RFC3133 日本語訳

3133 Terminology for Frame Relay Benchmarking. J. Dunn, C. Martin. June 2001. (Format: TXT=44182 bytes) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                            J. Dunn
Request for Comments: 3133                                     C. Martin
Category: Informational                                        ANC, Inc.
                                                               June 2001

コメントを求めるワーキンググループJ.ダン要求をネットワークでつないでください: 3133年のC.マーチンカテゴリ: 情報のANC Inc.2001年6月

                Terminology for Frame Relay Benchmarking

フレームリレーベンチマーキングのための用語

Status of this Memo

このMemoの状態

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

このメモはインターネットコミュニティのための情報を提供します。 それはどんな種類のインターネット標準も指定しません。 このメモの分配は無制限です。

Copyright Notice

版権情報

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Copyright(C)インターネット協会(2001)。 All rights reserved。

Abstract

要約

   This memo discusses and defines terms associated with performance
   benchmarking tests and the results of these tests in the context of
   frame relay switching devices.

このメモは、フレームリレー切換装置の文脈の性能ベンチマーキングテストとこれらのテストの結果に関連している用語について議論して、定義します。

I. Background

I. バックグラウンド

1. Introduction

1. 序論

   This document provides terminology for Frame Relay switching devices.
   It extends terminology already defined for benchmarking network
   interconnect devices in RFCs 1242, 1944 and 2285.  Although some of
   the definitions in this memo may be applicable to a broader group of
   network interconnect devices, the primary focus of the terminology in
   this memo is on Frame Relay Signaling.

このドキュメントはFrame Relay切換装置に用語を供給します。 それはRFCs1242、1944年と2285年にベンチマーキングネットワーク内部連絡デバイスのために既に定義された用語を広げます。 このメモとの定義のいくつかがネットワーク内部連絡デバイスの、より広いグループに適切であるかもしれませんが、このメモによる用語の焦点がFrame Relay Signalingにあります。

   This memo contains two major sections: Background and Definitions.
   The background section provides the reader with an overview of the
   technology and IETF formalisms.  The definitions section is split
   into two sub-sections.  The formal definitions sub-section is
   provided as a courtesy to the reader.  The measurement definitions
   sub-section contains performance metrics with inherent units.

このメモは2つの主要なセクションを含みます: バックグラウンドと定義。 バックグラウンド部は技術とIETF形式の概要を読者に提供します。定義部は2つの小区分に分割されます。 礼儀として公式の定義小区分を読者に提供します。 測定定義小区分は固有のユニットがある性能測定基準を含んでいます。

   The BMWG produces two major classes of documents: Benchmarking
   Terminology documents and Benchmarking Methodology documents.  The
   Terminology documents present the benchmarks and other related terms.
   The Methodology documents define the procedures required to collect
   the benchmarks cited in the corresponding Terminology documents.

BMWGは2つの主要なクラスのドキュメントを製作します: ベンチマーキングTerminologyドキュメントとBenchmarking Methodologyドキュメント。 Terminologyドキュメントはベンチマークと他の関連する用語を提示します。Methodologyドキュメントは対応するTerminologyドキュメントで引用されたベンチマークを集めるのに必要である手順を定義します。

Dunn & Martin                Informational                      [Page 1]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[1ページ]のRFC3133Terminology

   For the purposes of computing several of the metrics, certain textual
   conventions are required.  Specifically:

いくつかの測定基準を計算する目的のために、ある原文のコンベンションが必要です。 明確に:

   1) The notation sum {i=1 to N} A_i denotes: the summation of N
   instances of the observable A.  For example, the set of observations
   {1,2,3,4,5} would yield the result 15.

1) 記法はNへのi=1をまとめます。_私は以下を指示します。 観察可能なA.Forの例のNインスタンスの足し算、観測1、2、3、4、5のセットは結果15をもたらすでしょう。

   2) The notation max {I=1 to N} A_i and min {I=1 to N} A_i denotes:
   the maximum or minimum of the observable A over N instances.  For
   example, given the set of observations {1,2,3,4,5}, max {i=1 to 5} =
   5 and min {I=1 to 5} = 1.

2) 記法はNへのI=1に_iとNへの分I=1最大限にします。_私は以下を指示します。 Nインスタンスの上の観察可能なAの最大か最小限。 例えば、1、2、3、4、5を観測のセットに考えて、5へのi=1=5と5への分I=1=1に最大限にしてください。

   The terms defined in this memo will be used in addition to terms
   defined in RFCs 1242, 1944 and 2285.  This memo is a product of the
   Benchmarking Methodology Working Group (BMWG) of the Internet
   Engineering Task Force(IETF).

このメモで定義された用語はRFCs1242、1944年と2285年に定義された用語に加えて使用されるでしょう。 このメモはインターネット・エンジニアリング・タスク・フォース(IETF)のBenchmarking Methodology作業部会(BMWG)の製品です。

2. Existing Definitions

2. 既存の定義

   RFC 1242, "Benchmarking Terminology for Network Interconnect
   Devices", should be consulted before attempting to make use of this
   document.  RFC 1944, "Benchmarking Methodology for Network
   Interconnect Devices", contains discussions of a number of terms
   relevant to the benchmarking of switching devices and should also be
   consulted.  RFC 2285, "Benchmarking Terminology for LAN Switching
   Devices", contains a number of terms pertaining to traffic
   distributions and datagram interarrival.  For the sake of clarity and
   continuity this RFC adopts the template for definitions set out in
   Section 2 of RFC 1242.

「ネットワーク内部連絡デバイスのためのベンチマーキング用語」というRFC1242はこのドキュメントを利用するのを試みる前に、相談されるべきです。 「ネットワーク内部連絡デバイスのためのベンチマーキング方法論」というRFC1944は切換装置のベンチマーキングに関連している項数の議論を含んでいて、また、相談されるべきです。 「LAN切換装置のためのベンチマーキング用語」というRFC2285は、トラフィック配とデータグラムinterarrivalに関しながら、多くの用語を含んでいます。 明快と連続のために、このRFCはRFC1242のセクション2を始められた定義のためのテンプレートを採用します。

II. Definitions

II。 定義

   The definitions presented in this section have been divided into two
   groups.  The first group is formal definitions, which are required in
   the definitions of the performance metrics but are not themselves
   strictly metrics.  These definitions are subsumed from other work
   done in other working groups both inside and outside the IETF.  They
   are provided as a courtesy to the reader.

このセクションに示された定義は2つのグループに分割されました。 最初のグループは公式の定義です、性能測定基準の定義で必要ですが、厳密に自分たちでないもの。測定基準。 これらの定義はIETFの中と、そして、IETFの外で他のワーキンググループで行われた他の仕事から包括されています。 礼儀としてそれらを読者に提供します。

Dunn & Martin                Informational                      [Page 2]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[2ページ]のRFC3133Terminology

1. Formal Definitions

1. 公式の定義

1.1. Definition Format (from RFC1242)

1.1. 定義形式(RFC1242からの)

   Term to be defined.

定義されるべき用語。

   Definition: The specific definition for the term.

定義: 用語のための特定の定義。

   Discussion: A brief discussion of the term, its application and any
   restrictions on measurement procedures.

議論: 測定手順における用語の簡潔な議論、アプリケーション、およびどんな制限。

   Specification:  The working group and document in which the term is
   specified.  Listed in the references.

仕様: 用語が指定されるワーキンググループとドキュメント。 参照では、記載されています。

1.2. Frame Relay Related Definitions

1.2. フレームリレーは定義を関係づけました。

1.2.1. Access Channel

1.2.1. アクセスチャンネル

   Definition: Access channel refers to the user access channel across
   which frame relay data travels.  Within a given DS-3, T1 or E1
   physical line, a channel can be one of the following, depending of
   how the line is configured.  Possible line configurations are:

定義: アクセスチャンネルはフレームリレーデータが移動するユーザアクセスチャンネルに言及します。 与えられたDS-3、T1または1Eの物理行の中では、チャンネルは以下のひとりであることができます、系列がどう構成されるかがよって。 可能なライン構成は以下の通りです。

   A. Unchannelized: The entire DS-3/T1/E1 line is considered a channel,
   where:

A. Unchannelizedしました: 1全体のDS-3/T1/Eの系列がチャンネル、どこであるかと考えられます:

   The DS-3 line operates at speeds of 45 Mbps and is a single channel.
   The T1 line operates at speeds of 1.536 Mbps and is a single channel
   consisting of 24 T1 time slots.  The E1 line operates at speeds of
   1.984 Mbps and is a single channel consisting of 30 DS0 time slots.

DS-3系列は、45Mbpsの速度で作動して、単独のチャンネルです。 T1系列は、1.536Mbpsの速度で作動して、24のT1の時間帯から成る単独のチャンネルです。 1Eの系列が、1.984Mbpsの速度で作動して、30のDS0の時間帯から成る単独のチャンネルです。

   B. Channelized: The channel is any one of N time slots within a given
   line, where:

B. Channelizedしました: チャンネルは与えられた系列、どこの中のN時間帯のいずれでもあるか:

   The T1 line consists of any one or more channels.  Each channel is
   any one of 24 time slots.  The T1 line operates at speeds in
   multiples of 56/64 Kbps to 1.536 Mbps, with aggregate speed not
   exceeding 1.536 Mbps.  The E1 line consists of one or more channels.
   Each channel is any one of 31 time slots.  The E1 line operates at
   speeds in multiples of 64 Kbps to 1.984 Mbps, with aggregate speed
   not exceeding 1.984 Mbps.

T1系列がいくらか1つから成るか、または以上は精神を集中します。 各チャンネルは24の時間帯のいずれでもあります。 T1系列は56/64Kbpsの倍数における速度で1.536Mbpsまで作動します、集合速度が1.536Mbpsを超えていない状態で。 1Eの系列が1個以上のチャンネルから成ります。 各チャンネルは31の時間帯のいずれでもあります。 1Eの系列が64Kbpsの倍数における速度で1.984Mbpsまで作動します、集合速度が1.984Mbpsを超えていない状態で。

   C. Fractional: The T1/E1 channel is one of the following groupings of
   consecutively or non-consecutively assigned time slots:

C. 断片的: 1T1/Eのチャンネルが連続してか非連続して割り当てられた時間帯の以下の組分けの1つです:

   N DS0 time slots (NX56/64Kbps where N = 1 to 24 DS0 time slots per
   FT1 channel).

N DS0の時間帯(Nが1〜24DS0と等しい1FT1あたりの時間帯がチャネルを開設するNX56/64Kbps)。

Dunn & Martin                Informational                      [Page 3]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[3ページ]のRFC3133Terminology

   N E1 time slots (NX64Kbps, where N = 1 to 30 DS0 time slots per E1
   channel).

1EのN時間帯(Nが1Eのチャンネルあたり1〜30のDS0の時間帯と等しいところのNX64Kbps)。

   Discussion: Access channels specify the physical layer interface
   speed of a DTE or DCE.  In the case of a DTE, this may not correspond
   to either the CIR or EIR.  Specifically, based on the service level
   agreement in place, the user may not be able to access the entire
   bandwidth of the access channel.

議論: アクセスチャンネルはDTEかDCEの物理的な層のインタフェース速度を指定します。 DTEの場合では、これはCIRかEIRのどちらかに対応しないかもしれません。 明確に、適所にあるサービスレベル協定に基づいてユーザはアクセスチャンネルの全体の帯域幅にアクセスできないかもしれません。

   Specification: FRF

仕様: FRF

1.2.2. Access Rate (AR)

1.2.2. アクセス率(アルゴン)

   Definition: The data rate of the user access channel.  The speed of
   the access channel determines how rapidly (maximum rate) the end user
   can inject data into a frame relay network.

定義: ユーザアクセスチャンネルのデータ信号速度。 アクセスチャンネルの速度は、エンドユーザがどれくらい急速(最高率)にフレームリレーネットワークにデータを注ぐことができるかを決定します。

   Discussion: See Access Channel.

議論: アクセスチャンネルを見てください。

   Specification: FRF

仕様: FRF

1.2.3. Backward Explicit Congestion Notification (BECN)

1.2.3. 逆方向明示的輻輳通知(BECN)

   Definition: BECN is a bit in the frame relay header.  The bit is set
   by a congested network node in any frame that is traveling in the
   reverse direction of the congestion.

定義: BECNはフレームリレーヘッダーでしばらくです。 ビットは混雑の反対の方向に移動しているどんなフレームの鬱血したネットワーク・ノードによっても設定されます。

   Discussion: When a DTE receives frames with the BECN bit asserted, it
   should begin congestion avoidance procedures.  Since the BECN frames
   are traveling in the opposite direction as the congested traffic, the
   DTE will be the sender.  The frame relay layer may communicate the
   possibility of congestion to higher layers, which have inherent
   congestion avoidance procedures, such as TCP.  See Frame Relay Frame.

議論: BECNビットが断言されている状態でDTEがフレーム搬入するとき、それは輻輳回避手順を始めるべきです。 BECNフレームが混雑しているトラフィックとして逆方向に移動しているので、DTEは送付者になるでしょう。 フレームリレー層は混雑の可能性をより高い層に伝えるかもしれません、TCPなどのように。(層には、固有の輻輳回避手順があります)。 フレームリレーフレームを見てください。

   Specification: FRF

仕様: FRF

1.2.4. Burst Excess(Be)

1.2.4. 過剰を押し破いてください。(あります)

   Definition: The maximum amount of uncommitted data (in bits) in
   excess of Committed Burst Size (Bc) that a frame relay network can
   attempt to deliver during a Committed Rate Measurement Interval (Tc).
   This data (Be) generally is delivered with a lower probability than
   Bc.  The network treats Be data as discard eligible.

定義: フレームリレーネットワークがCommitted Rate Measurement Interval(Tc)の間、提供するのを試みることができるCommitted Burst Size(Bc)を超えた最大の量の未遂のデータ(ビットの)。 一般に、このデータ(ある)はBcより低確率で提供されます。 ネットワークはBeデータを廃棄適性として扱います。

   Discussion: See also Committed burst Size (Bc), Committed Rate
   Measurement Interval (Tc) and Discard Eligible (De).

議論: また、CommittedがSize(Bc)、Committed Rate Measurement Interval(Tc)、およびDiscard Eligible(De)を押し破いたのを確実にしてください。

   Specification: FRF

仕様: FRF

Dunn & Martin                Informational                      [Page 4]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[4ページ]のRFC3133Terminology

1.2.5. Committed Burst Size (Bc)

1.2.5. 遂行された放出量(Bc)

   Definition: The maximum amount of data (in bits) that the network
   agrees to transfer, under normal conditions, during a time interval
   Tc.

定義: ネットワークが正常な状況では時間間隔Tcの間、移すのに同意する最大のデータ量(ビットの)。

   Discussion: See also Excess Burst Size (Be) and Committed Rate
   Measurement Interval (Tc).

議論: また、Excess Burst Size(ある)とCommitted Rate Measurement Interval(Tc)を見てください。

   Specification: FRF

仕様: FRF

1.2.6. Committed Information Rate (CIR)

1.2.6. 認定情報速度(コンパス座)

   Definition: CIR is the transport speed the frame relay network will
   maintain between service locations when data is presented.

定義: データが提示されるとき、CIRはフレームリレーネットワークがサービス位置の間で維持する輸送速度です。

   Discussion: CIR specifies the guaranteed data rate between two frame
   relay terminal connected by a frame relay network.  Data presented to
   the network in excess of this data rate and below the Excess
   Information Rate (EIR) will be marked as Discard Eligible and may be
   dropped.

議論: CIRはフレームリレーネットワークによってつなげられた2フレームリレー端末の間の保証されたデータ信号速度を指定します。 このデータ信号速度を超えたネットワークとExcess情報Rate(EIR)の下で提示されたデータは、Discard Eligibleとしてマークされて、下げられるかもしれません。

   Specification: FRF

仕様: FRF

1.2.7. Committed Rate Measurement Interval (Tc)

1.2.7. 遂行されたレート測定間隔(Tc)

   Definition: The time interval during which the user can send only
   Bc-committed amount of data and Be excess amount of data.  In
   general, the duration of Tc is proportional to the "burstiness" of
   the traffic.  Tc is computed (from the subscription parameters of CIR
   and Bc) as Tc = Bc/CIR.  Tc is not a periodic time interval.
   Instead, it is used only to measure incoming data, during which it
   acts like a sliding window.  Incoming data triggers the Tc interval,
   which continues until it completes its computed duration.

定義: ユーザがBcによって遂行されたデータ量とBeの余分なデータ量しか送ることができない時間間隔。 一般に、Tcの持続時間はトラフィックの"burstiness"に比例しています。 TcがBc/CIRと等しいときに、Tcは計算されます(CIRとBcの購読パラメタから)。 Tcは周期的な時間間隔ではありません。 代わりに、それは使用されますが、受信データを測定します。(それは受信データの間、引窓のように行動します)。 受信データはTc間隔の引き金となります。(計算された持続時間を完成するまで、それは、続きます)。

   Discussion: See also Committed Information Rate (CIR) and committed
   Burst Size (Bc).

議論: また、Committed情報Rate(CIR)と遂行されたBurst Size(Bc)を見てください。

   Specification: FRF

仕様: FRF

1.2.8. Cyclic Redundancy Check (CRC)

1.2.8. 周期冗長検査(CRC)

   Definition: A computational means to ensure the accuracy of frames
   transmitted between devices in a frame relay network.  The
   mathematical function is computed, before the frame is transmitted,

定義: フレームの精度を確実にするコンピュータの手段はデバイスの間をフレームリレーネットワークで伝わりました。 フレームが伝えられる前に数学の機能は計算されます。

Dunn & Martin                Informational                      [Page 5]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[5ページ]のRFC3133Terminology

   at the originating device.  Its numerical value is computed based on
   the content of the frame.  This value is compared with a recomputed
   value of the function at the destination device.  See also Frame
   Check Sequence (FCS).

起因するデバイスで。 数値はフレームの内容に基づいて計算されます。 この値は目的地デバイスで機能の再計算された値と比較されます。 また、Frame Check Sequence(FCS)を見てください。

   Discussion: CRC is not a measurement, but it is possible to measure
   the amount of time to perform a CRC on a string of bits.  This
   measurement will not be addressed in this document.

議論: CRCは測定ではありませんが、一連のビットにCRCを実行する時間を測定するのは可能です。 この測定は本書では扱われないでしょう。

   Specification: FRF

仕様: FRF

1.2.9. Data Communications Equipment (DCE)

1.2.9. データ通信装置(DCE)

   Definition: Term defined by both frame relay and X.25 committees,
   that applies to switching equipment and is distinguished from the
   devices that attach to the network (DTE).

定義: 用語がフレームリレーとX.25委員会の両方によって定義されて、それは、スイッチ装置に適用して、付くデバイスからネットワーク(DTE)まで区別されます。

   Discussion: Also see DTE.

議論: また、DTEを見てください。

   Specification: FRF

仕様: FRF

1.2.10. Data Link Connection Identifier (DLCI)

1.2.10. データ・リンク接続識別子(DLCI)

   Definition: A unique number assigned to a PVC end point in a frame
   relay network.  Identifies a particular PVC endpoint within a user's
   access channel in a frame relay network and has local significance
   only to that channel.

定義: フレームリレーネットワークでPVCエンドポイントに割り当てられたユニークな数。 ユーザのアクセスチャンネルの中でフレームリレーネットワークで特定のPVC終点を特定して、そのチャンネルだけにローカルの意味を持っています。

   Discussion: None.

議論: なし。

   Specification: FRF

仕様: FRF

1.2.11. Data Terminal Equipment (DTE)

1.2.11. データ端末装置(DTE)

   Definition: Any network equipment terminating a network connection
   and is attached to the network.  This is distinguished from Data
   Communications Equipment (DCE), which provides switching and
   connectivity within the network.

定義: いずれも、ネットワーク接続を終える設備をネットワークでつないで、ネットワークに付けられています。 これはData Communications Equipment(DCE)と区別されます。(Data Communications Equipmentはネットワークの中で切り換えと接続性を提供します)。

   Discussion: See also DCE.

議論: また、DCEを見てください。

   Specification: FRF

仕様: FRF

Dunn & Martin                Informational                      [Page 6]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[6ページ]のRFC3133Terminology

1.2.12. Discard Eligible (DE)

1.2.12. 廃棄適性(DE)

   Definition: This is a bit in the frame relay header that provides a
   two level priority indicator, used to bias discard frames in the
   event of congestion toward lower priority frames.  Similar to the CLP
   bit in ATM.

定義: これによる少し、フレームリレーヘッダーに、それは2の平らな優先権インディケータを供給します、破棄が混雑の場合、低優先度フレームに向かって縁どるバイアスに使用されているということです。 ATMでCLPビットと同様です。

   Discussion: See Frame Relay Frame.

議論: フレームリレーフレームを見てください。

   Specification: FRF

仕様: FRF

1.2.13. Discardable frames

1.2.13. Discardableフレーム

   Definition: Frames identified as being eligible to be dropped in the
   event of congestion.

定義: フレームは、存在が混雑の場合、下げられる資格があると認識しました。

   Discussion: The discard eligible field in the frame relay header is
   the correct -- and by far the most common -- means of indicating
   which frames may be dropped in the event of congestion.  However, DE
   is not the only means of identifying which frames may be dropped.
   There are at least three other cases that apply.

議論: フレームリレーヘッダーの廃棄適性分野はどのフレームが混雑の場合、下げられるかもしれないかを示す正しくて断然最も一般的な手段です。 しかしながら、DEはどのフレームが下げられるかもしれないかを特定する唯一の手段ではありません。 適用される他の少なくとも3つのケースがあります。

   In the first case, network devices may prioritize frame relay traffic
   by non-DE means.  For example, many service providers prioritize
   traffic on a per-PVC basis.  In this instance, any traffic from a
   given DLCI (data link channel identifier) may be dropped during
   congestion, regardless of whether DE is set.

前者の場合、ネットワークデバイスは非DEによるトラフィックが意味するフレームリレーを最優先させるかもしれません。 例えば、多くのサービスプロバイダーが1PVCあたり1個のベースでトラフィックを最優先させます。 この場合、与えられたDLCI(データ・リンクチャンネル識別子)からのどんなトラフィックも混雑の間、下げられるかもしれません、DEが設定されるかどうかにかかわらず。

   In the second case, some implementations use upper-layer criteria,
   such as IP addresses or TCP or UDP port numbers, to prioritize
   traffic within a single PVC.  In this instance, the network device
   may evaluate discard eligibility based on upper-layer criteria rather
   than the presence or absence of a DE bit.

2番目の場合では、いくつかの実装が、独身のPVCの中でトラフィックを最優先させるのにIPアドレスかTCPなどの上側の層の評価基準かUDPポートナンバーを使用します。 この場合、ネットワークデバイスは適任がDEビットの存在か欠如よりむしろ上側の層の評価基準に基礎づけた破棄を評価するかもしれません。

   In the third case, the frame is discarded because of an error in the
   frame.  Specifically, frames that are too long or too short, frames
   that are not a multiple of 8 bits in length, frames with an invalid
   or unrecognized DLCI, frames with an abort sequence, frames with
   improper flag delimitation, and frames that fail FCS.

3番目の場合では、フレームは誤りのためにフレームで捨てられます。 明確に長過ぎるか、または短過ぎるフレーム、長さにおける、8ビットの倍数、無効の、または、認識されていないDLCIがあるフレーム、放棄シーケンスがあるフレーム、不適当な旗の区切りがあるフレームでないフレーム、およびFCSに失敗するフレーム。

   Specification: FRMIB

仕様: FRMIB

1.2.14. Discarded frames

1.2.14. 捨てられたフレーム

   Definition: Those frames dropped by a network device.

定義: それらのフレームはネットワークデバイスに立ち寄りました。

Dunn & Martin                Informational                      [Page 7]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[7ページ]のRFC3133Terminology

   Discussion: Discardable and discarded frames are not synonymous.
   Some implementations may ignore DE bits or other criteria, even
   though they supposedly use such criteria to determine which frames to
   drop in the event of congestion.

議論: Discardableであって捨てられたフレームは同義ではありません。 いくつかの実装がDEビットか他の評価基準を無視するかもしれません、混雑の場合、どのフレームを下げたらよいかを決定するのに推定上そのような評価基準を使用しますが。

   In other cases, a frame with its DE bit set may not be dropped.  One
   example of this is in cases where congestion clears before the frame
   can be evaluated.

他の場合では、DEビットがセットしたことでのフレームは下げられないかもしれません。 フレームを評価できる前に、場合にはこの1つの例が混雑がクリアされるところにあります。

   Specification: DN

仕様: DN

1.2.15. Forward Explicit Congestion Notification (FECN)

1.2.15. 順方向明示的輻輳通知(FECN)

   Definition:  FECN is a bit in the frame relay header.  The bit is set
   by a congested network node in any frame that is traveling in the
   same direction of the congestion.

定義: FECNはフレームリレーヘッダーでしばらくです。 ビットは混雑の同じ方向に移動しているどんなフレームの鬱血したネットワーク・ノードによっても設定されます。

   Discussion: When a DTE receives frames with the FECN bit asserted, it
   should begin congestion avoidance procedures.  Since the FECN frames
   are traveling in the same direction as the congested traffic, the DTE
   will be the receiver.  The frame relay layer may communicate the
   possibility of congestion to higher layers, which have inherent
   congestion avoidance procedures, such as TCP.  See Frame Relay Frame.

議論: FECNビットが断言されている状態でDTEがフレーム搬入するとき、それは輻輳回避手順を始めるべきです。 フレームリレー層は混雑の可能性をより高い層に伝えるかもしれません、TCPなどのように。FECNフレームが混雑しているトラフィックと同じ方向に移動しているので、DTEは受信機になるでしょう。(層には、固有の輻輳回避手順があります)。 フレームリレーフレームを見てください。

   Specification: FRF

仕様: FRF

1.2.16. Frame Check Sequence (FCS)

1.2.16. フレームチェックシーケンス(FCS)

   Definition: The standard 16-bit cyclic redundancy check used for HDLC
   and frame relay frames.  The FCS detects bit errors occurring in the
   bits of the frame between the opening flag and the FCS, and is only
   effective in detecting errors in frames no larger than 4096 octets.
   See also Cyclic Redundancy Check (CRC).

定義: 標準の16ビットの周期冗長検査はHDLCとフレームリレーにフレームを使用しました。 FCSは初めの旗とFCSの間に噛み付いている誤りがフレームのビットに発生するのを検出して、4096の八重奏ほど大きくないフレームで単に誤りを検出するのにおいて有効です。 また、Cyclic Redundancy Check(CRC)を見てください。

   Discussion: FCS is not a measurement, but it is possible to measure
   the amount of time to perform a FCS on a string of bits.  This
   measurement will not be addressed in this document.

議論: FCSは測定ではありませんが、一連のビットにFCSを実行する時間を測定するのは可能です。 この測定は本書では扱われないでしょう。

   Specification: FRF

仕様: FRF

1.2.17. Frame Entry Event

1.2.17. フレームエントリーイベント

   Definition: Frame enters a network section or end system.  The event
   occurs when the last bit of the closing flag of the frame crosses the
   boundary.

定義: フレームはネットワーク部かエンドシステムに入ります。 フレームの終わりの旗の最後のビットが境界を越えるとき、イベントは起こります。

   Discussion: None.

議論: なし。

Dunn & Martin                Informational                      [Page 8]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[8ページ]のRFC3133Terminology

   Specification: FRF.13

仕様: FRF.13

1.2.18. Frame Exit Event

1.2.18. フレーム出口イベント

   Definition: Frame exits a network section or end system.  The event
   occurs when the first bit of the address field of the frame crosses
   the boundary.

定義: フレームはネットワーク部かエンドシステムを出ます。 フレームのアドレス・フィールドの最初のビットが境界を越えるとき、イベントは起こります。

   Discussion: None.

議論: なし。

   Specification: FRF.13

仕様: FRF.13

1.2.19. Frame Relay

1.2.19. フレームリレー

   Definition:  A high-performance interface for packet-switching
   networks; considered more efficient that X.25.  Frame relay
   technology can handle "bursty" communications that have rapidly
   changing bandwidth requirements.

定義: パケット交換網のための高性能インタフェース。 より効率的であるのがそのX.25であると考えました。 フレームリレー技術は急速に変化している帯域幅要件を持っている"bursty"コミュニケーションを扱うことができます。

   Discussion: None.

議論: なし。

   Specification: FRF

仕様: FRF

1.2.20. Frame Relay Frame

1.2.20. フレームリレーフレーム

   Definition: A logical grouping of information sent as a link-layer
   unit over a transmission medium.  Frame relay frames consist of a
   pair of flags, a header, a user data payload and a Frame Check
   Sequence (FCS).  Bit stuffing differentiates user data bytes from
   flags.  By default, the header is two octets, of which 10 bits are
   the Data Link Connection Identifier (DLCI), 1 bit in each octet is
   used for address extension (AE), and 1 bit each for Forward Explicit
   Congestion Notification (FECN), Backward Explicit Congestion
   Notification (BECN) Command/Response (C/R) and Discard Eligible (DE).
   The EA bit is set to one in the final octet containing the DLCI.  A
   header may span 2, 3 or 4 octets.

定義: 情報の論理的な組分けはリンクレイヤ単位としてトランスミッション媒体の上で発信しました。 フレームリレーフレームは1組の旗、ヘッダー、利用者データペイロード、およびFrame Check Sequence(FCS)から成ります。 ビット・スタッフィングは旗とユーザデータ・バイトを区別します。 デフォルトで、ヘッダーが2つの八重奏である、各八重奏における1ビットはアドレス拡大(AE)、Forward Explicit Congestion Notificationのためのそれぞれ1ビット(FECN)、Backward Explicit Congestion Notification(BECN)コマンド/応答(C/R)、およびDiscard Eligible(DE)に使用されます。(そこでは、10ビットがData Link Connection Identifier(DLCI)です)。 EAビットはDLCIを含む最終的な八重奏で1つに設定されます。 ヘッダーは2、3または4つの八重奏にかかるかもしれません。

Dunn & Martin                Informational                      [Page 9]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[9ページ]のRFC3133Terminology

   Bit  7   6   5   4   3   2   1   0
      |---|---|---|---|---|---|---|---|
      |              FLAG             |
      |-------------------------------|
      | Upper 6 bits of DLCI  |C/R|AE |
      |-------------------------------|
      |   DLCI        |FE |BE |DE |AE |
      |               |CN |CN |   |   |
      |-------------------------------|
      |        User Data up to        |
      |          1600 Octets          |
      |-------------------------------|
      |      First Octet of FCS       |
      |-------------------------------|
      |      Second Octet of FCS      |
      |-------------------------------|
      |              FLAG             |
      |-------------------------------|

ビット7 6 5 4 3 2 1 0|---|---|---|---|---|---|---|---| | 旗| |-------------------------------| | DLCIの上側の6ビット|C/R|AE| |-------------------------------| | DLCI|FE|いてください。|DE|AE| | |CN|CN| | | |-------------------------------| | 利用者データは密かに企てます。| | 1600の八重奏| |-------------------------------| | FCSの最初の八重奏| |-------------------------------| | FCSの第2八重奏| |-------------------------------| | 旗| |-------------------------------|

   Discussion: Frame Relay headers spanning 3 or 4 octets will not be
   discussed in this document.  Note, the measurements described later
   in this document are based on 2 octet headers.  If longer headers are
   used, the metric values must take into account the associated
   overhead.  See BECN, DE, DLCI and FECN.

議論: 本書では3か4つの八重奏にかかっているフレームRelayヘッダーについて議論しないでしょう。 後で説明された測定値が本書では2個の八重奏ヘッダーに基づいていることに注意してください。 より長いヘッダーが使用されているなら、メートル法の数値は関連オーバーヘッドを考慮に入れなければなりません。 BECN、DE、DLCI、およびFECNを見てください。

   Specification: FRF

仕様: FRF

1.2.21. Excess Information Rate (EIR)

1.2.21. 余分な情報レート(EIR)

   Definition: See Burst Excess.

定義: 炸裂過剰を見てください。

   Discussion: None.

議論: なし。

   Specification: FRF

仕様: FRF

1.2.22. Network Interworking (FRF.5)

1.2.22. ネットワークの織り込むこと(FRF.5)

   Definition: FRF.5 defines a protocol mapping called Network
   Interworking between

定義: FRF.5は間にNetwork Interworkingと呼ばれたプロトコルマッピングを定義します。

   Frame Relay and Asynchronous Transfer Mode (ATM).  Protocol mapping
   occurs when the network performs conversions in such a way that
   within a common layer service, the protocol information of one
   protocol is extracted and mapped on protocol information of another
   protocol.  This means that each communication terminal supports
   different protocols.  The common layer service provided in this

フレームリレーと非同期通信モード(気圧)。 ネットワークが1つのプロトコルに関するプロトコル情報が別のプロトコルに関するプロトコル情報で一般的な層のサービスの中では、抜粋されて、写像されるような方法で変換を実行するとき、プロトコルマッピングは現れます。 これは、それぞれのコミュニケーション端末が異なったプロトコルをサポートすることを意味します。 これに提供された一般的な層のサービス

Dunn & Martin                Informational                     [Page 10]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[10ページ]のRFC3133Terminology

   interworking scenario is defined by the functions, which are common
   to the two protocols.  Specifically, the ATM terminal must be
   configured to interoperate with the Frame Relay network and vice
   versa.

シナリオを織り込むのは機能によって定義されます。(機能は2つのプロトコルに共通です)。 明確に、Frame Relayネットワークと共に逆もまた同様に共同利用するためにATM端末を構成しなければなりません。

   Discussion: None.

議論: なし。

   Specification: FRF.5

仕様: FRF.5

1.2.23. Port speed

1.2.23. ポート・スピード

   Definition: See Access Rate

定義: アクセスが評価するのを見てください。

   Discussion: None.

議論: なし。

   Specification: FRF

仕様: FRF

1.2.24. Service Interworking (FRF.8)

1.2.24. サービスの織り込むこと(FRF.8)

   Definition: FRF.8 defines a protocol encapsulation called Service
   Interworking.  Protocol encapsulation occurs when the conversions in
   the network or in the terminals are such that the protocols used to
   provide one service make use of the layer service provided by another
   protocol.  This means that at the interworking point, the two
   protocols are stacked.  When encapsulation is performed by the
   terminal, this scenario is also called interworking by port access.
   Specifically, the ATM service user performs no Frame Relaying
   specific functions, and Frame Relaying service user performs no ATM
   service specific functions.

定義: FRF.8はService Interworkingと呼ばれるプロトコルカプセル化を定義します。 1つのサービスを提供するのに使用されるプロトコルがネットワークか端末での変換がそのようなものであるので別のプロトコルによって提供された層のサービスを利用するとき、プロトコルカプセル化は起こります。 これは、織り込むポイントでは、2つのプロトコルが積み重ねられることを意味します。 また、カプセル化が端末によって実行されるとき、このシナリオはポートのそばでアクセサリーを織り込むと呼ばれます。 明確に、ATMサービス利用者はFrame Relaying具体的な機能を全く実行しません、そして、Frame Relayingサービス利用者はATMサービス具体的な機能を全く実行しません。

   Discussion: None.

議論: なし。

   Specification: FRF.8

仕様: FRF.8

1.2.25. Service Availability Parameters

1.2.25. サービス有用性パラメタ

   Definition: The service availability parameters report the
   operational readiness of individual frame relay virtual connections.
   Service availability is affected by service outages.

定義: サービス有用性パラメタは個々のフレームリレー仮想接続の操作上の準備を報告します。 サービスの有用性はサービス供給停止で影響を受けます。

   Discussion: Service availability parameters provide metrics for
   assessment of frame relay network health and are used to monitor
   compliance with service level agreements.  See Services Outages.

議論: サービス有用性パラメタは、フレームリレーネットワーク健康の評価に測定基準を提供して、サービスレベル協定へのコンプライアンスをモニターするのに使用されます。 サービス供給停止を見てください。

   Specification: FRF.13

仕様: FRF.13

Dunn & Martin                Informational                     [Page 11]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[11ページ]のRFC3133Terminology

1.2.26. Service Outages

1.2.26. サービス供給停止

   Definition: Any event that interrupts the transport of frame relay
   traffic.  Two types of outages are differentiated:

定義: フレームリレートラフィックの輸送を中断するどんなイベント。 2つのタイプの供給停止は差別化されます:

   1) Fault outages: Outages resulting from faults in the network and
   thus tracked by the service availability parameters, and

1) 欠点供給停止: そしてその結果ネットワークで欠点から生じる供給停止がサービス有用性パラメタによって追跡された。

   2) Excluded outages: Outages resulting from faults beyond the control
   of the network as well as scheduled maintenance.

2) 供給停止を除きます: 定期保守と同様にネットワークのコントロールを超えて欠点から生じる供給停止。

   Discussion: Service availability can be defined on a per-VC basis
   and/or on a per-port basis.  Frame relay port-based service
   availability parameters are not addressed in this document.  See
   Service Availability Parameters.

議論: 1VCあたり1個のベース1ポートあたり1個のベースの上でサービスの有用性を定義できます。 フレームリレーのポートベースのサービス有用性パラメタは本書では扱われません。 サービス有用性パラメタを見てください。

   Specification: FRF.13

仕様: FRF.13

2. Performance Metrics

2. パフォーマンス測定基準

2.1. Definition Format (from RFC1242)

2.1. 定義形式(RFC1242からの)

   Metric to be defined.

メートル法、定義されるために。

   Definition: The specific definition for the metric.

定義: メートル法のための特定の定義。

   Discussion:  A brief discussion of the metric, its application and
   any restrictions on measurement procedures.

議論: 測定手順におけるメートル法の簡潔な議論、アプリケーション、およびどんな制限。

   Measurement units: Intrinsic units used to quantify this metric.
   This includes  subsidiary units, e.g., microseconds are acceptable if
   the intrinsic unit is seconds.

測定単位: 本質的なユニットは以前はよくメートル法であることでこれを定量化していました。 これは補助のユニットを含んでいます、例えば、マイクロセカンドが本質的なユニットが秒であるなら許容できます。

2.2. Definitions

2.2. 定義

2.2.1. Physical Layer-Plesiochronous Data Hierarchy (PDH)

2.2.1. 物理的な層-Plesiochronousデータ階層構造(PDH)

2.2.1.1. Alarm Indication Signal (AIS)

2.2.1.1. 警報指示信号(AIS)

   Definition: An all 1's frame transmitted after the DTE or DCE detects
   a defect for 2.5 s +/- 0.5 s.

定義: DTEかDCEの後に伝えられたすべての1個のフレームが2.5秒間+/-0.5秒間、欠陥を見つけます。

   Discussion: An AIS will cause loss of information in the PDH frame,
   which contains a frame relay frame which may contain IP datagrams.

議論: AISがPDHフレームの情報の損失をもたらすでしょう。(フレームはIPデータグラムを含むかもしれないフレームリレーフレームを含みます)。

   Measurement units: Dimensionless.

測定単位: 点。

Dunn & Martin                Informational                     [Page 12]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[12ページ]のRFC3133Terminology

2.2.1.2. Loss of Frame (LOF)

2.2.1.2. フレームの損失(LOF)

   Definition: An NE transmits an LOF when an OOF condition persists.

定義: OOF状態が持続するとき、NEはLOFを伝えます。

   Discussion: A LOF will cause loss of information in the PDH frame,
   which contains a frame relay frame which may contain IP datagrams.

議論: LOFがPDHフレームの情報の損失をもたらすでしょう。(フレームはIPデータグラムを含むかもしれないフレームリレーフレームを含みます)。

   Measurement units: Dimensionless.

測定単位: 点。

2.2.1.3. Loss of Signal (LOS)

2.2.1.3. 信号の損失(ロス)

   Definition: Indicates that there are no transitions occurring in the
   received signal.

定義: 受信された信号に起こる変遷が全くないのを示します。

   Discussion: A LOS will cause loss of information in the PDH frame
   which contains a frame relay frame which may contain IP datagrams.

議論: LOSが、IPデータグラムを含むかもしれないフレームリレーフレームを含むPDHフレームの情報の損失をもたらすでしょう。

   Measurement units: Dimensionless.

測定単位: 点。

2.2.1.4. Out of Frame (OOF)

2.2.1.4. フレームから(金)

   Definition: An NE transmits an OOF downstream when it receives
   framing errors in a specified number of consecutive frame bit
   positions.

定義: 指定された数の連続したフレームビット位置で誤りを縁どりながら受信するとき、NEはOOFを川下に伝えます。

   Discussion: An OOF will cause loss of information in the PDH frame
   which contains a frame relay frame which may contain IP datagrams.

議論: OOFが、IPデータグラムを含むかもしれないフレームリレーフレームを含むPDHフレームの情報の損失をもたらすでしょう。

   Measurement units: Dimensionless.

測定単位: 点。

2.2.1.5. Remote Alarm Indication (RAI)

2.2.1.5. リモート警報指示(ライ)

   Definition: Previously called Yellow Alarm.  Transmitted upstream by
   an NE to indicate that it detected an LOS, LOF, or AIS.

定義: 以前に、Yellow Alarmと呼ばれます。 LOS、LOF、またはAISを検出したのを示すためにNEによって上流へ伝えられます。

   Discussion: An RAI will cause loss of information in the transmitted
   PDH frame, which may contain a frame relay frame, which, in turn, may
   contain IP datagrams.

議論: RAIが伝えられたPDHフレームの情報の損失をもたらすでしょう。(フレームは、フレームリレーフレームを含むかもしれません)。(順番に、それは、IPデータグラムを含むかもしれません)。

   Measurement units: Dimensionless.

測定単位: 点。

2.2.2. Frame Relay Layer

2.2.2. フレームリレー層

2.2.2.1. Data Delivery Ratio (DDR)

2.2.2.1. データ配送比(DDR)

   Definition: The DDR service level parameter  reports  the  networks
   effectiveness in transporting offered data (payload without address
   field or FCS) in one direction of a single virtual connection.  The

定義: DDRサービスレベルパラメタは輸送における有効性がデータ(アドレス・フィールドもFCSのないペイロード)を提供したネットワークを単独の仮想接続の一方向に報告します。 The

Dunn & Martin                Informational                     [Page 13]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

フレームリレーベンチマーキング2001年6月のためのダンとマーチン情報[13ページ]のRFC3133Terminology

   DDR is a ratio of  successful  payload octets received to attempted
   payload octets transmitted.  Attempted payload octets transmitted are
   referred to as DataOffered.  Successfully delivered payload octets
   are referred to as DataDelivered.  These loads are further
   differentiated as being within the committed information rate or as
   burst excess.

DDRは受けられたうまくいっているペイロード八重奏対伝えられた試みられたペイロード八重奏の比率です。 伝えられた試みられたペイロード八重奏はDataOfferedと呼ばれます。 首尾よく提供されたペイロード八重奏はDataDeliveredと呼ばれます。 これらの負荷は認定情報速度以内か余分な状態で押し破かれることに似ているとしてさらに差別化されます。

   Three data relay ratios may be reported:

3つのデータリレー比が報告されるかもしれません:

   Data Delivery Ratio (DDR):

データ配送比(DDR):

          (DataDelivered_c + DataDelivered_e   DataDelivered_e+c
     DDR = --------------------------------- = -----------------
          (DataOffered_c + DataOffered_e)    DataOffered_e+c

(DataDelivered_c + DataDelivered_e DataDelivered_e+c DDR = --------------------------------- = ----------------- (DataOffered_c + DataOffered_e) DataOffered_e+c

   Data Delivery Ratio (DDR_c) for load consisting of frames within the
   committed information rate:

Data Delivery Ratio (DDR_c) for load consisting of frames within the committed information rate:

             DataDelivered_c
     DDR_c = -------------
             DataOffered_c

DataDelivered_c DDR_c = ------------- DataOffered_c

   Data Delivery Ratio (DDR_e) for load in excess of the committed
   information rate:

Data Delivery Ratio (DDR_e) for load in excess of the committed information rate:

             DataDelivered_e
     DDR_e = ---------------
             DataOffered_e

DataDelivered_e DDR_e = --------------- DataOffered_e

   where

where

   DataDelivered_c: Successfully delivered data payload octets within
   committed information rate,

DataDelivered_c: Successfully delivered data payload octets within committed information rate,

   DataDelivered_e: Successfully delivered data payload octets in excess
   of CIR,

DataDelivered_e: Successfully delivered data payload octets in excess of CIR,

   DataDelivereD_e+c: Successfully delivered total data payload octets,
   including those within committed information rate and those in excess
   of CIR,

DataDelivereD_e+c: Successfully delivered total data payload octets, including those within committed information rate and those in excess of CIR,

   DataOffered_c: Attempted data payload octet transmissions within
   committed information rate,

DataOffered_c: Attempted data payload octet transmissions within committed information rate,

   DataOffered_e: Attempted data payload octet transmissions in excess
   of CIR

DataOffered_e: Attempted data payload octet transmissions in excess of CIR

   and

and

Dunn & Martin                Informational                     [Page 14]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 14] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   DataOffered_e+c: Attempted total data payload octet transmissions,
   including those within committed information rate and those in excess
   of CIR

DataOffered_e+c: Attempted total data payload octet transmissions, including those within committed information rate and those in excess of CIR

   Each direction of a full duplex connection has a discrete set of data
   delivery ratios.

Each direction of a full duplex connection has a discrete set of data delivery ratios.

   Discussion: Data delivery ratio measurements may not be
   representative of data delivery effectiveness for a given
   application.  For example, the discarding of a small frame containing
   an acknowledgement message may result in the retransmission of a
   large number of data frames.  In such an event, a good data delivery
   ratio would be reported while the user experienced poor performance.

Discussion: Data delivery ratio measurements may not be representative of data delivery effectiveness for a given application. For example, the discarding of a small frame containing an acknowledgement message may result in the retransmission of a large number of data frames. In such an event, a good data delivery ratio would be reported while the user experienced poor performance.

   Measurement units: dimensionless.

Measurement units: dimensionless.

2.2.2.2. Frame Delivery Ratio (FDR)

2.2.2.2. Frame Delivery Ratio (FDR)

   Definition: The FDR service level parameter reports the networks
   effectiveness in transporting an offered frame relay load in one
   direction of a single virtual connection.  The FDR is a ratio of
   successful frame receptions to attempted frame transmissions.
   Attempted frame transmissions are referred to as Frames Offered.
   Successfully delivered frames are referred to as Frames Delivered.
   These loads may be further differentiated as being within the
   committed information rate or as burst excess.

Definition: The FDR service level parameter reports the networks effectiveness in transporting an offered frame relay load in one direction of a single virtual connection. The FDR is a ratio of successful frame receptions to attempted frame transmissions. Attempted frame transmissions are referred to as Frames Offered. Successfully delivered frames are referred to as Frames Delivered. These loads may be further differentiated as being within the committed information rate or as burst excess.

   Frame Delivery Ratio (FDR):

Frame Delivery Ratio (FDR):

   Frame Delivery Ratio (FDR):

Frame Delivery Ratio (FDR):

          (FramesDelivered_c + FramesDelivered_e)  FramesDelivered_e+c
     FDR = ------------------------------------- = -------------------
          (FramesOffered_c + FramesOffered_e)   FramesOffered_e+c

(FramesDelivered_c + FramesDelivered_e) FramesDelivered_e+c FDR = ------------------------------------- = ------------------- (FramesOffered_c + FramesOffered_e) FramesOffered_e+c

   Frame Delivery Ratio (FDR_c) for load consisting of frames within the
   committed information rate:

Frame Delivery Ratio (FDR_c) for load consisting of frames within the committed information rate:

             FramesDelivered_c
     FDR_c = -----------------
             FramesOffered_c

FramesDelivered_c FDR_c = ----------------- FramesOffered_c

   Frame Delivery Ratio (FDR_c) for load in excess of the committed
   information rate:

Frame Delivery Ratio (FDR_c) for load in excess of the committed information rate:

             FramesDelivered_e
     FDR_e = -----------------
             FramesOffered_e

FramesDelivered_e FDR_e = ----------------- FramesOffered_e

Dunn & Martin                Informational                     [Page 15]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 15] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   where

where

   FramesDelivered_c: Successfully delivered frames within committed
   information rate,

FramesDelivered_c: Successfully delivered frames within committed information rate,

   FramesDelivered_e: Successfully delivered frames in excess of CIR,

FramesDelivered_e: Successfully delivered frames in excess of CIR,

   FramesDelivered_e+c: Successfully delivered total frames, including
   those within committed information rate and those in excess of CIR,

FramesDelivered_e+c: Successfully delivered total frames, including those within committed information rate and those in excess of CIR,

   FramesOffered_c: Attempted frame transmissions within committed
   information rate,

FramesOffered_c: Attempted frame transmissions within committed information rate,

   FramesOffered_e: Attempted frame transmissions in excess of CIR

FramesOffered_e: Attempted frame transmissions in excess of CIR

   and

and

   FramesOffered_e+c: Attempted total frame transmissions, including
   those within committed information rate and those in excess of CIR.

FramesOffered_e+c: Attempted total frame transmissions, including those within committed information rate and those in excess of CIR.

   An independent set of frame delivery ratios exists for each direction
   of a full duplex connection.

An independent set of frame delivery ratios exists for each direction of a full duplex connection.

   Discussion: Frame delivery ratio measurements may not be
   representative of frame delivery effectiveness for a given
   application.  For example, the discarding of a small frame containing
   an acknowledgement message may result in the retransmission of a
   large number of data frames.  In such an event, a good data delivery
   ratio would be reported while the user

Discussion: Frame delivery ratio measurements may not be representative of frame delivery effectiveness for a given application. For example, the discarding of a small frame containing an acknowledgement message may result in the retransmission of a large number of data frames. In such an event, a good data delivery ratio would be reported while the user

   Measurement units: dimensionless.

Measurement units: dimensionless.

2.2.2.3. Frame Discard Ratio (FDR)

2.2.2.3. Frame Discard Ratio (FDR)

   Definition: The number of received frames that are discarded because
   of a frame error divided by the total number of transmitted frames in
   one direction of a single virtual connection.  Frame errors are
   defined as follows:

Definition: The number of received frames that are discarded because of a frame error divided by the total number of transmitted frames in one direction of a single virtual connection. Frame errors are defined as follows:

   1) frames that are too long or too short,
   2) frames that are not a multiple of 8 bits in length,
   3) frames with an invalid or unrecognized DLCI,
   4) frames with an abort sequence,
   5) frames with improper flag delimitation,
   6) frames that fail FCS.

1) frames that are too long or too short, 2) frames that are not a multiple of 8 bits in length, 3) frames with an invalid or unrecognized DLCI, 4) frames with an abort sequence, 5) frames with improper flag delimitation, 6) frames that fail FCS.

Dunn & Martin                Informational                     [Page 16]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 16] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   The formal definition of frame discard ratio is as follows:

The formal definition of frame discard ratio is as follows:

           sum {i=1 to N} fr_i
     FDR = -------------------
           sum {i=1 to N} ft_i,

sum {i=1 to N} fr_i FDR = ------------------- sum {i=1 to N} ft_i,

   where

where

   fr_i is the number of successfully delivered frames for a particular
   DLCI at second i

fr_i is the number of successfully delivered frames for a particular DLCI at second i

   and

and

   ft_i is the total number of attempted frame transmissions within the
   committed plus extended information rate for a particular DLCI at
   second i.

ft_i is the total number of attempted frame transmissions within the committed plus extended information rate for a particular DLCI at second i.

   Discussion: Frame discards can adversely effect applications running
   on IP over FR.  In general, frame discards will negatively impact TCP
   throughput; however, in the case of frame discard due to frame error,
   frame discard will improve performance by dropping errored frames.
   As a result, these frames will not adversely effect the forwarding of
   retransmitted frames

Discussion: Frame discards can adversely effect applications running on IP over FR. In general, frame discards will negatively impact TCP throughput; however, in the case of frame discard due to frame error, frame discard will improve performance by dropping errored frames. As a result, these frames will not adversely effect the forwarding of retransmitted frames

   Measurement units: dimensionless.

Measurement units: dimensionless.

2.2.2.4. Frame Error Ratio (FER)

2.2.2.4. Frame Error Ratio (FER)

   Definition: The number of received frames that contain an error in
   the frame payload divided by the total number of transmitted frames
   in one direction of a single virtual connection.

Definition: The number of received frames that contain an error in the frame payload divided by the total number of transmitted frames in one direction of a single virtual connection.

   The formal definition of frame error ratio is as follows:

The formal definition of frame error ratio is as follows:

           sum {i=1 to N} fe_i
     FER = -------------------
           sum {i=1 to N} ft_i,

sum {i=1 to N} fe_i FER = ------------------- sum {i=1 to N} ft_i,

   where

where

   fe_i is the number of frames containing a payload error for a
   particular DLCI at second i

fe_i is the number of frames containing a payload error for a particular DLCI at second i

   and

and

   ft_i is the total number of attempted frame transmissions within the
   committed plus the extended information rate for a particular DLCI at
   second i.  This statistic includes those frames which have an error

ft_i is the total number of attempted frame transmissions within the committed plus the extended information rate for a particular DLCI at second i. This statistic includes those frames which have an error

Dunn & Martin                Informational                     [Page 17]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 17] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   in the Frame Check Sequence (FCS).  Frame errors in the absence of
   FCS errors can be detected by sending frames containing a known
   pattern; however, this indicates an equipment defect.

in the Frame Check Sequence (FCS). Frame errors in the absence of FCS errors can be detected by sending frames containing a known pattern; however, this indicates an equipment defect.

   Discussion: The delivery of frames containing errors will adversely
   effect applications running on IP over FR.  Typically, these errors
   are caused by transmission errors and flagged as failed FCS frames;
   however, when Frame Relay to ATM Network interworking is used, an
   error may be injected in the frame payload which, in turn, is
   encapsulated into an AAL5 PDU (see RFC 2761 for a discussion of AAL5
   related metrics).

Discussion: The delivery of frames containing errors will adversely effect applications running on IP over FR. Typically, these errors are caused by transmission errors and flagged as failed FCS frames; however, when Frame Relay to ATM Network interworking is used, an error may be injected in the frame payload which, in turn, is encapsulated into an AAL5 PDU (see RFC 2761 for a discussion of AAL5 related metrics).

   Measurement units: dimensionless.

Measurement units: dimensionless.

2.2.2.5. Frame Excess Ratio (FXR)

2.2.2.5. Frame Excess Ratio (FXR)

   Definition: The number of frames received by the network and treated
   as excess traffic divided by the total number of transmitted frames
   in one direction of a single virtual connection.  Frames which are
   sent to the network with DE set to zero are treated as excess when
   more than Bc bits are submitted to the network during the Committed
   Information Rate Measurement Interval (Tc).  Excess traffic may or
   may not be discarded at the ingress if more than Bc + Be bits are
   submitted to the network during Tc.  Traffic discarded at the ingress
   is not recorded in this measurement.  Frames which are sent to the
   network with DE set to one are also treated as excess traffic.

Definition: The number of frames received by the network and treated as excess traffic divided by the total number of transmitted frames in one direction of a single virtual connection. Frames which are sent to the network with DE set to zero are treated as excess when more than Bc bits are submitted to the network during the Committed Information Rate Measurement Interval (Tc). Excess traffic may or may not be discarded at the ingress if more than Bc + Be bits are submitted to the network during Tc. Traffic discarded at the ingress is not recorded in this measurement. Frames which are sent to the network with DE set to one are also treated as excess traffic.

   The formal definition of frame excess ratio is as follows:

The formal definition of frame excess ratio is as follows:

               sum {i=1 to N} fc_i
     FXR = 1 - -------------------
               sum {i=1 to N} ft_i,

sum {i=1 to N} fc_i FXR = 1 - ------------------- sum {i=1 to N} ft_i,

   where

where

   fc_i is the total number of frames which were submitted within the
   traffic contract for a particular DLCI at second i

fc_i is the total number of frames which were submitted within the traffic contract for a particular DLCI at second i

   and

and

   ft_i is the total number of attempted frame transmissions for a
   particular DLCI at second i.

ft_i is the total number of attempted frame transmissions for a particular DLCI at second i.

   Discussion: Frame discards can adversely effect applications running
   on IP over FR.  Specifically, frame discards will negatively impact
   TCP throughput.

Discussion: Frame discards can adversely effect applications running on IP over FR. Specifically, frame discards will negatively impact TCP throughput.

   Measurement units: dimensionless.

Measurement units: dimensionless.

Dunn & Martin                Informational                     [Page 18]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 18] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

2.2.2.6. Frame Loss Ratio (FLR)

2.2.2.6. Frame Loss Ratio (FLR)

   Definition: The FLR is a ratio of successful frame receptions to
   attempted frame transmissions at the committed information rate, in
   one direction of a single virtual connection.  Attempted frame
   transmissions are referred to as Frames Offered.  Successfully
   delivered frames are referred to as Frames Delivered.

Definition: The FLR is a ratio of successful frame receptions to attempted frame transmissions at the committed information rate, in one direction of a single virtual connection. Attempted frame transmissions are referred to as Frames Offered. Successfully delivered frames are referred to as Frames Delivered.

   The formal definition of frame loss ratio is as follows:

The formal definition of frame loss ratio is as follows:

              FramesDelivered_c
     FLR = 1- -----------------
              FramesOffered_c,

FramesDelivered_c FLR = 1- ----------------- FramesOffered_c,

   where

where

   FramesDelivered_c is the successfully delivered frames within
   committed information rate for a given DLCI

FramesDelivered_c is the successfully delivered frames within committed information rate for a given DLCI

   and

and

   FramesOffered_c is the attempted frame transmissions within committed
   information rate for a given DLCI

FramesOffered_c is the attempted frame transmissions within committed information rate for a given DLCI

   An independent set of frame delivery ratios exists for each direction
   of a full duplex connection.

An independent set of frame delivery ratios exists for each direction of a full duplex connection.

   Discussion: Frame delivery loss measurements may not be
   representative of frame delivery effectiveness for a given
   application.  For example, the loss of a small frame containing an
   acknowledgement message may result in the retransmission of a large
   number of data frames.  In such an event, a good data delivery ratio
   would be reported while the user

Discussion: Frame delivery loss measurements may not be representative of frame delivery effectiveness for a given application. For example, the loss of a small frame containing an acknowledgement message may result in the retransmission of a large number of data frames. In such an event, a good data delivery ratio would be reported while the user

   Measurement units: dimensionless.

Measurement units: dimensionless.

2.2.2.7. Frame Policing Ratio (FPR)

2.2.2.7. Frame Policing Ratio (FPR)

   Definition: The number of frames received by the network and treated
   as excess traffic and dropped divided by the total number of received
   frames, in one direction of a single virtual connection.  Frames
   which are sent to the network with DE set to zero are treated as
   excess when more than Bc bits are submitted to the network during the
   Committed Information Rate Measurement Interval (Tc).  Excess traffic
   may or may not be discarded at the ingress if more than Bc + Be bits
   are submitted to the network during Tc.  Traffic discarded at the
   ingress is recorded in this measurement.  Frames which are sent to
   the network with DE set to one are also treated as excess traffic.

Definition: The number of frames received by the network and treated as excess traffic and dropped divided by the total number of received frames, in one direction of a single virtual connection. Frames which are sent to the network with DE set to zero are treated as excess when more than Bc bits are submitted to the network during the Committed Information Rate Measurement Interval (Tc). Excess traffic may or may not be discarded at the ingress if more than Bc + Be bits are submitted to the network during Tc. Traffic discarded at the ingress is recorded in this measurement. Frames which are sent to the network with DE set to one are also treated as excess traffic.

Dunn & Martin                Informational                     [Page 19]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 19] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   The formal definition of frame excess ratio is as follows:

The formal definition of frame excess ratio is as follows:

              sum {i=1 to N} fr_i
     FPR = 1- -------------------
              sum {i=1 to N} ft_i,

sum {i=1 to N} fr_i FPR = 1- ------------------- sum {i=1 to N} ft_i,

   where

where

   fr_i is the successfully delivered frames for a particular DLCI at
   second i

fr_i is the successfully delivered frames for a particular DLCI at second i

   and

and

   ft_i is the total number of attempted frame transmissions for a
   particular DLCI

ft_i is the total number of attempted frame transmissions for a particular DLCI

   at second i.

at second i.

   Discussion: Frame discards can adversely effect applications running
   on IP over FR.  Specifically, frame discards will negatively impact
   TCP throughput.

Discussion: Frame discards can adversely effect applications running on IP over FR. Specifically, frame discards will negatively impact TCP throughput.

2.2.2.8. Frame Transfer Delay (FTD)

2.2.2.8. Frame Transfer Delay (FTD)

   Definition: The time required to transport frame relay data from
   measurement point 1 to measurement point 2.  The frame transfer delay
   is the difference in seconds between the time a frame exits
   measurement point 1 and the time the same frame enters measurement
   point 2, in one direction of a single virtual connection.  The formal
   definition of frame transfer delay is as follows:

Definition: The time required to transport frame relay data from measurement point 1 to measurement point 2. The frame transfer delay is the difference in seconds between the time a frame exits measurement point 1 and the time the same frame enters measurement point 2, in one direction of a single virtual connection. The formal definition of frame transfer delay is as follows:

      FTD = 1/N * sum {i=1 to N} t2_i - t1_i,

FTD = 1/N * sum {i=1 to N} t2_i - t1_i,

   where

where

   t1_i is the time in seconds when the ith frame leaves measurement
   point 1 (i.e., frame exit event),

t1_i is the time in seconds when the ith frame leaves measurement point 1 (i.e., frame exit event),

   t2 is the time in seconds when the ith frame arrives at measurement
   point 2 (i.e., frame entry event)

t2 is the time in seconds when the ith frame arrives at measurement point 2 (i.e., frame entry event)

   and

and

   N is the number of frames received during a measurement interval T.

N is the number of frames received during a measurement interval T.

   FTD is computed for a specific DLCI and a specified integration
   period of T seconds.  The computation does not include frames which
   are transmitted during the measurement period but not received.

FTD is computed for a specific DLCI and a specified integration period of T seconds. The computation does not include frames which are transmitted during the measurement period but not received.

Dunn & Martin                Informational                     [Page 20]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 20] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

   Discussion: While frame transfer delay is usually computed as an
   average and, thus, can effect neither IP nor TCP performance,
   applications such as voice over IP may be adversely effected by
   excessive FTD.

Discussion: While frame transfer delay is usually computed as an average and, thus, can effect neither IP nor TCP performance, applications such as voice over IP may be adversely effected by excessive FTD.

   Measurement units: seconds.

Measurement units: seconds.

2.2.2.9. Frame Transfer Delay Variation (FTDV)

2.2.2.9. Frame Transfer Delay Variation (FTDV)

   Definition: The variation in the time required to transport frame
   relay data from measurement point 1 to measurement point 2.  The
   frame transfer delay variation is the difference in seconds between
   maximum frame transfer delay and the minimum frame transfer delay, in
   one direction of a single virtual connection.  The formal definition
   of frame transfer delay is as follows:

Definition: The variation in the time required to transport frame relay data from measurement point 1 to measurement point 2. The frame transfer delay variation is the difference in seconds between maximum frame transfer delay and the minimum frame transfer delay, in one direction of a single virtual connection. The formal definition of frame transfer delay is as follows:

      FTDV = max {i=1 to N} FTD_i - min {i=1 to N} FTD_i.

FTDV = max {i=1 to N} FTD_i - min {i=1 to N} FTD_i.

   where

where

   FTD and N are defined as above.

FTD and N are defined as above.

   Discussion: Large values of FTDV can adversely effect TCP round trip
   time calculation and, thus, TCP throughput.

Discussion: Large values of FTDV can adversely effect TCP round trip time calculation and, thus, TCP throughput.

   Measurement units: seconds.

Measurement units: seconds.

3. Security Considerations

3. Security Considerations

   As this document is solely for providing terminology and describes
   neither a protocol nor an implementation, there are no security
   considerations associated with this document.

As this document is solely for providing terminology and describes neither a protocol nor an implementation, there are no security considerations associated with this document.

4. Notices

4. Notices

   Internet Engineering Task Force

Internet Engineering Task Force

      The IETF takes no position regarding the validity or scope of any
      intellectual property or other rights that might be claimed to
      pertain to the implementation or use of the technology described
      in this document or the extent to which any license under such
      rights might or might not be available; neither does it represent
      that it has made any effort to identify any such rights.
      Information on the IETFs procedures with respect to rights in
      standards-track and standards-related documentation can be found
      in BCP-11.  Copies of claims of rights made available for
      publication and any assurances of licenses to be made available,
      or the result of an attempt made to obtain a general license or

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETFs procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or

Dunn & Martin                Informational                     [Page 21]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 21] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

      permission for the use of such proprietary rights by implementors
      or users of this specification can be obtained from the IETF
      Secretariat.

permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

      The IETF invites any interested party to bring to its attention
      any copyrights, patents or patent applications, or other
      proprietary rights, which may cover technology that may be
      required to practice this standard.  Please address the
      information to the IETF Executive Director.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights, which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

   Frame Relay Forum

Frame Relay Forum

      Copyright Frame Relay Forum 1998.  All Rights Reserved.
      References FRF, FRF.5, FRF.8 and FRF.13 and translations of them
      may be copied and furnished to others, and works that comment on
      or otherwise explain it or assist in their implementation may be
      prepared, copied, published and distributed, in whole or in part,
      without restriction of any kind, provided that the above copyright
      notice and this paragraph are included on all such copies and
      derivative works.  However, these documents themselves may not be
      modified in any way, such as by removing the copyright notice or
      references to the Frame Relay Forum, except as needed for the
      purpose of developing Frame Relay standards (in which case the
      procedures for copyrights defined by the Frame Relay Forum must be
      followed), or as required to translate it into languages other
      than English.

Copyright Frame Relay Forum 1998. All Rights Reserved. References FRF, FRF.5, FRF.8 and FRF.13 and translations of them may be copied and furnished to others, and works that comment on or otherwise explain it or assist in their implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, these documents themselves may not be modified in any way, such as by removing the copyright notice or references to the Frame Relay Forum, except as needed for the purpose of developing Frame Relay standards (in which case the procedures for copyrights defined by the Frame Relay Forum must be followed), or as required to translate it into languages other than English.

Dunn & Martin                Informational                     [Page 22]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 22] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

5. References

5. References

   [DN]     Private communication from David Newman, Network Test, Inc.

[DN] Private communication from David Newman, Network Test, Inc.

   [FRF]    Frame Relay Forum Glossary, http://www.frforum.com, 1999.

[FRF] Frame Relay Forum Glossary, http://www.frforum.com, 1999.

   [FRF.5]  Frame Relay Forum, Frame Relay/ATM PVC Network Interworking
            Implementation Agreement, December 1994.

[FRF.5] Frame Relay Forum, Frame Relay/ATM PVC Network Interworking Implementation Agreement, December 1994.

   [FRF.8]  Frame Relay Forum, Frame Relay/ATM PVC Service Interworking
            Implementation Agreement, April 1995.

[FRF.8] Frame Relay Forum, Frame Relay/ATM PVC Service Interworking Implementation Agreement, April 1995.

   [FRF.13] Frame Relay Forum, Service Level Definitions Implementation
            Agreement, August 1998.

[FRF.13] Frame Relay Forum, Service Level Definitions Implementation Agreement, August 1998.

   [FRMIB]  Rehbehn, K and D. Fowler, "Definitions of Managed Objects
            for Frame Relay Service", RFC 2954, October 2000.

[FRMIB] Rehbehn, K and D. Fowler, "Definitions of Managed Objects for Frame Relay Service", RFC 2954, October 2000.

6. Editors' Addresses

6. Editors' Addresses

   Jeffrey Dunn
   Advanced Network Consultants, Inc.
   4214 Crest Place
   Ellicott City, MD 21043 USA

Jeffrey Dunn Advanced Network Consultants, Inc. 4214 Crest Place Ellicott City, MD 21043 USA

   Phone: +1 (410) 750-1700
   EMail: Jeffrey.Dunn@worldnet.att.net

Phone: +1 (410) 750-1700 EMail: Jeffrey.Dunn@worldnet.att.net

   Cynthia Martin
   Advanced Network Consultants, Inc.
   4214 Crest Place
   Ellicott City, MD 21043 USA

Cynthia Martin Advanced Network Consultants, Inc. 4214 Crest Place Ellicott City, MD 21043 USA

   Phone: +1 (410) 750-1700
   EMail: Cynthia.E.Martin@worldnet.att.net

Phone: +1 (410) 750-1700 EMail: Cynthia.E.Martin@worldnet.att.net

Dunn & Martin                Informational                     [Page 23]

RFC 3133        Terminology for Frame Relay Benchmarking       June 2001

Dunn & Martin Informational [Page 23] RFC 3133 Terminology for Frame Relay Benchmarking June 2001

Full Copyright Statement

Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Copyright (C) The Internet Society (2001). All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Funding for the RFC Editor function is currently provided by the Internet Society.

Dunn & Martin                Informational                     [Page 24]

Dunn & Martin Informational [Page 24]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

NOT演算子 否定

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る