RFC3404 日本語訳

3404 Dynamic Delegation Discovery System (DDDS) Part Four: The UniformResource Identifiers (URI). M. Mealling. October 2002. (Format: TXT=40124 bytes) (Obsoletes RFC2915, RFC2168) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                        M. Mealling
Request for Comments: 3404                                      VeriSign
Obsoletes: 2915, 2168                                       October 2002
Category: Standards Track

コメントを求める要求を荒びきにして、作業部会M.をネットワークでつないでください: 3404 ベリサインは以下を時代遅れにします。 2915、2168年2002年10月のカテゴリ: 標準化過程

              Dynamic Delegation Discovery System (DDDS)
           Part Four: The Uniform Resource Identifiers (URI)
                         Resolution Application

ダイナミックな代表団発見システム(DDDS)パートFour: Uniform Resource Identifier(URI)解決アプリケーション

Status of this Memo

このMemoの状態

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。

Copyright Notice

版権情報

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Copyright(C)インターネット協会(2002)。 All rights reserved。

Abstract

要約

   This document describes a specification for taking Uniform Resource
   Identifiers (URI) and locating an authoritative server for
   information about that URI.  The method used to locate that
   authoritative server is the Dynamic Delegation Discovery System.

このドキュメントはそのURIの情報のためにUniform Resource Identifier(URI)を取って、正式のサーバの場所を見つけるための仕様を説明します。 その正式のサーバの場所を見つけるのに使用される方法はDynamic DelegationディスカバリーSystemです。

   This document is part of a series that is specified in "Dynamic
   Delegation Discovery System (DDDS) Part One: The Comprehensive DDDS"
   (RFC 3401).  It is very important to note that it is impossible to
   read and understand any document in this series without reading the
   others.

このドキュメントはシリーズの一部です、すなわち、指定されて、「ダイナミックな代表団発見システム(DDDS)は1つを分けます」。 「包括的なDDDS。」(RFC3401) 他のものを読まないでこのシリーズでどんなドキュメントも読んで、理解しているのが不可能であることに注意するのは非常に重要です。

Table of Contents

目次

   1.    Introduction . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.    Terminology  . . . . . . . . . . . . . . . . . . . . . . . .  3
   3.    The Distinction between URNs and URIs  . . . . . . . . . . .  3
   4.    The URI and URN Resolution Application Specifications  . . .  4
   4.1   Application Unique String  . . . . . . . . . . . . . . . . .  4
   4.2   First Well Known Rule  . . . . . . . . . . . . . . . . . . .  4
   4.3   Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
   4.4   Services Parameters  . . . . . . . . . . . . . . . . . . . .  5
   4.4.1 Services . . . . . . . . . . . . . . . . . . . . . . . . . .  6
   4.4.2 protocols  . . . . . . . . . . . . . . . . . . . . . . . . .  6
   4.4.3 Applicability of Services  . . . . . . . . . . . . . . . . .  7

1. 序論. . . . . . . . . . . . . . . . . . . . . . . . 2 2。 用語. . . . . . . . . . . . . . . . . . . . . . . . 3 3。 つぼとURI. . . . . . . . . . . 3 4の区別。 URIとつぼの解決アプリケーション仕様. . . 4 4.1のアプリケーションのユニークなストリング. . . . . . . . . . . . . . . . . 4 4.2Firstのよく知られている規則. . . . . . . . . . . . . . . . . . . 4 4.3は.4 4に旗を揚げさせます; Services. . . . . . . . . . . . . . . . . 7の4つのサービスParameters. . . . . . . . . . . . . . . . . . . . 5 4.4.1Services. . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.4.2のプロトコル. . . . . . . . . . . . . . . . . . . . . . . . . 6 4.4.3Applicability

Mealling                    Standards Track                     [Page 1]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[1ページ]RFC3404DDDSを荒びきにします。

   4.5   Valid Databases  . . . . . . . . . . . . . . . . . . . . . .  7
   5.    Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  8
   5.1   An example using a URN . . . . . . . . . . . . . . . . . . .  8
   5.2   CID URI Scheme Example . . . . . . . . . . . . . . . . . . .  9
   5.3   Resolving an HTTP URI Scheme . . . . . . . . . . . . . . . . 11
   6.    Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
   7.    IANA Considerations  . . . . . . . . . . . . . . . . . . . . 12
   8.    Security Considerations  . . . . . . . . . . . . . . . . . . 12
   9.    Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . 13
         References . . . . . . . . . . . . . . . . . . . . . . . . . 13
         Appendix A: Pseudo Code  . . . . . . . . . . . . . . . . . . 15
         Author's Address . . . . . . . . . . . . . . . . . . . . . . 17
         Full Copyright Statement . . . . . . . . . . . . . . . . . . 18

4.5 有効なデータベース. . . . . . . . . . . . . . . . . . . . . . 7 5。 URN. . . . . . . . . . . . . . . . . . . 8 5.2CID URI Scheme Example. . . . . . . . . . . . . . . . . . . 9 5.3Resolvingを使用する例. . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.1のAnの例、HTTP URI Scheme. . . . . . . . . . . . . . . . 11 6 注意. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7。 IANA問題. . . . . . . . . . . . . . . . . . . . 12 8。 セキュリティ問題. . . . . . . . . . . . . . . . . . 12 9。 承認. . . . . . . . . . . . . . . . . . . . . . 13参照. . . . . . . . . . . . . . . . . . . . . . . . . 13付録A: 中間コード. . . . . . . . . . . . . . . . . . 15作者のアドレスの.17の完全な著作権宣言文. . . . . . . . . . . . . . . . . . 18

1. Introduction

1. 序論

   The Dynamic Delegation Discovery System (DDDS) is used to implement
   lazy binding of strings to data, in order to support dynamically
   configured delegation systems.  The DDDS functions by mapping some
   unique string to data stored within a DDDS Database by iteratively
   applying string transformation rules until a terminal condition is
   reached.

Dynamic DelegationディスカバリーSystem(DDDS)はストリングの怠惰な結合をデータに実行するのに使用されます、ダイナミックに構成された代表団システムをサポートするために。DDDSは、末期的状態に達するまでストリング変換規則を適用しながらDDDS Databaseの中に繰り返しによって格納されたデータに何らかのユニークなストリングを写像することによって、機能します。

   This document describes a DDDS Application for resolving Uniform
   Resource Identifiers (URI).  It does not define the DDDS Algorithm or
   a Database.  The entire series of documents that do so are specified
   in "Dynamic Delegation Discovery System (DDDS) Part One: The
   Comprehensive DDDS" (RFC 3401) [1].  It is very important to note
   that it is impossible to read and understand any document in that
   series without reading the related documents.

このドキュメントは、Uniform Resource Identifier(URI)を決議するためにDDDS Applicationについて説明します。 それはDDDS AlgorithmかDatabaseを定義しません。 そうするドキュメントのシリーズもの全巻は指定されて、「ダイナミックな代表団発見システム(DDDS)は1つを分ける」ということです。 「包括的なDDDS」(RFC3401)[1]。 関連するドキュメントを読まないでそのシリーズでどんなドキュメントも読んで、理解しているのが不可能であることに注意するのは非常に重要です。

   Uniform Resource Identifiers (URI) have been a significant advance in
   retrieving Internet-accessible resources.  However, their brittle
   nature over time has been recognized for several years.  The Uniform
   Resource Identifier working group proposed the development of Uniform
   Resource Names (URN) [8] to serve as persistent, location-independent
   identifiers for Internet resources in order to overcome most of the
   problems with URIs.  RFC 1737 [6] sets forth requirements on URNs.

Uniform Resource Identifier(URI)はインターネットアクセス可能なリソースを検索することにおいて重要な進歩です。 しかしながら、時間がたつにつれての彼らのもろい本質は数年間認識されています。 Uniform Resource Identifierワーキンググループは、URIに関する問題の大部分を克服するためにインターネット資料のためのしつこくて、位置から独立している識別子として機能するようにUniform Resource Names(URN)[8]の開発を提案しました。 RFC1737[6]はURNsに先へ必要条件を定めます。

   During the lifetime of the URI-WG, a number of URN proposals were
   generated.  The developers of several of those proposals met in a
   series of meetings, resulting in a compromise known as the Knoxville
   framework.  The major principle behind the Knoxville framework is
   that the resolution system must be separate from the way names are
   assigned.  This is in marked contrast to most URIs, which identify
   the host to contact and the protocol to use.  Readers are referred to
   [7] for background on the Knoxville framework and for additional
   information on the context and purpose of this proposal.

URI-WGの生涯、多くのURN提案が発生しました。 それらのいくつかの提案の開発者は一連のミーティングで会いました、ノクスビル枠組みとして知られている妥協をもたらして。 ノクスビル枠組みの後ろの主要な原則は解決システムが名前が割り当てられる方法から別々であるに違いないということです。 これはほとんどのURIと著しい対照をなしてあります。URIは連絡するホストと使用するプロトコルを特定します。 読者はノクスビル枠組みに関するバックグラウンドと文脈に関する追加情報とこの提案の目的のための[7]を参照されます。

Mealling                    Standards Track                     [Page 2]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[2ページ]RFC3404DDDSを荒びきにします。

   Separating the way names are resolved from the way they are
   constructed provides several benefits.  It allows multiple naming
   approaches and resolution approaches to compete, as it allows
   different protocols and resolvers to be used.  There is just one
   problem with such a separation - how do we resolve a name when it
   can't give us directions to its resolver?

それらが組み立てられる方法から名前が決議されている方法で分離するのはいくつかの利益を提供します。 それで、異なったプロトコルとレゾルバが使用されるのを許容するとき、複数の命名アプローチと解決アプローチは競争します。 そのような分離に関するちょうど1つの問題があります--それがレゾルバへの指示を私たちに与えることができないとき、私たちはどのように名前を決議しますか?

   For the short term, the Domain Name System (DNS) is the obvious
   candidate for the resolution framework, since it is widely deployed
   and understood.  However, it is not appropriate to use DNS to
   maintain information on a per-resource basis.  First of all, DNS was
   never intended to handle that many records.  Second, the limited
   record size is inappropriate for catalog information.  Third, domain
   names are not appropriate as URNs.

短期的に、ドメインネームシステム(DNS)は解決枠組みの明白な候補です、それが広く配備されて、理解されているので。 しかしながら、1リソースあたり1個のベースの情報を保守するのにDNSを使用するのは適切ではありません。 まず、DNSがそんなに多くの記録を扱うことを決して意図しませんでした。 2番目に、カタログ情報には、限られたレコード・サイズは不適当です。 3番目に、ドメイン名はURNsとして適切ではありません。

   Therefore our approach is to use the DDDS to locate "resolvers" that
   can provide information on individual resources, potentially
   including the resource itself.  To accomplish this, we "rewrite" the
   URI into a Key following the rules found in the DDDS.  This document
   describes URI Resolution as an application of the DDDS and specifies
   the use of at least one Database based on DNS.

したがって、私たちのアプローチは個々のリソースの情報を提供できる「レゾルバ」の場所を見つけるのにDDDSを使用することです、潜在的にリソース自体を含んでいて。 これを達成するために、DDDSで見つけられた規則に従って、私たちはURIをKeyに「書き直します」。 このドキュメントは、DDDSのアプリケーションとしてURI Resolutionを記述して、DNSに基づく少なくとも1Databaseの使用を指定します。

2. Terminology

2. 用語

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.

キーワード“MUST"、「必須NOT」が「必要です」、“SHALL"、「」、“SHOULD"、「「推薦され」て、「5月」の、そして、「任意」のNOTはRFC2119で説明されるように本書では解釈されることであるべきです。

   All capitalized terms are taken from the vocabulary found in the DDDS
   algorithm specification found in RFC 3403 [3].

すべての大文字で書かれた用語がRFC3403[3]で見つけられたDDDSアルゴリズム仕様で見つけられたボキャブラリーからかかります。

3. The Distinction Between URNs and URIs

3. つぼとURIの区別

   From the point of view of this system, there is no theoretical
   difference between resolving URIs in the general case and URNs in the
   specific case.  Operationally however, there is a difference that
   stems from URI resolution possibly not becoming of widespread use.
   If URN resolution is collapsed into generic URI resolution, URNs may
   suffer by the lack of adoption of URI resolution.

このシステムの観点から、一般的なケースとURNsでURIを決議するとき、どんな理論上の違いも特定の場合で来ていません。 ことによると普及使用を一体どうならせないURI解決による違いが操作上あります。 URN解決が一般的なURI解決まで潰されているなら、URNsはURI解決の採用の不足で苦しむかもしれません。

   The solution is to allow for shortcutting for URN resolution.  In the
   following specification generic URI resolution starts by inserting
   rules for known URI schemes into the 'uri.arpa.' registry.  For the
   'URN:' URI scheme, one of the rules found in 'uri.arpa.' would be for
   the 'urn' URI scheme.  This rule would simply delegate to the
   'urn.arpa.' zone for additional NAPTRs based on the URN namespace.
   Essentially, the URI Resolution Rewrite Rule for 'URN:' is the URN
   Resolution Application's First Well Known Rule.

解決策はURN解決のためにshortcuttingすると考慮することです。 以下の仕様ジェネリックURI解決では、知られているURI計画のために'uri.arpa'に規則を挿入することによって. 登録は始まっています。 規則の1つによって、'uri.arpa'でURN: 'URIが計画するのがわかりました。''つぼには、あるだろう'URIを、計画してください。 この規則は単に'urn.arpa'に委任するでしょう。追加NAPTRsのためのゾーンはURN名前空間を基礎づけました。 本質的には、'URNのためのURI Resolution Rewrite Rule: 'URN Resolution ApplicationのものはFirst Well Known Ruleですか?

Mealling                    Standards Track                     [Page 3]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[3ページ]RFC3404DDDSを荒びきにします。

   Therefore, this document specifies two DDDS Applications.  One is for
   URI Resolution and the other is for URN Resolution.  Both are
   technically identical but by separating the two URN Resolution can
   still proceed without the dependency.

したがって、このドキュメントは2DDDS Applicationsを指定します。 1つはURI Resolutionのためのものです、そして、もう片方がURN Resolutionのためのものです。 両方が技術的に同じですが、二人を引き離すことによって、URN Resolutionは依存なしでまだ続くことができます。

4. The URI and URN Resolution Application Specifications

4. URIとつぼの解決アプリケーション仕様

   This template defines the URI and URN Resolution DDDS Application
   according to the rules and requirements found in [3].  The DDDS
   database used by this Application is found in [4] which is the
   document that defines the Naming Authority Pointer (NAPTR) DNS
   Resource Record (RR) type.

[3]で見つけられた規則と要件に従って、このテンプレートはURIとURN Resolution DDDS Applicationを定義します。 このApplicationによって使用されたDDDSデータベースはNaming Authority Pointer(NAPTR)DNS Resource Record(RR)タイプを定義するドキュメントである[4]で見つけられます。

4.1 Application Unique String

4.1 アプリケーションのユニークなストリング

   The Application Unique String is the URI or URN for which an
   authoritative server is being located.  This URI or URN MUST be
   canonicalized and hex encoded according to the "absolute-uri"
   production found in the Collected ABNF from RFC 2396 [15].

Application Unique Stringは正式のサーバが見つけられているURIかURNです。 いてください。このURIかURN MUST、Collected ABNFでRFC2396[15]から見つけられた「絶対uri」生産に従ってコード化されて、canonicalizedして、魔法をかけます。

4.2 First Well Known Rule

4.2/1によく知られている規則

   In the URI case, the first known key is created by taking the URI
   scheme.  In the URN case, the first known key is the Namespace
   Identifier.  For example, the URI 'http://www.example.com/' would
   have a 'http' as its Key.  The URN 'urn:foo:foospace' would have
   'foo' as its first Key.

URI場合では、最初の知られているキーは、URI計画を取ることによって、作成されます。 URN場合では、最初の知られているキーはNamespace Identifierです。 例えば、URI' http://www.example.com/ 'には、Keyとして'http'があるでしょう。 URN'つぼ:foo:foospace'には、最初のKeyとして'foo'があるでしょう。

4.3 Flags

4.3個の旗

   At this time only four flags, "S", "A", "U", and "P", are defined.
   The "S", "A" and "U" flags are for a terminal lookup.  This means
   that the Rule is the last one and that the flag determines what the
   next stage should be.  The "S" flag means that the output of this
   Rule is a domain-name for which one or more SRV [9] records exist.
   See Section 5 for additional information on how URI and URN
   Resolution use the SRV record type.  "A" means that the output of the
   Rule is a domain-name and should be used to lookup either A, AAAA, or
   A6 records for that domain.  The "U" flag means that the output of
   the Rule is a URI [15].

このとき、「S」、「A」、「U」、および「P」という4個の旗だけが、定義されます。 旗がある「S」、「A」、および「u」a端末のルックアップ。 これは、Ruleが最後のものであり、旗が、次のステージが何であるべきであるかを決定することを意味します。 「S」旗は、この規則の出力が1つ以上のSRV[9]記録が存在するドメイン名であることを意味します。 URIとURN ResolutionがどうSRVレコード種類を使用するかに関する追加情報に関してセクション5を見てください。 「A」は、Ruleの出力がドメイン名であることを意味して、A、AAAA、またはA6がそのドメインに記録するルックアップに使用されるべきです。 「U」旗は、規則の出力がURI[15]であることを意味します。

   The "P" flag says that the remainder of the DDDS Algorithm is ignored
   and that the rest of the process is application specific and outside
   the scope of this document.  An application can use the Protocol part
   found in the Services field to identify which Application specific
   set of rules that should be followed next.  The record that contains
   the 'P' flag is the last record that is interpreted by the rules in
   this document.  One might think that this would also make the "P"

「P」旗は、DDDSアルゴリズムの残りが無視されて、過程の残りがアプリケーション特有であると言って、このドキュメントの範囲の外でそうします。 アプリケーションは次に、従われるべきであるどのApplicationの特定のセットの規則を特定するかためにServices野原で発見されるプロトコル一部を使用できます。 'P'旗を含む記録は規則で本書では解釈される最後の記録です。 人は、また、これが「P」になると思うかもしれません。

Mealling                    Standards Track                     [Page 4]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[4ページ]RFC3404DDDSを荒びきにします。

   flag an indicator of a terminal lookup but this would be incorrect
   since a "terminal" Rule is a DDDS concept and this flag indicates
   that anything after this rule does not adhere to DDDS concepts at
   all.

端末のルックアップのインディケータに旗を揚げさせなさい、ただし、「端末」のRuleがDDDS概念であり、この規則が全くDDDS概念を固く守らなかった後にこの旗がその何でも示すので、これは不正確でしょう。

   The remaining alphabetic flags are reserved for future versions of
   this specification.  The numeric flags may be used for local
   experimentation.  The S, A, U and P flags are all mutually exclusive,
   and resolution libraries MAY signal an error if more than one is
   given.  (Experimental code and code for assisting in the creation of
   Rewrite Rules would be more likely to signal such an error than a
   client such as a browser.)  It is anticipated that multiple flags
   will be allowed in the future, so implementers MUST NOT assume that
   the flags field can only contain 0 or 1 characters.  Finally, if a
   client encounters a record with an unknown flag, it MUST ignore it
   and move to the next Rule.  This test takes precedence over any
   ordering since flags can control the interpretation placed on fields.
   A novel flag might change the interpretation of the regexp and/or
   replacement fields such that it is impossible to determine if a
   record matched a given target.

残っているアルファベット旗はこの仕様の将来のバージョンのために予約されます。 数値旗は地方の実験に使用されるかもしれません。 S、A、U、およびP旗はすべて互いに排他的です、そして、1つ以上を与えるなら、解決ライブラリは誤りを示すかもしれません。 (Rewrite Rulesの創造を助けるための実験コードとコードはブラウザなどのクライアントよりそのような誤りに合図しそうでしょう。) implementersが、旗の分野が0か1文字しか含むことができないと仮定してはいけなくて、複数の旗が将来許容されると予期されます。 最終的に、未知の旗でクライアントが記録に遭遇するなら、それは、それを無視して、次のRuleに動かなければなりません。 旗がフィールドに置かれた解釈を制御できるので、このテストはどんな注文の上でも優先します。 目新しい旗がregexp、そして/または、交換分野の解釈を変えるかもしれないので、記録が与えられた目標に合っていたかどうか決定するのは不可能です。

   The "S", "A", and "U" flags are called 'terminal' flags since they
   halt the looping DDDS algorithm.  If those flags are not present,
   clients may assume that another Rule exists at the Key produced by
   the current Rewrite Rule.

ループDDDSアルゴリズムを止めるので、「S」、「」 「旗が呼ばれるU」'端末'は弛みます。 それらの旗が存在していないなら、クライアントは、別のRuleが現在のRewrite Ruleによって生産されたKeyに存在すると仮定するかもしれません。

4.4 Services Parameters

4.4 サービスパラメタ

   Service Parameters for this Application take the form of a string of
   characters that follow this ABNF:

このApplicationのためのサービスParametersはこのABNFの後をつける一連のキャラクタの形を取ります:

      service_field = [ [protocol] *("+" rs)]
      protocol      = ALPHA *31ALPHANUM
      rs            = ALPHA *31ALPHANUM
      ; The protocol and rs fields are limited to 32
      ; characters and must start with an alphabetic.

サービス_分野=[[プロトコル]*(「+」 rs)]プロトコル=アルファ*31ALPHANUM rsはアルファ*31ALPHANUMと等しいです。 プロトコルとrs分野は32に制限されます。 キャラクタと必須が始まる、アルファベットです。

   In other words, an optional protocol specification followed by 0 or
   more resolution services.  Each resolution service is indicated by an
   initial '+' character.

言い換えれば、0つ以上の解決サービスで任意のプロトコル仕様は従いました。 各解決サービスは初期の'+'キャラクタによって示されます。

Mealling                    Standards Track                     [Page 5]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[5ページ]RFC3404DDDSを荒びきにします。

   The empty string is also valid.  This will typically be seen at the
   beginning of a series of Rules, when it is impossible to know what
   services and protocols will be offered at the end of a particular
   delegation path.

また、空のストリングも有効です。 これは一連のRulesの始めに通常見られるでしょう。(その時、どんなサービスとプロトコルが特定の代表団経路の端で提供されるかを知るのは不可能です)。

4.4.1 Services

4.4.1 サービス

   The service identifiers that make up the 'rs' production are generic
   for both URI and URN resolution since the input value types itself
   based on the URI scheme.  The list of valid services are defined in
   [11].

入力値がURI計画に基づいてそれ自体をタイプするので、URIとURN解決の両方に、'rs'生産を作るサービス識別子は一般的です。 有効にサービスのリストは[11]で定義されます。

   Examples of some of these services are:

これらのサービスのいくつかに関する例は以下の通りです。

   I2L:  given a URI return one URI that identifies a location where the
         original URI can be found.

I2L: URIを考えて、オリジナルのURIを見つけることができる位置を特定する1つのURIを返してください。

   I2Ls: given a URI return one or more URIs that identify multiple
         locations where the original URI can be found.

I2Ls: URIを考えて、オリジナルのURIを見つけることができる複数の所在地を特定する1つ以上のURIを返してください。

   I2R:  given a URI return one instance of the resource identified by
         that URI.

I2R: URIを考えて、そのURIによって特定されたリソースの1つの例を返してください。

   I2Rs: given a URI return one or more instances of the resources
         identified by that URI.

I2Rs: URIを考えて、そのURIによって特定されたリソースの1つ以上の例を返してください。

   I2C:  given a URI return one instance of a description of that
         resource.

I2C: URIを考えて、そのリソースの記述の1つの例を返してください。

   I2N:  given a URI return one URN that names the resource (Caution:
         equality with respect to URNs is non-trivial.  See [6] for
         examples of why.)

I2N: URIを考えて、リソースを命名する1URNを返してください。(警告: URNsに関する平等は重要です。 例のための[6]を見る、なぜです。)

4.4.2 Protocols

4.4.2 プロトコル

   The protocol identifiers that are valid for the 'protocol' production
   MUST be defined by documents that are specific to URI resolution.  At
   present the THTTP [10] protocol is the only such specification.

URI解決に特定のドキュメントで'プロトコル'生産に、有効なプロトコル識別子を定義しなければなりません。 現在のところ、THTTP[10]プロトコルは唯一のそのような仕様です。

   It is extremely important to realize that simply specifying any
   protocol in the services field is insufficient since there are
   additional semantics surrounding URI resolution that are not defined
   within the protocols.  For example, if Z39.50 were to be specified as
   a valid protocol it would have to additionally define how it would
   encode requests for specific services, how the URI is encoded, and
   what information is returned.

そこ以来単にサービス分野のどんなプロトコルも指定するのが不十分であるとわかるために非常に重要であるのが、プロトコルの中で定義されない意味論の追加周辺URI解決であるということです。 例えば、Z39.50が有効なプロトコルとして指定されることになっているなら、それは、どのように特定のサービスを求める要求をコード化するか、そして、URIがどのようにコード化されるか、そして、どんな情報が返されるかをさらに、定義しなければならないでしょうに。

Mealling                    Standards Track                     [Page 6]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[6ページ]RFC3404DDDSを荒びきにします。

4.4.3 Applicability of Services

4.4.3 サービスの適用性

   Since it is possible for there to be a complex set of possible
   protocols and services a client application may often need to apply a
   more complex decision making process to a set of records than simply
   matching on an ordered list of protocols.  For example, if there are
   4 rules that are applicable the last one may have a more desirable
   Service field than the first.  But since the client may be satisfied
   by the first it will never know about the 4th one which may be
   'better'.

以来、そこに、クライアントアプリケーションがしばしばより複雑な意志決定の過程を1セットの記録に適用する必要があるかもしれない複雑な可能なプロトコルの、そして、サービスのセットであることはプロトコルの規則正しいリストで単に合っているより可能です。 例えば、4つの適切な規則があれば、最後の1番目より望ましいService分野があるかもしれません。 しかし、クライアントが1日までに満足するかもしれないので、それは4番目の'より良いかもしれない'ものに関して決して知らないでしょう。

   To mitigate this the client may want to slightly modify the DDDS
   algorithm (for this application only!) in order to determine if more
   applicable protocols/services exist.  This can safely be done for
   this application by using a more complex interaction between steps 3
   and 4 of the DDDS algorithm in order to find the optimal path to
   follow.  For example, once a client has found a rule who's
   Substitution Expression produces a result and who's Service
   description is acceptable, it may make note of this but continue to
   look at further rules that apply (all the while adhering to the
   Order!) in order to find a better one.  If none are found it can use
   the one it made note of.

これを緩和するように、クライアントは、より適用されるプロトコル/サービスが存在するかどうか決定するように、DDDSアルゴリズム(このアプリケーションだけのための!)をわずかに変更したがっているかもしれません。 このアプリケーションのために続くように最適経路を見つけるのにDDDSアルゴリズムのステップ3と4の間の、より複雑な相互作用を使用することによって、安全にこれができます。 より良いものを見つけるために例えば、クライアントがいったん規則を見つける後、だれがSubstitution Expressionであるかは結果を生んで、だれがService記述であるかは許容できますが、このメモを作るかもしれませんが、ずっと適用されるさらなる規則を見てください(ずっとOrderを固く守ります!)。 なにも見つけられないなら、それはメモを作ったものを使用できます。

   Keep in mind that in order for this to remain safe, the input to step
   3 and the output of step 4 MUST be identical to the basic algorithm.
   The client software MUST NOT attempt to do this optimization outside
   a specific set of Rewrite Rules (i.e., across delegation paths).

ステップ3への入力とステップ4の出力がこれが安全なままで残るように基本的なアルゴリズムと同じでなければならないことを覚えておいてください。 クライアントソフトウェアは、Rewrite Rules(すなわち、代表団経路の向こう側の)の特定のセットの外でこの最適化をするのを試みてはいけません。

4.5 Valid Databases

4.5 有効なデータベース

   At present only one DDDS Database is specified for this Application.
   "Dynamic Delegation Discovery System (DDDS) Part Three: The Domain
   Name System (DNS) Database" (RFC 3403) [4] specifies a DDDS Database
   that uses the NAPTR DNS resource record to contain the rewrite rules.
   The Keys for this database are encoded as domain-names.

現在のところ、1DDDS DatabaseだけがこのApplicationに指定されます。 「ダイナミックな代表団発見システム(DDDS)パートThree:」 「ドメインネームシステム(DNS)データベース」(RFC3403)[4]は書換規則を含むのにNAPTR DNSリソース記録を使用するDDDS Databaseを指定します。 このデータベースのためのキーズはドメイン名としてコード化されます。

   The output of the First Well Known Rule for the URI Resolution
   Application is the URI's scheme.  In order to convert this to a
   unique key in this Database the string '.uri.arpa.' is appended to
   the end.  This domain-name is used to request NAPTR records which
   produces new keys in the form of domain-names.

URI Resolution ApplicationのためのFirst Well Known Ruleの出力はURIの計画です。 a特有にこれを変換するためにこのDatabaseでストリング'.uri.arpaを合わせてください。. '終わりまで追加します。 このドメイン名は、NAPTRが、どれがドメイン名の形で新しいキーを生産するかを記録するよう要求するのに使用されます。

   The output of the First Well Known Rule of the URN Resolution
   Application is the URN's namespace id.  In order to convert this to a
   unique key in this Database the string '.urn.arpa.' is appended to
   the end.  This domain-name is used to request NAPTR records which
   produces new keys in the form of domain-names.

URN Resolution ApplicationのFirst Well Known Ruleの出力はURNの名前空間イドです。 a特有にこれを変換するためにこのDatabaseでストリング'.urn.arpaを合わせてください。. '終わりまで追加します。 このドメイン名は、NAPTRが、どれがドメイン名の形で新しいキーを生産するかを記録するよう要求するのに使用されます。

Mealling                    Standards Track                     [Page 7]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[7ページ]RFC3404DDDSを荒びきにします。

   DNS servers MAY interpret Flag values and use that information to
   include appropriate SRV and A records in the Additional Information
   portion of the DNS packet.  Clients are encouraged to check for
   additional information but are not required to do so.  See the
   Additional Information Processing section of RFC 3404 for more
   information on NAPTR records and the Additional Information section
   of a DNS response packet.

DNSサーバは、DNSパケットのAdditional情報部分に適切なSRVとA記録を含むのにFlag値を解釈して、その情報を使用するかもしれません。 クライアントは、追加情報がないかどうかチェックするよう奨励されますが、そうする必要はありません。 NAPTR記録に関する詳しい情報のためのRFC3404のAdditional情報Processing部とDNS応答パケットのAdditional情報部を見てください。

   The character set used to encode the substitution expression is
   UTF-8.  The allowed input characters are all those characters that
   are allowed anywhere in a URI.  The characters allowed to be in a Key
   are those that are currently defined for DNS domain-names.  The "i"
   flag to the substitution expression is used to denote that, where
   appropriate for the code points in question, any matches should be
   done in a case-insensitive way.

代替表現をコード化するのに使用される文字の組はUTF-8です。 許容入力キャラクタは皆URIでどこでも許容されているそれらのキャラクタです。 Keyにあることができたキャラクタは現在DNSドメイン名のために定義されるものです。 代替表現への「i」旗は、問題のコード・ポイントに適切であるところでは、大文字と小文字を区別しない方法でどんなマッチもするべきであるのを指示するのに使用されます。

5. Examples

5. 例

5.1 An Example Using a URN

5.1 つぼを使用する例

   Consider a URN that uses the hypothetical FOO namespace.  FOO numbers
   are identifiers for approximately 30 million registered businesses
   around the world, assigned and maintained by Fred, Otto and Orvil,
   Inc.  The URN might look like:

仮定しているFOO名前空間を使用するURNを考えてください。 FOO番号はURNが似るかもしれないフレッド、オットー、およびOrvil Inc.によって割り当てられて、維持された世界の周りのおよそ3000万の登録されたビジネスのための識別子です:

      urn:foo:002372413:annual-report-1997

つぼ:foo:002372413: 年に一度のレポート1997

   The first step in the resolution process is to find out about the FOO
   namespace.  The namespace identifier [8], "foo", is extracted from
   the URN and prepended to '.urn.arpa.', producing 'foo.urn.arpa.'.
   The DNS is queried for NAPTR records for this domain which produces
   the following results:

解決の過程による第一歩はFOO名前空間を見つけることです。 名前空間識別子[8]"foo"がURNから抽出されて、'.urn.arpa'にprependedされる、'foo.urn.arpa'を生産します。 DNSは以下の結果を生むこのドメインのためのNAPTR記録のために質問されます:

foo.urn.arpa.
;;      order pref flags service          regexp        replacement
IN NAPTR 100  10  "s" "foolink+I2L+I2C"  ""   foolink.udp.example.com.
IN NAPTR 100  20  "s" "rcds+I2C"          ""  rcds.udp.example.com.
IN NAPTR 100  30  "s" "thttp+I2L+I2C+I2R" ""  thttp.tcp.example.com.

foo.urn.arpa。 ;; オーダーprefがサービスregexp交換IN NAPTR100 10「s」「foolink+I2L+I2C」に旗を揚げさせる、「「foolink.udp.example.com。」 IN NAPTR100 20「s」「rcds+I2C」、「「rcds.udp.example.com。」 IN NAPTR100 30「s」「thttp+I2L+I2C+I2R」、「「thttp.tcp.example.com。」

   The order field contains equal values, indicating that no order has
   to be followed.  The preference field indicates that the provider
   would like clients to use the special 'foolink' protocol, followed by
   the RCDS protocol, and that THTTP is offered as a last resort.  All
   the records specify the "s" flag which means that the record is
   terminal and that the next step is to retrieve an SRV record from DNS
   for the given domain-name.

オーダーに全く従ってはいけないのを示して、オーダー分野は等しい値を含んでいます。 選択領域は、RCDSプロトコルがあとに続いた特別な'foolink'プロトコルを使用するためにプロバイダーがクライアントのようにそうするのを示します、そして、そのTHTTPは最後の手段として申し出られます。 すべての記録が次のステップが記録が端末であり、与えられたドメイン名のためにDNSからのSRV記録を検索することであることを意味する「s」旗を、指定します。

Mealling                    Standards Track                     [Page 8]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[8ページ]RFC3404DDDSを荒びきにします。

   The service fields say that if we speak of foolink, we will be able
   to issue either the I2L, I2C or I2R requests to obtain a URI or ask
   some complicated questions about the resource.  The Resource
   Cataloging and Distribution Service  (RCDS) [12] could be used to get
   some metadata for the resource, while THTTP could be used to get a
   URI for the current location of the resource.

サービス分野は、私たちがI2L、I2CまたはI2RがURIを得るよう要求するどちらかを発行するか、またはfoolinkについて話すと、リソースに関するいくつかの難問を尋ねることができると言います。 リソースのための何らかのメタデータを得るのにResource CatalogingとDistribution Service(RCDS)[12]を使用できました、リソースの現在の位置にURIを届けるのにTHTTPを使用できましたが。

   Assuming our client does not know the foolink protocol but does know
   the RCDS protocol, our next action is to lookup SRV RRs for
   rcds.udp.example.com, which will tell us hosts that can provide the
   necessary resolution service.  That lookup might return:

私たちのクライアントがfoolinkプロトコルを知りませんが、RCDSプロトコルを知っていると仮定して、rcds.udp.example.comのためのルックアップSRV RRsには私たちの次の動作があります。(rcds.udp.example.comは私たち必要な解決サービスを提供できるホストに言うでしょう)。 そのルックアップは戻るかもしれません:

      ;;                          Pref Weight Port Target
      rcds.udp.example.com  IN SRV 0    0    1000 deffoo.example.com.
                            IN SRV 0    0    1000 dbexample.com.au.
                            IN SRV 0    0    1000 ukexample.com.uk.

;; Pref Weight Port Target rcds.udp.example.com IN SRV0 0 1000deffoo.example.com。 IN SRV0 0 1000dbexample.com.au。 IN SRV0 0 1000ukexample.com.uk。

   telling us three hosts that could actually do the resolution, and
   giving us the port we should use to talk to their RCDS server.  (The
   reader is referred to the SRV specification [9] for the
   interpretation of the fields above.)

彼らのRCDSサーバと話すように私たち実際に解決ができた3人のホストと、ポートを私たちに与えるのに私たちが使用するべきである言います。(読者は上の分野の解釈のためのSRV仕様[9]を参照されます。)

   There is opportunity for significant optimization here.  RFC 3404
   defines that Additional Information section may be available.  In
   this case the the SRV records may be returned as additional
   information for terminal NAPTRs lookups (as well as the A records for
   those SRVs).  This is a significant optimization.  In conjunction
   with a long TTL for *.urn.arpa. records, the average number of probes
   to DNS for resolving most URIs would approach one.

重要な最適化の機会がここにあります。 RFC3404はそれを定義します。Additional情報部は利用可能であるかもしれません。 この場合、端末のNAPTRsルックアップ(それらのSRVsのためのA記録と同様に)のための追加情報としてSRV記録を返すかもしれません。 これは重要な最適化です。 *.urn.arpa記録のための長いTTLに関連して、ほとんどのURIを決議するためのDNSへの徹底的調査の平均した数は1つにアプローチするでしょう。

   Note that the example NAPTR records above are intended to represent
   the result of a NAPTR lookup using some client software like
   nslookup; zone administrators should consult the documentation
   accompanying their domain name servers to verify the precise syntax
   they should use for zone files.

上記の記録が意図する例のNAPTRがnslookupのような何らかのクライアントソフトウェアを使用するNAPTRルックアップの結果を表すことに注意してください。 ゾーンの管理者はそれらがゾーンファイルに使用するべきである正確な構文について確かめるために彼らのドメイン名サーバに伴うドキュメンテーションを参照するべきです。

   Also note that there could have been an additional first step where
   the URN was resolved as a generic URI by looking up urn.uri.arpa.
   The resulting rule would have specified that the NID be extracted
   from the URN and '.urn.arpa.' appended to it resulting in the new key
   'foo.urn.arpa.' which is the first step from above.

また、追加第一歩がURNが一般的なURIとしてurn.uri.arpaを見上げることによって決議されたところにあったかもしれないことに注意してください。 . '上から第一歩である。結果として起こる規則は、NIDがURNと'.urn.arpa'から抽出されると指定したでしょう。新しさをもたらしながらそれに追加して、'foo.urn.arpaを合わせてください。

5.2 CID URI Scheme Example

5.2 Cid URI計画の例

   Consider a URI scheme based on MIME Content-Ids.  The URI might look
   like this:

MIME Content-イドに基づくURI計画を考えてください。 URIはこれに似るかもしれません:

      cid:199606121851.1@bar.example.com

Cid: 199606121851.1@bar.example.com

Mealling                    Standards Track                     [Page 9]

RFC 3404               DDDS Based URI Resolution            October 2002

URI解決2002年10月に基づいた標準化過程[9ページ]RFC3404DDDSを荒びきにします。

   (Note that this example is chosen for pedagogical purposes, and does
   not conform to the CID URI scheme.)

(この例が教育学の目的に選ばれていて、CID URI計画に従わないことに注意してください。)

   The first step in the resolution process is to find out about the CID
   scheme.  The scheme is extracted from the URI, prepended to
   '.uri.arpa.', and the NAPTR for 'cid.uri.arpa.' looked up in the DNS.
   It might return records of the form:

解決の過程による第一歩はCID計画を見つけることです。 計画は'cid.uri.arpaのために'.uri.arpa'NAPTRにprependedされたURIから抽出されます。. 'DNSを調べました。 それはフォームに関する記録を返すかもしれません:

cid.uri.arpa.
;;       order pref flags service        regexp           replacement
IN NAPTR 100   10   ""    ""  "!^cid:.+@([^\.]+\.)(.*)$!\2!i"    .

cid.uri.arpa。 ;; order pref flags service regexp replacement IN NAPTR 100 10 "" "" "!^cid:.+@([^\.]+\.)(.*)$!\2!i" .

   Since there is only one record, ordering the responses is not a
   problem.  The replacement field is empty, so the pattern provided in
   the regexp field is used.  We apply that regexp to the entire URI to
   see if it matches, which it does.  The \2 part of the substitution
   expression returns the string "example.com".  Since the flags field
   is empty, the lookup is not terminal and our next probe to DNS is for
   more NAPTR records where the new domain is 'example.com'.

1つの記録しかないので、応答を命令するのは、問題ではありません。 交換分野が人影がないので、regexp分野に提供されたパターンは使用されています。 私たちはそれが合っているかどうかを見る全体のURIにそのregexpを適用します。(それはそれをします)。 代替表現の2円の部分がストリング"example.com"を返します。 旗以来、分野は人影がありません、そして、ルックアップは端末ではありません、そして、DNSへの私たちの次の徹底的調査は、より多くのNAPTR記録のために新しいドメインが'example.com'であるところにあります。

   Note that the rule does not extract the full domain name from the
   CID, instead it assumes the CID comes from a host and extracts its
   domain.  While all hosts, such as 'bar', could have their very own
   NAPTR, maintaining those records for all the machines at a site could
   be an intolerable burden.  Wildcards are not appropriate here since
   they only return results when there is no exactly matching names
   already in the system.

規則がCIDから完全なドメイン名を抜粋しないというメモ、代わりに、それはCIDがホストから来て、ドメインを抽出すると仮定します。 'バー'などのすべてのホストがそれら自身のNAPTRを持つことができた間、サイトのすべてのマシンのためのそれらの記録を保守するのは、耐えられない重荷であるかもしれません。 まさに既にシステムで名前を合わせてはいけないときだけ、結果を返すので、ワイルドカードはここで適切ではありません。

   The record returned from the query on "example.com" might look like:

"example.com"における質問から返された記録に似るかもしれません:

example.com.
;;      order pref flags service           regexp  replacement
IN NAPTR 100 50 "s" "z3950+I2L+I2C"     ""    z3950.tcp.example.com.
IN NAPTR 100 50 "s" "rescap+I2C"        ""    rescap.udp.example.com.
IN NAPTR 100 50 "s" "thttp+I2L+I2C+I2R" ""    thttp.tcp.example.com.

example.com. ;; order pref flags service regexp replacement IN NAPTR 100 50 "s" "z3950+I2L+I2C" "" z3950.tcp.example.com. IN NAPTR 100 50 "s" "rescap+I2C" "" rescap.udp.example.com. IN NAPTR 100 50 "s" "thttp+I2L+I2C+I2R" "" thttp.tcp.example.com.

   Continuing with the example, note that the values of the order fields
   are equal for all records, so the client is free to pick any record.
   The Application defines the flag 's' to mean a terminal lookup and
   that the output of the rewrite will be a domain-name for which an SRV
   record should be queried.  Once the client has done that, it has the
   following information: the host, port, the protocol, and the services
   available via that protocol.  Given these bits of information the
   client has enough to be able to contact that server and ask it
   questions about the cid URI.

Continuing with the example, note that the values of the order fields are equal for all records, so the client is free to pick any record. The Application defines the flag 's' to mean a terminal lookup and that the output of the rewrite will be a domain-name for which an SRV record should be queried. Once the client has done that, it has the following information: the host, port, the protocol, and the services available via that protocol. Given these bits of information the client has enough to be able to contact that server and ask it questions about the cid URI.

Mealling                    Standards Track                    [Page 10]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 10] RFC 3404 DDDS Based URI Resolution October 2002

   Recall that the regular expression used \2 to extract a domain name
   from the CID, and \.  for matching the literal '.' characters
   separating the domain name components.  Since '\' is the escape
   character, literal occurrences of a backslash must be escaped by
   another backslash.  For the case of the cid.uri.arpa record above,
   the regular expression entered into the master file should be
   "!^cid:.+@([^\\.]+\\.)(.*)$!\\2!i".  When the client code actually
   receives the record, the pattern will have been converted to
   "!^cid:.+@([^\.]+\.)(.*)$!\2!i".

Recall that the regular expression used \2 to extract a domain name from the CID, and \. for matching the literal '.' characters separating the domain name components. Since '\' is the escape character, literal occurrences of a backslash must be escaped by another backslash. For the case of the cid.uri.arpa record above, the regular expression entered into the master file should be "!^cid:.+@([^\\.]+\\.)(.*)$!\\2!i". When the client code actually receives the record, the pattern will have been converted to "!^cid:.+@([^\.]+\.)(.*)$!\2!i".

5.3 Resolving an HTTP URI Scheme

5.3 Resolving an HTTP URI Scheme

   Even if URN systems were in place now, there would still be a
   tremendous number of host based URIs.  It should be possible to
   develop a URI resolution system that can also provide location
   independence for those URIs.

Even if URN systems were in place now, there would still be a tremendous number of host based URIs. It should be possible to develop a URI resolution system that can also provide location independence for those URIs.

   Assume we have the URI for a very popular piece of software that the
   publisher wishes to mirror at multiple sites around the world:

Assume we have the URI for a very popular piece of software that the publisher wishes to mirror at multiple sites around the world:

   http://www.example.com/software/latest-beta.exe

http://www.example.com/software/latest-beta.exe

   We extract the prefix, "http", and lookup NAPTR records for
   'http.uri.arpa.'.  This might return a record of the form:

We extract the prefix, "http", and lookup NAPTR records for 'http.uri.arpa.'. This might return a record of the form:

   http.uri.arpa. IN NAPTR
   ;;  order   pref flags service      regexp             replacement
        100     90   ""      ""   "!^http://([^/:]+)!1!i"       .

http.uri.arpa. IN NAPTR ;; order pref flags service regexp replacement 100 90 "" "" "!^http://([^/:]+)!1!i" .

   This expression returns everything after the first double slash and
   before the next slash or colon.  (We use the '!' character to delimit
   the parts of the substitution expression.  Otherwise we would have to
   use backslashes to escape the forward slashes, and would have a
   regexp in the zone file that looked like this:
   "/^http:\\/\\/([^\\/:]+)/\\1/i").

This expression returns everything after the first double slash and before the next slash or colon. (We use the '!' character to delimit the parts of the substitution expression. Otherwise we would have to use backslashes to escape the forward slashes, and would have a regexp in the zone file that looked like this: "/^http:\\/\\/([^\\/:]+)/\\1/i").

   Applying this pattern to the URI extracts "www.example.com".  Looking
   up NAPTR records for that might return:

Applying this pattern to the URI extracts "www.example.com". Looking up NAPTR records for that might return:

   www.example.com.
   ;;       order pref flags   service  regexp     replacement
    IN NAPTR 100  100  "s"   "thttp+L2R"   ""    thttp.example.com.
    IN NAPTR 100  100  "s"   "ftp+L2R"    ""     ftp.example.com.

www.example.com. ;; order pref flags service regexp replacement IN NAPTR 100 100 "s" "thttp+L2R" "" thttp.example.com. IN NAPTR 100 100 "s" "ftp+L2R" "" ftp.example.com.

   Looking up SRV records for thttp.example.com would return information
   on the hosts that example.com has designated to be its mirror sites.
   The client can then pick one for the user.

Looking up SRV records for thttp.example.com would return information on the hosts that example.com has designated to be its mirror sites. The client can then pick one for the user.

Mealling                    Standards Track                    [Page 11]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 11] RFC 3404 DDDS Based URI Resolution October 2002

6. Notes

6. Notes

   o  Registration procedures for the 'urn.arpa.' and 'uri.arpa.' DNS
      zones are specified in "Dynamic Delegation Discovery System (DDDS)
      Part Five: URI.ARPA Assignment Procedures" (RFC 3405 [5].

o Registration procedures for the 'urn.arpa.' and 'uri.arpa.' DNS zones are specified in "Dynamic Delegation Discovery System (DDDS) Part Five: URI.ARPA Assignment Procedures" (RFC 3405 [5].

   o  If a record at a particular order matches the URI, but the client
      doesn't know the specified protocol and service, the client SHOULD
      continue to examine records that have the same order.  The client
      MUST NOT consider records with a higher value of order.  This is
      necessary to make delegation of portions of the namespace work.
      The order field is what lets site administrators say "all requests
      for URIs matching pattern x go to server 1, all others go to
      server 2".

o If a record at a particular order matches the URI, but the client doesn't know the specified protocol and service, the client SHOULD continue to examine records that have the same order. The client MUST NOT consider records with a higher value of order. This is necessary to make delegation of portions of the namespace work. The order field is what lets site administrators say "all requests for URIs matching pattern x go to server 1, all others go to server 2".

   o  Note that SRV RRs impose additional requirements on clients.

o Note that SRV RRs impose additional requirements on clients.

7. IANA Considerations

7. IANA Considerations

   The use of the "urn.arpa." and "uri.arpa." zones requires
   registration policies and procedures to be followed and for the
   operation of those DNS zones to be maintained.  These policies and
   procedures are spelled out in a "Dynamic Delegation Discovery System
   (DDDS) Part Five: URI.ARPA Assignment Procedures (RFC 3405)" [5].
   The operation of those zones imposes operational and administrative
   responsibilities on the IANA.

The use of the "urn.arpa." and "uri.arpa." zones requires registration policies and procedures to be followed and for the operation of those DNS zones to be maintained. These policies and procedures are spelled out in a "Dynamic Delegation Discovery System (DDDS) Part Five: URI.ARPA Assignment Procedures (RFC 3405)" [5]. The operation of those zones imposes operational and administrative responsibilities on the IANA.

   The registration method used for values in the Services and Flags
   fields is for a specification to be approved by the IESG and
   published as either an Informational or standards track RFC.

The registration method used for values in the Services and Flags fields is for a specification to be approved by the IESG and published as either an Informational or standards track RFC.

   The registration policies for URIs is found in RFC 2717 [17].  URN
   NID registration policies are found in RFC 2611 [16].

The registration policies for URIs is found in RFC 2717 [17]. URN NID registration policies are found in RFC 2611 [16].

8. Security Considerations

8. Security Considerations

   The use of "urn.arpa." and "uri.arpa." as the registry for namespaces
   is subject to denial of service attacks, as well as other DNS
   spoofing attacks.  The interactions with DNSSEC are currently being
   studied.  It is expected that NAPTR records will be signed with SIG
   records once the DNSSEC work is deployed.

The use of "urn.arpa." and "uri.arpa." as the registry for namespaces is subject to denial of service attacks, as well as other DNS spoofing attacks. The interactions with DNSSEC are currently being studied. It is expected that NAPTR records will be signed with SIG records once the DNSSEC work is deployed.

   The rewrite rules make identifiers from other namespaces subject to
   the same attacks as normal domain names.  Since they have not been
   easily resolvable before, this may or may not be considered a
   problem.

The rewrite rules make identifiers from other namespaces subject to the same attacks as normal domain names. Since they have not been easily resolvable before, this may or may not be considered a problem.

Mealling                    Standards Track                    [Page 12]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 12] RFC 3404 DDDS Based URI Resolution October 2002

   Regular expressions should be checked for sanity, not blindly passed
   to something like PERL.

Regular expressions should be checked for sanity, not blindly passed to something like PERL.

   This document has discussed a way of locating a resolver, but has not
   discussed any detail of how the communication with the resolver takes
   place.  There are significant security considerations attached to the
   communication with a resolver.  Those considerations are outside the
   scope of this document, and must be addressed by the specifications
   for particular resolver communication protocols.

This document has discussed a way of locating a resolver, but has not discussed any detail of how the communication with the resolver takes place. There are significant security considerations attached to the communication with a resolver. Those considerations are outside the scope of this document, and must be addressed by the specifications for particular resolver communication protocols.

9. Acknowledgments

9. Acknowledgments

   The editors would like to thank Keith Moore for all his consultations
   during the development of this document.  We would also like to thank
   Paul Vixie for his assistance in debugging our implementation, and
   his answers on our questions.  Finally, we would like to acknowledge
   our enormous intellectual debt to the participants in the Knoxville
   series of meetings, as well as to the participants in the URI and URN
   working groups.

The editors would like to thank Keith Moore for all his consultations during the development of this document. We would also like to thank Paul Vixie for his assistance in debugging our implementation, and his answers on our questions. Finally, we would like to acknowledge our enormous intellectual debt to the participants in the Knoxville series of meetings, as well as to the participants in the URI and URN working groups.

   Specific recognition is given to Ron Daniel who was co-author on the
   original versions of these documents.  His early implementations and
   clarity of thinking was invaluable in clearing up many of the
   potential boundary cases.

Specific recognition is given to Ron Daniel who was co-author on the original versions of these documents. His early implementations and clarity of thinking was invaluable in clearing up many of the potential boundary cases.

References

References

   [1]  Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
        One: The Comprehensive DDDS", RFC 3401, October 2002.

[1] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part One: The Comprehensive DDDS", RFC 3401, October 2002.

   [2]  Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
        Two: The Algorithm", RFC 3402, October 2002.

[2] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part Two: The Algorithm", RFC 3402, October 2002.

   [3]  Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
        Three: The Domain Name System (DNS) Database", RFC 3403, October
        2002.

[3] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part Three: The Domain Name System (DNS) Database", RFC 3403, October 2002.

   [4]  Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
        Four: The Uniform Resource Identifiers (URI) Resolution
        Application", RFC 3404, October 2002.

[4] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part Four: The Uniform Resource Identifiers (URI) Resolution Application", RFC 3404, October 2002.

   [5]  Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
        Five: URI.ARPA Assignment Procedures", RFC 3405y, October 2002.

[5] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part Five: URI.ARPA Assignment Procedures", RFC 3405y, October 2002.

   [6]  Sollins, K. and L. Masinter, "Functional Requirements for
        Uniform Resource Names", RFC 1737, December 1994.

[6] Sollins, K. and L. Masinter, "Functional Requirements for Uniform Resource Names", RFC 1737, December 1994.

Mealling                    Standards Track                    [Page 13]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 13] RFC 3404 DDDS Based URI Resolution October 2002

   [7]  Arms, B., "The URN Implementors, Uniform Resource Names: A
        Progress Report", D-Lib Magazine, February 1996.

[7] Arms, B., "The URN Implementors, Uniform Resource Names: A Progress Report", D-Lib Magazine, February 1996.

   [8]  Moats, R., "URN Syntax", RFC 2141, May 1997.

[8] Moats, R., "URN Syntax", RFC 2141, May 1997.

   [9]  Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
        specifying the location of services (DNS SRV)", RFC 2782,
        February 2000.

[9] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for specifying the location of services (DNS SRV)", RFC 2782, February 2000.

   [10] Daniel, R., "A Trivial Convention for using HTTP in URN
        Resolution", RFC 2169, June 1997.

[10] Daniel, R., "A Trivial Convention for using HTTP in URN Resolution", RFC 2169, June 1997.

   [11] Mealling, M., "URI Resolution Services Necessary for URN
        Resolution", RFC 2483, January 1999.

[11] Mealling, M., "URI Resolution Services Necessary for URN Resolution", RFC 2483, January 1999.

   [12] Moore, K., Browne, S., Cox, J. and J. Gettler, "Resource
        Cataloging and Distribution System", Technical Report CS-97-346,
        December 1996.

[12] Moore, K., Browne, S., Cox, J. and J. Gettler, "Resource Cataloging and Distribution System", Technical Report CS-97-346, December 1996.

   [13] Sollins, K., "Architectural Principles of Uniform Resource Name
        Resolution", RFC 2276, January 1998.

[13] Sollins, K., "Architectural Principles of Uniform Resource Name Resolution", RFC 2276, January 1998.

   [14] Daniel, R. and M. Mealling, "Resolution of Uniform Resource
        Identifiers using the Domain Name System", RFC 2168, June 1997.

[14] Daniel, R. and M. Mealling, "Resolution of Uniform Resource Identifiers using the Domain Name System", RFC 2168, June 1997.

   [15] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
        Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[15] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

   [16] Daigle, L., van Gulik, D., Iannella, R. and P. Falstrom, "URN
        Namespace Definition Mechanisms", RFC 2611, BCP 33, June 1999.

[16] Daigle, L., van Gulik, D., Iannella, R. and P. Falstrom, "URN Namespace Definition Mechanisms", RFC 2611, BCP 33, June 1999.

   [17] Petke, R. and I. King, "Registration Procedures for URL Scheme
        Names", RFC 2717, BCP 35, November 1999.

[17] Petke, R. and I. King, "Registration Procedures for URL Scheme Names", RFC 2717, BCP 35, November 1999.

   [18] Mealling, M. and R. Daniel, "The Naming Authority Pointer
        (NAPTR) DNS Resource Record", RFC 2915, August 2000.

[18] Mealling, M. and R. Daniel, "The Naming Authority Pointer (NAPTR) DNS Resource Record", RFC 2915, August 2000.

Mealling                    Standards Track                    [Page 14]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 14] RFC 3404 DDDS Based URI Resolution October 2002

Appendix A. Pseudo Code

Appendix A. Pseudo Code

   For the edification of implementers, pseudocode for a client routine
   using NAPTRs is given below.  This code is provided merely as a
   convenience, it does not have any weight as a standard way to process
   NAPTR records.  Also, as is the case with pseudocode, it has never
   been executed and may contain logical errors.  You have been warned.

For the edification of implementers, pseudocode for a client routine using NAPTRs is given below. This code is provided merely as a convenience, it does not have any weight as a standard way to process NAPTR records. Also, as is the case with pseudocode, it has never been executed and may contain logical errors. You have been warned.

   //
   // findResolver(URN)
   // Given a URN, find a host that can resolve it.
   //
   findResolver(string URN) {
     // prepend prefix to ".urn.arpa."
     sprintf(key, "%s.urn.arpa.", extractNS(URN));
     do {
       rewrite_flag = false;
       terminal = false;
       if (key has been seen) {
         quit with a loop detected error
       }
       add key to list of "seens"
       records = lookup(type=NAPTR, key); // get all NAPTR RRs for 'key'

// // findResolver(URN) // Given a URN, find a host that can resolve it. // findResolver(string URN) { // prepend prefix to ".urn.arpa." sprintf(key, "%s.urn.arpa.", extractNS(URN)); do { rewrite_flag = false; terminal = false; if (key has been seen) { quit with a loop detected error } add key to list of "seens" records = lookup(type=NAPTR, key); // get all NAPTR RRs for 'key'

       discard any records with an unknown value in the "flags" field.
       sort NAPTR records by "order" field and "preference" field
           (with "order" being more significant than "preference").
       n_naptrs = number of NAPTR records in response.
       curr_order = records[0].order;
       max_order = records[n_naptrs-1].order;

discard any records with an unknown value in the "flags" field. sort NAPTR records by "order" field and "preference" field (with "order" being more significant than "preference"). n_naptrs = number of NAPTR records in response. curr_order = records[0].order; max_order = records[n_naptrs-1].order;

       // Process current batch of NAPTRs according to "order" field.
       for (j=0; j < n_naptrs && records[j].order <= max_order; j++) {
         if (unknown_flag) // skip this record and go to next one
            continue;
         newkey = rewrite(URN, naptr[j].replacement, naptr[j].regexp);
         if (!newkey) // Skip to next record if the rewrite didn't
            match continue;
         // We did do a rewrite, shrink max_order to current value
         // so that delegation works properly
         max_order = naptr[j].order;
         // Will we know what to do with the protocol and services
         // specified in the NAPTR? If not, try next record.
         if(!isKnownProto(naptr[j].services)) {
           continue;
         }
         if(!isKnownService(naptr[j].services)) {
           continue;

// Process current batch of NAPTRs according to "order" field. for (j=0; j < n_naptrs && records[j].order <= max_order; j++) { if (unknown_flag) // skip this record and go to next one continue; newkey = rewrite(URN, naptr[j].replacement, naptr[j].regexp); if (!newkey) // Skip to next record if the rewrite didn't match continue; // We did do a rewrite, shrink max_order to current value // so that delegation works properly max_order = naptr[j].order; // Will we know what to do with the protocol and services // specified in the NAPTR? If not, try next record. if(!isKnownProto(naptr[j].services)) { continue; } if(!isKnownService(naptr[j].services)) { continue;

Mealling                    Standards Track                    [Page 15]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 15] RFC 3404 DDDS Based URI Resolution October 2002

         }

}

         // At this point we have a successful rewrite and we will
         // know how to speak the protocol and request a known
         // resolution service. Before we do the next lookup, check
         // the flags to see if we're done.
         // Note: it is possible to rewrite this so that this valid
         // record could be noted as such but continue on in order
                // to find a 'better' record. But that code would be to
         // voluminous and application specific to be illustrative.
         if (strcasecmp(flags, "S")
          || strcasecmp(flags, "P"))
          || strcasecmp(flags, "A")) {
            terminal = true;
            services = naptr[j].services;
            addnl = any SRV and/or A records returned as additional
                    info for naptr[j].
         }
         key = newkey;
         rewriteflag = true;
         break;
       }
     } while (rewriteflag && !terminal);

// At this point we have a successful rewrite and we will // know how to speak the protocol and request a known // resolution service. Before we do the next lookup, check // the flags to see if we're done. // Note: it is possible to rewrite this so that this valid // record could be noted as such but continue on in order // to find a 'better' record. But that code would be to // voluminous and application specific to be illustrative. if (strcasecmp(flags, "S") || strcasecmp(flags, "P")) || strcasecmp(flags, "A")) { terminal = true; services = naptr[j].services; addnl = any SRV and/or A records returned as additional info for naptr[j]. } key = newkey; rewriteflag = true; break; } } while (rewriteflag && !terminal);

     // Did we not find our way to a resolver?
     if (!rewrite_flag) {
        report an error
        return NULL;
     }

// Did we not find our way to a resolver? if (!rewrite_flag) { report an error return NULL; }

     // Leave rest to another protocol?
     if (strcasecmp(flags, "P")) {
        return key as host to talk to;
     }

// Leave rest to another protocol? if (strcasecmp(flags, "P")) { return key as host to talk to; }

     // If not, keep plugging
     if (!addnl) { // No SRVs came in as additional info, look them up
       srvs = lookup(type=SRV, key);
     }

// If not, keep plugging if (!addnl) { // No SRVs came in as additional info, look them up srvs = lookup(type=SRV, key); }

     sort SRV records by preference, weight, ...
     for each (SRV record) { // in order of preference
       try contacting srv[j].target using the protocol and one of the
           resolution service requests from the "services" field of the
           last NAPTR record.
       if (successful)
         return (target, protocol, service);
         // Actually we would probably return a result, but this

sort SRV records by preference, weight, ... for each (SRV record) { // in order of preference try contacting srv[j].target using the protocol and one of the resolution service requests from the "services" field of the last NAPTR record. if (successful) return (target, protocol, service); // Actually we would probably return a result, but this

Mealling                    Standards Track                    [Page 16]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 16] RFC 3404 DDDS Based URI Resolution October 2002

         // code was supposed to just tell us a good host to talk to.
     }
     die with an "unable to find a host" error;
   }

// code was supposed to just tell us a good host to talk to. } die with an "unable to find a host" error; }

Author's Address

Author's Address

   Michael Mealling
   VeriSign
   21345 Ridgetop Circle
   Sterling, VA  20166
   US

Michael Mealling VeriSign 21345 Ridgetop Circle Sterling, VA 20166 US

   EMail: michael@neonym.net
   URI:   http://www.verisignlabs.com

EMail: michael@neonym.net URI: http://www.verisignlabs.com

Mealling                    Standards Track                    [Page 17]

RFC 3404               DDDS Based URI Resolution            October 2002

Mealling Standards Track [Page 17] RFC 3404 DDDS Based URI Resolution October 2002

Full Copyright Statement

Full Copyright Statement

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Copyright (C) The Internet Society (2002). All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Funding for the RFC Editor function is currently provided by the Internet Society.

Mealling                    Standards Track                    [Page 18]

Mealling Standards Track [Page 18]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

SDカードに保存したファイルをギャラリーなどに反映させる方法

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る