Syntax
                 Notation One (ASN.1)".

[ISOIEC-8824]ISO/IEC8824、「抽象構文記法1(ASN.1)の仕様。」

   [ISOIEC-8825] ISO/IEC 8825, "Specification of Basic Encoding Rules
                 for Abstract Syntax Notation One (ASN.1)".)

[ISO/IEC ISOIEC-8825]8825、「抽象構文記法1(ASN.1)のための基本的な符号化規則の仕様」。)

   [RFC-1507]:   Kaufman, C., "DASS: Distributed Authentication Security
                 Service", RFC 1507, September 1993.

[RFC-1507]: コーフマン、C.、「ダス:」 「分配された認証セキュリティー・サービス」、RFC1507、1993年9月。

   [RFC-1508]:   Linn, J., "Generic Security Service Application Program
                 Interface", RFC 1508, September 1993.

[RFC-1508]: リン、J.、「ジェネリックセキュリティー・サービス適用業務プログラム・インタフェース」、RFC1508、1993年9月。

   [RFC-1509]:   Wray, J., "Generic Security Service API: C-bindings",
                 RFC 1509, September 1993.

[RFC-1509]: レイ、J.、「ジェネリックセキュリティはAPIを調整します」。 「C-結合」、RFC1509、1993年9月。

   [RFC-1964]:   Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
                 RFC 1964, June 1996.

[RFC-1964]: リン、J.、「ケルベロスバージョン5GSS-APIメカニズム」、RFC1964、1996年6月。

   [RFC-2025]:   Adams, C., "The Simple Public-Key GSS-API Mechanism
                 (SPKM)", RFC 2025, October 1996.

[RFC-2025]: C.、「簡単な公開鍵GSS-APIメカニズム(SPKM)」、RFC2025 1996年10月のアダムス。

   [RFC-2078]:   Linn, J., "Generic Security Service Application Program
                 Interface, Version 2", RFC 2078, January 1997.

[RFC-2078]: リン、J.、「ジェネリックセキュリティー・サービス適用業務プログラム・インタフェース、バージョン2インチ、RFC2078、1997年1月。」

   [RFC-2203]:   Eisler, M., Chiu, A. and L. Ling, "RPCSEC_GSS Protocol
                 Specification", RFC 2203, September 1997.

[RFC-2203]: アイスラーとM.とチウとA.とL.の御柳もどき、「RPCSEC_GSSプロトコル仕様」、RFC2203、1997年9月。

   [RFC-2744]:   Wray, J., "Generic Security Service API Version 2 :
                 C-bindings", RFC 2744, January 2000.

[RFC-2744]: レイ、J.、「ジェネリックセキュリティはAPIバージョン2を供給します」。 「C-結合」、RFC2744、2000年1月。

Linn                        Standards Track                    [Page 93]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[93ページ]。

APPENDIX A

付録A

MECHANISM DESIGN CONSTRAINTS

メカニズム・デザイン規制

   The following constraints on GSS-API mechanism designs are adopted in
   response to observed caller protocol requirements, and adherence
   thereto is anticipated in subsequent descriptions of GSS-API
   mechanisms to be documented in standards-track Internet
   specifications.

GSS-APIメカニズム・デザインにおける以下の規制は観測された訪問者プロトコル要件に対応して採用されます、そして、それに加えて固守は、標準化過程インターネット仕様に記録されるためにGSS-APIメカニズムのその後の記述で予期されます。

   It is strongly recommended that mechanisms offering per-message
   protection services also offer at least one of the replay detection
   and sequencing services, as mechanisms offering neither of the latter
   will fail to satisfy recognized requirements of certain candidate
   caller protocols.

また、1メッセージあたりの保護サービスを提供するメカニズムが少なくとも再生検出と配列サービスの1つを提供することが強く勧められます、後者のどちらも提供しないメカニズムが、ある候補訪問者プロトコルの認識された要件を満たさないとき。

APPENDIX B

付録B

COMPATIBILITY WITH GSS-V1

GSS-V1との互換性

   It is the intent of this document to define an interface and
   procedures which preserve compatibility between GSS-V1 [RFC-1508]
   callers and GSS-V2 providers.  All calls defined in GSS-V1 are
   preserved, and it has been a goal that GSS-V1 callers should be able
   to operate atop GSS-V2 provider implementations.  Certain detailed
   changes, summarized in this section, have been made in order to
   resolve omissions identified in GSS-V1.

GSS-V1[RFC-1508]訪問者とGSS-V2プロバイダーとの互換性を保存するのは、このドキュメントがインタフェースと手順を定義する意図です。 GSS-V1で定義されたすべての呼び出しが保存されます、そして、それはGSS-V1訪問者がGSS-V2プロバイダー実装の上で操作できるべきである目標です。 このセクションでまとめられたある詳細な変更は、GSS-V1で特定された省略を決議するために行われました。

   The following GSS-V1 constructs, while supported within GSS-V2, are
   deprecated:

以下のGSS-V1構造物はGSS-V2の中でサポートされる間、推奨しないです:

      Names for per-message processing routines: GSS_Seal() deprecated
      in favor of GSS_Wrap(); GSS_Sign() deprecated in favor of
      GSS_GetMIC(); GSS_Unseal() deprecated in favor of GSS_Unwrap();
      GSS_Verify() deprecated in favor of GSS_VerifyMIC().

1メッセージ処理あたりのルーチンのための名前: GSS_Wrap()を支持して推奨しないGSS_Seal()。 GSS_GetMIC()を支持して推奨しないGSS_Sign()。 GSS_Unwrap()を支持して推奨しないGSS_Unseal()。 GSS_VerifyMIC()を支持して推奨しないGSS_Verify()。

      GSS_Delete_sec_context() facility for context_token usage,
      allowing mechanisms to signal context deletion, is retained for
      compatibility with GSS-V1.  For current usage, it is recommended
      that both peers to a context invoke GSS_Delete_sec_context()
      independently, passing a null output_context_token buffer to
      indicate that no context_token is required.  Implementations of
      GSS_Delete_sec_context() should delete relevant locally-stored
      context information.

メカニズムが文脈削除を示すのを許容して、文脈_トークン用法のためのGSS_Delete_秒_文脈()施設はGSS-V1との互換性のために保有されます。 現在の用法に、文脈への両方の同輩が独自にGSS_Delete_秒_文脈()を呼び出すのは、お勧めです、文脈_トークンは全く必要でないことを示すためにヌル出力_文脈_トークンバッファを渡して。 GSS_Delete_秒_文脈()の実装は関連局所的に保存された文脈情報を削除するべきです。

   This GSS-V2 specification adds the following calls which are not
   present in GSS-V1:

このGSS-V2仕様はGSS-V1で以下の存在していない呼び出しを加えます:

Linn                        Standards Track                    [Page 94]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[94ページ]。

      Credential management calls: GSS_Add_cred(),
      GSS_Inquire_cred_by_mech().

資格証明管理は電話をします: GSS_は、_信用()、GSS_が_mech()で_信用_について問い合わせると言い足します。

      Context-level calls: GSS_Inquire_context(), GSS_Wrap_size_limit(),
      GSS_Export_sec_context(), GSS_Import_sec_context().

文脈レベルは呼びます: GSS_は_文脈()について問い合わせて、GSS_包装_サイズ_限界()、GSS_輸出_秒_文脈()、GSS_は、_が秒_文脈()であるとインポートします。

      Per-message calls: No new calls.  Existing calls have been
      renamed.

メッセージは呼びます: 新しい呼び出しがありません。 既存の呼び出しは改名されました。

      Support calls: GSS_Create_empty_OID_set(),
      GSS_Add_OID_set_member(), GSS_Test_OID_set_member(),
      GSS_Inquire_names_for_mech(), GSS_Inquire_mechs_for_name(),
      GSS_Canonicalize_name(), GSS_Export_name(), GSS_Duplicate_name().

サポートは呼びます: GSS_は_空の_OID_セット()を創設して、__mech()、GSS_が_名前()のために_mechs_について問い合わせるので、GSS_は、_OID_セット_メンバー()、GSS_テスト_OID_セット_メンバー()、GSS_が_名前について問い合わせると言い足して、GSS_Canonicalize_名()、GSS_輸出_名()、GSS_は_名前()をコピーします。

   This GSS-V2 specification introduces three new facilities applicable
   to security contexts, indicated using the following context state
   values which are not present in GSS-V1:

このGSS-V2仕様はGSS-V1で以下の存在していない文脈州の値を使用することで示されたセキュリティ文脈に適切な3つの新しい設備を導入します:

      anon_state, set TRUE to indicate that a context's initiator is
      anonymous from the viewpoint of the target; Section 1.2.5 of this
      specification provides a summary description of the GSS-V2
      anonymity support facility, support and use of which is optional.

やがて、_は、TRUEにそれを示すように設定するように述べます。文脈の創始者は目標の観点から匿名です。 この.5のセクション1.2仕様がGSS-V2匿名サポート施設の概要記述を提供します。サポートとその使用は任意です。

      prot_ready_state, set TRUE to indicate that a context may be used
      for per-message protection before final completion of context
      establishment; Section 1.2.7 of this specification provides a
      summary description of the GSS-V2 facility enabling mechanisms to
      selectively permit per-message protection during context
      establishment, support and use of which is optional.

protの_の持ち合わせの_状態、文脈が文脈設立の竣工の前に1メッセージあたりの保護に使用されるかもしれないのを示すセットTRUE。 この.7のセクション1.2仕様がメカニズムがそれのサポートと使用が任意である文脈設立の間、選択的に1メッセージあたりの保護を可能にするのを可能にするGSS-V2施設の概要記述を提供します。

      trans_state, set TRUE to indicate that a context is transferable
      to another process using the GSS-V2 GSS_Export_sec_context()
      facility.

移-_状態、文脈がGSS-V2 GSS_Export_秒_文脈()施設を使用することで別のプロセスに移転可能であることを示すセットTRUE。

   These state values are represented (at the C bindings level) in
   positions within a bit vector which are unused in GSS-V1, and may be
   safely ignored by GSS-V1 callers.

これらの州の値は、しばらくベクトルの中のGSS-V1で未使用であることの位置に表されて(C結合レベルで)、GSS-V1訪問者によって安全に無視されるかもしれません。

   New conf_req_flag and integ_req_flag inputs are defined for
   GSS_Init_sec_context(), primarily to provide information to
   negotiating mechanisms.  This introduces a compatibility issue with
   GSS-V1 callers, discussed in section 2.2.1 of this specification.

新しいconf_req_旗とinteg_req_旗の入力はGSS_Init_秒_文脈()のために定義されて、主としてメカニズムこれを交渉するのに情報を提供するのはこの.1のセクション2.2仕様で議論したGSS-V1訪問者の互換性問題を紹介します。

Linn                        Standards Track                    [Page 95]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[95ページ]。

   Relative to GSS-V1, GSS-V2 provides additional guidance to GSS-API
   implementors in the following areas: implementation robustness,
   credential management, behavior in multi-mechanism configurations,
   naming support, and inclusion of optional sequencing services.  The
   token tagging facility as defined in GSS-V2, Section 3.1, is now
   described directly in terms of octets to facilitate interoperable
   implementation without general ASN.1 processing code; the
   corresponding ASN.1 syntax, included for descriptive purposes, is
   unchanged from that in GSS-V1. For use in conjunction with added
   naming support facilities, a new Exported Name Object construct is
   added.  Additional name types are introduced in Section 4.

GSS-V1に比例して、GSS-V2は以下の領域のGSS-API作成者に追加指導を提供します: 実装丈夫さ、資格証明管理、任意に配列サービスのマルチメカニズム構成、命名サポート、および包含における振舞い。 GSS-V2で定義されるトークンタグ付け施設(セクション3.1)は現在、一般的なASN.1処理コードなしで共同利用できる実装を容易にするために直接八重奏で説明されます。 描写的である目的のために含まれていた対応するASN.1構文はGSS-V1でそれから変わりがありません。 加えられた命名サポート施設に関連した使用において、新しいExported Name Object構造物は加えられます。 セクション4で追加名前タイプを導入します。

   This GSS-V2 specification adds the following major_status values
   which are not defined in GSS-V1:

このGSS-V2仕様はGSS-V1で定義されない以下の主要な_状態値を加えます:

        GSS_S_BAD_QOP                 unsupported QOP value
        GSS_S_UNAUTHORIZED            operation unauthorized
        GSS_S_UNAVAILABLE             operation unavailable
        GSS_S_DUPLICATE_ELEMENT       duplicate credential element
                                        requested
        GSS_S_NAME_NOT_MN                   name contains multi-mechanism
                                        elements
        GSS_S_GAP_TOKEN               skipped predecessor token(s)
                                        detected

サポートされないGSS_S QOP値のGSS_S_UNAUTHORIZED_BAD_QOP操作権限のない入手できないGSS_S GSS_S_DUPLICATE_ELEMENT写し資格証明書_UNAVAILABLE操作要素が、GSS_S_NAME_NOT_ミネソタ名がGAP_TOKENがスキップしたマルチメカニズム要素GSS_S_を含むよう要求した、検出された前任者トークン

   Of these added status codes, only two values are defined to be
   returnable by calls existing in GSS-V1: GSS_S_BAD_QOP (returnable by
   GSS_GetMIC() and GSS_Wrap()), and GSS_S_GAP_TOKEN (returnable by
   GSS_VerifyMIC() and GSS_Unwrap()).

これらの加えられたステータスコードでは、2つの値だけがGSS-V1に存在する呼び出しで返却可能になるように定義されます: _GSS_S悪い_QOP、(GSS_GetMIC()、GSS_包装())、およびGSS_S_ギャップ_トークンで返却可能である、(返却可能である、GSS_で、VerifyMIC()とGSS_は())を開けます。

   Additionally, GSS-V2 descriptions of certain calls present in GSS-V1
   have been updated to allow return of additional major_status values
   from the set as defined in GSS-V1: GSS_Inquire_cred() has
   GSS_S_DEFECTIVE_CREDENTIAL and GSS_S_CREDENTIALS_EXPIRED defined as
   returnable, GSS_Init_sec_context() has GSS_S_OLD_TOKEN,
   GSS_S_DUPLICATE_TOKEN, and GSS_S_BAD_MECH defined as returnable, and
   GSS_Accept_sec_context() has GSS_S_BAD_MECH defined as returnable.

さらに、GSS-V1で定義されるようにセットから追加主要な_状態値の復帰を許容するためにGSS-V1の現在のある呼び出しのGSS-V2記述をアップデートしました: GSS_Inquire_信用()には_GSS_S DEFECTIVE_CREDENTIALがあります、そして、CREDENTIALS_EXPIREDが返却可能です、GSS_Init_秒_文脈()には__GSS_S OLD_TOKEN、GSS_S DUPLICATE_TOKENがあって、GSS_S_BAD_MECHが返却可能、そして、GSS_Accept_秒_文脈()を定義したと定義したGSS_S_は_GSS_S BAD_MECHを返却可能であると定義させます。

APPENDIX C

付録C

CHANGES RELATIVE TO RFC-2078

RFC-2078に比例した変化

   This document incorporates a number of changes relative to RFC-2078,
   made primarily in response to implementation experience, for purposes
   of alignment with the GSS-V2 C language bindings document, and to add
   informative clarification.  This section summarizes technical changes
   incorporated.

このドキュメントは、GSS-V2C言語結合ドキュメントによる整列の目的、有益な明確化を加えるために主として実装経験に対応して作られたRFC-2078に比例して多くの変化を取り入れます。 このセクションは法人組織の技術的な変化をまとめます。

Linn                        Standards Track                    [Page 96]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[96ページ]。

   General:

一般:

      Clarified usage of object release routines, and incorporated
      statement that some may be omitted within certain operating
      environments.

オブジェクトリリースルーチンのはっきりさせられた用法、および或るものが、ある操作環境の中で省略されるかもしれないという法人組織の声明。

      Removed GSS_Release_OID, GSS_OID_to_str(), and GSS_Str_to_OID()
      routines.

GSS_Release_OID、_str()へのGSS_OID_、および_OID()ルーチンへのGSS_Str_を取り外しました。

      Clarified circumstances under which zero-length tokens may validly
      exist as inputs and outputs to/from GSS-API calls.

ゼロ・レングストークンが確実にそうするかもしれないはっきりさせられた事情は入力と出力としてGSS-API呼び出しからの/に存在しています。

      Added GSS_S_BAD_MIC status code as alias for GSS_S_BAD_SIG.

GSS_S_BAD_SIGのために同じくらい通称GSS_S_BAD_MICステータスコードを加えました。

      For GSS_Display_status(), deferred to language bindings the choice
      of whether to return multiple status values in parallel or via
      iteration, and added commentary deprecating return of
      GSS_S_CONTINUE_NEEDED.

GSS_Display_状態()に、選択を平行な複数の状態値を返すかどうか言語結合に延期したか、または繰り返し、および_GSS_S CONTINUE_の復帰を非難する加えられた論評で必要でした。

      Adapted and incorporated clarifying material on optional service
      support, delegation, and interprocess context transfer from C
      bindings document.

任意のサービスサポート、委譲、およびインタプロセス文脈の適合していて法人組織のはっきりさせることの材料はC結合ドキュメントから移動します。

      Added and updated references to related documents, and to current
      status of cited Kerberos mechanism OID.

関連するドキュメント、および引用されたケルベロスメカニズムOIDの現在の状態の参照を加えて、アップデートしました。

      Added general statement about GSS-API calls having no side effects
      visible at the GSS-API level.

GSS-APIに関する加えられた総論は、副作用がないのがGSS-APIレベルで目に見えると言います。

   Context-related (including per-message protection issues):

文脈関連(1メッセージあたりの保護問題を含んでいます):

      Clarified GSS_Delete_sec_context() usage for partially-established
      contexts.

部分的に確立した関係のためにGSS_Delete_秒_文脈()用法をはっきりさせました。

      Added clarification on GSS_Export_sec_context() and
      GSS_Import_sec_context() behavior and context usage following an
      export-import sequence.

輸出輸入順序に従って、GSS_Export_秒_文脈()、GSS_Import_秒_文脈()の振舞い、および文脈用法で明確化を加えました。

      Added informatory conf_req_flag, integ_req_flag inputs to
      GSS_Init_sec_context().  (Note: this facility introduces a
      backward incompatibility with GSS-V1 callers, discussed in Section
      2.2.1; this implication was recognized and accepted in working
      group discussion.)

informatory conf_req_旗、integ_req_旗の入力をGSS_Init_秒_文脈()に追加しました。 (注意: この施設はセクション2.2.1で議論したGSS-V1訪問者と共に後方の不一致を導入します; ワーキンググループ議論でこの含意を認識して、受け入れました。)

      Stated that GSS_S_FAILURE is to be returned if
      GSS_Init_sec_context() or GSS_Accept_sec_context() is passed the
      handle of a context which is already fully established.

既に完全に確立される文脈のハンドルがGSS_Init_秒_文脈()かGSS_Accept_秒_文脈()に渡されるならGSS_S_FAILUREが返されることになっていると述べました。

Linn                        Standards Track                    [Page 97]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[97ページ]。

      Re GSS_Inquire_sec_context(), stated that src_name and targ_name
      are not returned until GSS_S_COMPLETE status is reached; removed
      use of GSS_S_CONTEXT_EXPIRED status code (replacing with EXPIRED
      lifetime return value); stated requirement to retain inquirable
      data until context released by caller; added result value
      indicating whether or not context is fully open.

GSS_Inquire_秒_文脈()に関して、述べられていて、GSS_S_COMPLETE状態に達するまで、そのsrc_名とtarg_名は返されません。 GSS_S_CONTEXT_EXPIREDステータスコード(EXPIRED生涯リターン価値に取り替える)の取り除かれた使用。 訪問者によって発表された文脈まで照会可能データを保有するという要件を述べます。 文脈が完全に開いているかどうかを示す結果価値を高めました。

      Added discussion of interoperability conditions for mechanisms
      permitting optional support of QOPs. Removed reference to
      structured QOP elements in GSS_Verify_MIC().

QOPsの任意のサポートを可能にするメカニズムのための相互運用性状態の議論を加えました。 GSS_Verify_MIC()の構造化されたQOP要素の参照を取り除きました。

      Added discussion of use of GSS_S_DUPLICATE_TOKEN status to
      indicate reflected per-message tokens.

示すGSS_S_DUPLICATE_TOKEN状態で役に立つ加えられた議論は1メッセージあたりのトークンを反映しました。

      Clarified use of informational sequencing codes from per-message
      protection calls in conjunction with GSS_S_COMPLETE and
      GSS_S_FAILURE major_status returns, adjusting status code
      descriptions accordingly.

_GSS_S COMPLETEに関連した1メッセージあたりの保護呼び出しとGSS_S_のFAILUREの主要な_状態からの情報の配列コードのはっきりさせられた使用は戻ります、それに従って、ステータスコード記述を調整して。

      Added specific statements about impact of GSS_GetMIC() and
      GSS_Wrap() failures on context state information, and generalized
      existing statements about impact of processing failures on
      received per-message tokens.

GSS_GetMIC()の影響に関する加えられた特定の声明と文脈に関するGSS_Wrap()の故障は1メッセージあたりの容認されたトークンに情報、および処理失敗の影響に関する一般化された既存の声明を述べます。

      For GSS_Init_sec_context() and GSS_Accept_sec_context(), permitted
      returned mech_type to be valid before GSS_S_COMPLETE, recognizing
      that the value may change on successive continuation calls in the
      negotiated mechanism case.

_Init_秒_文脈()とGSS_Accept_秒_文脈()、受入れられた返されたmech_が_GSS_S COMPLETEの前で有効になるようにタイプするGSSに関しては、値が連続した継続のときに変化するかもしれないと認めるのが交渉されたメカニズムケースについて電話で報告します。

      Deleted GSS_S_CONTEXT_EXPIRED status from
      GSS_Import_sec_context().

GSS_Import_秒_文脈()からGSS_S_CONTEXT_EXPIRED状態を削除しました。

      Added conf_req_flag input to GSS_Wrap_size_limit().

GSS_Wrap_サイズ_限界()にconf_req_旗の入力を加えました。

      Stated requirement for mechanisms' support of per-message
      protection services to be usable concurrently in both directions
      on a context.

メカニズムの1メッセージあたりの保護サービスのサポートが同時に文脈で両方の方向に使用可能であるという述べられた要件。

   Credential-related:

信任状関連:

      For GSS_Acquire_cred() and GSS_Add_cred(), aligned with C bindings
      statement of likely non-support for INITIATE or BOTH credentials
      if input name is neither empty nor a name resulting from applying
      GSS_Inquire_cred() against the default credential.  Further,
      stated that an explicit name returned by GSS_Inquire_context()
      should also be accepted.  Added commentary about potentially
      time-variant results of default resolution and attendant
      implications.  Aligned with C bindings re behavior when

入力されるならINITIATEのありそうな非サポートかBOTH信任状のC結合声明に並べられたGSS_Acquire_信用()とGSS_Add_信用()のために名前は、デフォルト信任状に対してGSS_Inquire_信用()を適用するのから空でなくて、また名前の結果になることではありません。 さらに、述べられていて、また、明白な名前がGSS_Inquire_文脈()で戻ったのを受け入れるべきです。 デフォルト解決と付き添いの含意の潜在的に異形を調節している結果に関して論評を加えました。 C結合reの振舞いにいつを並べるか。

Linn                        Standards Track                    [Page 98]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[98ページ]。

      GSS_C_NO_NAME provided for desired_name. In GSS_Acquire_cred(),
      stated that NULL, rather than empty OID set, should be used for
      desired_mechs in order to request default mechanism set.

どんな_NAMEも備えなかったGSS_C_は_名前を望んでいました。 空のOIDセットよりむしろそのNULLは、デフォルトメカニズムがセットしたよう要求して、必要な_mechsにGSS_Acquire_信用()に使用されるべきであると述べました。

      Added GSS_S_CREDENTIALS_EXPIRED as returnable major_status for
      GSS_Acquire_cred(), GSS_Add_cred(), also specifying GSS_S_NO_CRED
      as appropriate return for temporary, user-fixable credential
      unavailability.  GSS_Acquire_cred() and GSS_Add_cred() are also to
      return GSS_S_NO_CRED if an authorization failure is encountered
      upon credential acquisition.

GSS_Acquire_信用()のための返却可能な主要な_状態、GSS_Add_信用()、GSS_S_いいえ_CREDが一時的で、ユーザ定着性の信任している使用不能のために適宜返す指定としても_GSS_S CREDENTIALS_EXPIREDを加えました。 GSS_Acquire_信用()とGSS_Add_信用()は認可失敗が信任している獲得のときに遭遇するならまた、_GSS_Sいいえ_CREDを返すことです。

      Removed GSS_S_CREDENTIALS_EXPIRED status return from per-message
      protection, GSS_Context_time(), and GSS_Inquire_context() calls.

1メッセージあたりの保護、GSS_Context_時間()、およびGSS_Inquire_文脈()からの取り除かれたGSS_S_CREDENTIALS_EXPIRED状態リターンは呼びます。

      For GSS_Add_cred(), aligned with C bindings' description of
      behavior when addition of elements to the default credential is
      requested.

デフォルト信任状への要素の追加が要求されているときC結合の振舞いの記述に並べられたGSS_Add_信用()のために。

      Upgraded recommended default credential resolution algorithm to
      status of requirement for initiator credentials.

お勧めのデフォルト信任状解決アルゴリズムを創始者信任状のための要件の状態にアップグレードさせました。

      For GSS_Release_cred(), GSS_Inquire_cred(), and
      GSS_Inquire_cred_by_mech(), clarified behavior for input
      GSS_C_NO_CREDENTIAL.

GSS_Release_信用()(GSS_Inquire_信用()、および_mech()によるGSS_Inquire_信用_)が_入力GSS_Cいいえ_CREDENTIALのために振舞いをはっきりさせたので。

   Name-related:

名前関連:

      Aligned GSS_Inquire_mechs_for_name() description with C bindings.

_名前()記述のためにGSS_Inquire_mechs_をC結合に並べました。

      Removed GSS_S_BAD_NAMETYPE status return from
      GSS_Duplicate_name(), GSS_Display_name(); constrained its
      applicability for GSS_Compare_name().

GSS_Duplicate_名()、GSS_Display_名()からの取り除かれたGSS_S_BAD_NAMETYPE状態リターン。 GSS_Compare_名()のために適用性を抑制しました。

      Aligned with C bindings statement re GSS_Import_name() behavior
      with GSS_C_NO_OID input name type, and stated that GSS-V2
      mechanism specifications are to define processing procedures
      applicable to their mechanisms.  Also clarified GSS_C_NO_OID usage
      with GSS_Display_name().

_GSS_Cと共にC結合声明re GSS_Import_の名前()振舞いに並べられて、いいえ_OIDは、名前タイプを入力して、GSS-V2メカニズム仕様がそれらのメカニズムに適切な現像処理を定義することであると述べました。GSS_Display_があるまた、はっきりさせられたGSS_C_いいえ_OID用法は()を命名します。

      Downgraded reference to name canonicalization via DNS lookup to an
      example.

DNSを通したcanonicalizationを例へのルックアップと命名するために参照を格下げしました。

      For GSS_Canonicalize_name(), stated that neither negotiated
      mechanisms nor the default mechanism are supported input
      mech_types for this operation, and specified GSS_S_BAD_MECH status
      to be returned in this case.  Clarified that the
      GSS_Canonicalize_name() operation is non-destructive to its input
      name.

GSS_Canonicalize_名()のために、述べられていて、交渉されたメカニズムもデフォルトメカニズムもサポートされないのがこの操作、およびこの場合返される指定されたGSS_S_BAD_MECH状態にmech_タイプを入力しました。 はっきりさせられて、GSS_Canonicalize_が()を操作と命名するのは、入力名に非破壊です。

Linn                        Standards Track                    [Page 99]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[99ページ]。

      Clarified semantics of GSS_C_NT_USER_NAME name type.

GSS_C_NT_USER_NAME名前タイプの意味論をはっきりさせました。

      Added descriptions of additional name types.  Also added
      discussion of GSS_C_NO_NAME and its constrained usage with
      specific GSS calls.

追加名前タイプの記述を加えました。 _GSS_Cいいえ_NAMEのまた、加えられた議論と特定のGSSがあるその制約つき用法は呼びます。

      Adapted and incorporated C bindings discussion about name
      comparisons with exported name objects.

輸出された名前物との名前比較についての適合していて法人組織のC結合議論。

      Added recommendation to mechanism designers for support of host-
      based service name type, deferring any requirement statement to
      individual mechanism specifications.  Added discussion of host-
      based service's service name element and proposed approach for
      IANA registration policy therefor.

ホストのサポートのためのメカニズムデザイナーへの加えられた推薦はサービス名タイプを基礎づけました、独特のメカニズム仕様へのどんな要件声明も延期して。 ホストの加えられた議論は、そのためにサービスのサービス名要素を基礎づけて、IANA登録方針のためのアプローチを提案しました。

      Clarified byte ordering within exported name object.  Stated that
      GSS_S_BAD_MECH is to be returned if, in the course of attempted
      import of an exported name object, the name object's enclosed
      mechanism type is unrecognized or unsupported.

はっきりさせられたバイト順は名前物を中に輸出しました。 名前物の同封のメカニズムタイプが輸出された名前物の試みられた輸入の間に認識されていないか、またはサポートされないなら、GSS_S_BAD_MECHが返されることになっていると述べました。

      Stated that mechanisms may optionally accept GSS_C_NO_NAME as an
      input target name to GSS_Init_sec_context(), with comment that
      such support is unlikely within mechanisms predating GSS-V2,
      Update 1.

そのようなサポートがGSS-V2、Update1より前に起こりながらメカニズムの中でありそうもないというコメントでメカニズムが入力目標名として任意にGSS_Init_秒_文脈()にGSS_C_いいえ_NAMEを認めるかもしれないと述べました。

AUTHOR'S ADDRESS

作者のアドレス

   John Linn
   RSA Laboratories
   20 Crosby Drive
   Bedford, MA  01730 USA

ジョンリンRSA研究所20のクロズビー・Drive MA01730ベッドフォード(米国)

   Phone: +1 781.687.7817
   EMail: jlinn@rsasecurity.com

以下に電話をしてください。 +1 781.687 .7817 メール: jlinn@rsasecurity.com

Linn                        Standards Track                   [Page 100]

RFC 2743                        GSS-API                     January 2000

リンStandardsはGSS-API2000年1月にRFC2743を追跡します[100ページ]。

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Copyright(C)インターネット協会(2000)。 All rights reserved。

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部広げられた実現を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsの過程で定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

上に承諾された限られた許容は、永久であり、インターネット協会、後継者または案配によって取り消されないでしょう。

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Linn                        Standards Track                   [Page 101]

リン標準化過程[101ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

ROUND関数 まるめる

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る