RFC3484 日本語訳

3484 Default Address Selection for Internet Protocol version 6 (IPv6).R. Draves. February 2003. (Format: TXT=55076 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                          R. Draves
Request for Comments: 3484                            Microsoft Research
Category: Standards Track                                  February 2003

Dravesがコメントのために要求するワーキンググループR.をネットワークでつないでください: 3484年のマイクロソフト研究カテゴリ: 標準化過程2003年2月

   Default Address Selection for Internet Protocol version 6 (IPv6)

インターネットプロトコルバージョン6のためのデフォルトAddress Selection(IPv6)

Status of this Memo

このMemoの状態

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。

Copyright Notice

版権情報

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

Copyright(C)インターネット協会(2003)。 All rights reserved。

Abstract

要約

   This document describes two algorithms, for source address selection
   and for destination address selection.  The algorithms specify
   default behavior for all Internet Protocol version 6 (IPv6)
   implementations.  They do not override choices made by applications
   or upper-layer protocols, nor do they preclude the development of
   more advanced mechanisms for address selection.  The two algorithms
   share a common context, including an optional mechanism for allowing
   administrators to provide policy that can override the default
   behavior.  In dual stack implementations, the destination address
   selection algorithm can consider both IPv4 and IPv6 addresses -
   depending on the available source addresses, the algorithm might
   prefer IPv6 addresses over IPv4 addresses, or vice-versa.

このドキュメントはソースアドレス選択と目的地アドレス選択のための2つのアルゴリズムを説明します。 アルゴリズムはすべてのインターネットプロトコルバージョン6(IPv6)実装のためのデフォルトの振舞いを指定します。 彼らはアプリケーションでされた選択か上側の層のプロトコルをくつがえしません、そして、アドレス選択のために、より高度なメカニズムの開発を排除しません。 2つのアルゴリズムが一般的な文脈を共有します、管理者がデフォルトの振舞いをくつがえすことができる方針を提供するのを許容するための任意のメカニズムを含んでいて。 デュアルスタック実装では、目的地アドレス選択アルゴリズムはIPv4とIPv6アドレスの両方を考えることができます--利用可能なソースアドレスによって、アルゴリズムはIPv4アドレスよりIPv6アドレスを好むかもしれませんか、逆もまた同様です。

   All IPv6 nodes, including both hosts and routers, must implement
   default address selection as defined in this specification.

ホストとルータの両方を含むすべてのIPv6ノードが、この仕様に基づき定義されるようにデフォルトがアドレス選択であると実装しなければなりません。

Draves                      Standards Track                     [Page 1]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[1ページ]RFC3484デフォルトアドレス選択

Table of Contents

目次

   1.    Introduction................................................2
         1.1.  Conventions Used in This Document.....................4
   2.    Context in Which the Algorithms Operate.....................4
         2.1.  Policy Table..........................................5
         2.2.  Common Prefix Length..................................6
   3.    Address Properties..........................................6
         3.1.  Scope Comparisons.....................................7
         3.2.  IPv4 Addresses and IPv4-Mapped Addresses..............7
         3.3.  Other IPv6 Addresses with Embedded IPv4 Addresses.....8
         3.4.  IPv6 Loopback Address and Other Format Prefixes.......8
         3.5.  Mobility Addresses....................................8
   4.    Candidate Source Addresses..................................8
   5.    Source Address Selection...................................10
   6.    Destination Address Selection..............................12
   7.    Interactions with Routing..................................14
   8.    Implementation Considerations..............................15
   9.    Security Considerations....................................15
   10.   Examples...................................................16
         10.1. Default Source Address Selection.....................16
         10.2. Default Destination Address Selection................17
         10.3. Configuring Preference for IPv6 or IPv4..............18
         10.4. Configuring Preference for Scoped Addresses..........19
         10.5. Configuring a Multi-Homed Site.......................19
   Normative References.............................................21
   Informative References...........................................22
   Acknowledgments..................................................23
   Author's Address.................................................23
   Full Copyright Statement.........................................24

1. 序論…2 1.1. このドキュメントで中古のコンベンション…4 2. アルゴリズムが作動する文脈…4 2.1. 方針テーブル…5 2.2. 一般的な接頭語の長さ…6 3. 特性を扱ってください…6 3.1. 範囲比較…7 3.2. IPv4アドレスとIPv4によって写像されたアドレス…7 3.3. 他のIPv6は埋め込まれたIPv4と共にアドレスを扱います…8 3.4. IPv6ループバックアドレスと他の形式接頭語…8 3.5. 移動性アドレス…8 4. 候補ソースアドレス…8 5. ソースアドレス選択…10 6. 目的地アドレス選択…12 7. ルート設定との相互作用…14 8. 実装問題…15 9. セキュリティ問題…15 10. 例…16 10.1. デフォルトソースアドレス選択…16 10.2. デフォルト目的地アドレス選択…17 10.3. IPv6かIPv4のために好みを構成します…18 10.4. 見られたアドレスのための好みを構成します…19 10.5. aを構成する、マルチ、家へ帰り、サイト…19 標準の参照…21 有益な参照…22の承認…23作者のアドレス…23 完全な著作権宣言文…24

1. Introduction

1. 序論

   The IPv6 addressing architecture [1] allows multiple unicast
   addresses to be assigned to interfaces.  These addresses may have
   different reachability scopes (link-local, site-local, or global).
   These addresses may also be "preferred" or "deprecated" [2].  Privacy
   considerations have introduced the concepts of "public addresses" and
   "temporary addresses" [3].  The mobility architecture introduces
   "home addresses" and "care-of addresses" [8].  In addition, multi-
   homing situations will result in more addresses per node.  For
   example, a node may have multiple interfaces, some of them tunnels or
   virtual interfaces, or a site may have multiple ISP attachments with
   a global prefix per ISP.

アーキテクチャが[1]であると扱うIPv6は、複数のユニキャストアドレスがインタフェースに割り当てられるのを許容します。 これらのアドレスは(リンク地方、サイト地方、グローバル)であるのに異なった可到達性範囲を持っているかもしれません。 また、これらのアドレスは「都合のよい」か「推奨しない」[2]であるかもしれません。 プライバシー問題は「場内放送」と「仮の住所」[3]の概念を紹介しました。 そして、移動性アーキテクチャが「ホームアドレス」を導入する、「注意、-、」 [8]を扱います。 さらに、マルチの家へ帰り状況は、より多くの1ノードあたりのアドレスをもたらすでしょう。 例えば、ノードには、複数のインタフェースがあるかもしれませんか、またはサイトに複数のISP付属が1ISPあたり1つのグローバルな接頭語と共にあるかもしれません。(それらのいくつかがトンネルかインタフェースのための仮想インターフェース)

   The end result is that IPv6 implementations will very often be faced
   with multiple possible source and destination addresses when
   initiating communication.  It is desirable to have default

結末はコミュニケーションを開始するとき、IPv6実装は頻繁に複数の可能なソースと送付先アドレスに直面するということです。 デフォルトを持っているのは望ましいです。

Draves                      Standards Track                     [Page 2]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[2ページ]RFC3484デフォルトアドレス選択

   algorithms, common across all implementations, for selecting source
   and destination addresses so that developers and administrators can
   reason about and predict the behavior of their systems.

開発者と管理者が彼らのシステムについて推論して、振舞いを予測できるようにソースと送付先アドレスを選ぶのに、すべての実装の向こう側に一般的なアルゴリズム。

   Furthermore, dual or hybrid stack implementations, which support both
   IPv6 and IPv4, will very often need to choose between IPv6 and IPv4
   when initiating communication.  For example, when DNS name resolution
   yields both IPv6 and IPv4 addresses and the network protocol stack
   has available both IPv6 and IPv4 source addresses.  In such cases, a
   simple policy to always prefer IPv6 or always prefer IPv4 can produce
   poor behavior.  As one example, suppose a DNS name resolves to a
   global IPv6 address and a global IPv4 address.  If the node has
   assigned a global IPv6 address and a 169.254/16 auto-configured IPv4
   address [9], then IPv6 is the best choice for communication.  But if
   the node has assigned only a link-local IPv6 address and a global
   IPv4 address, then IPv4 is the best choice for communication.  The
   destination address selection algorithm solves this with a unified
   procedure for choosing among both IPv6 and IPv4 addresses.

その上、二元的であるかハイブリッドのスタック実装(IPv6とIPv4の両方をサポートする)は、頻繁にコミュニケーションを開始するとき、IPv6とIPv4を選ぶ必要があるでしょう。 DNS名前解決がIPv6とIPv4アドレスとネットワークの両方をもたらすとき、例えば、プロトコル・スタックにはIPv6とIPv4ソースアドレスの利用可能な両方があります。 そのような場合、いつもIPv6を好むか、またはいつもIPv4を好む簡単な方針は不十分な振舞いを起こすことができます。 1つの例として、DNS名がアドレスとグローバルなIPv4アドレスをグローバルなIPv6に決議すると仮定してください。 ノードがグローバルなIPv6アドレスと169.254/16の自動構成されたIPv4アドレス[9]を割り当てたなら、IPv6はコミュニケーションのための最も良い選択です。 しかし、ノードがリンクローカルのIPv6アドレスとグローバルなIPv4アドレスだけを割り当てたなら、IPv4はコミュニケーションのための最も良い選択です。 目的地アドレス選択アルゴリズムはIPv6とIPv4アドレスの両方で選ぶための統一された手順でこれを解決します。

   The algorithms in this document are specified as a set of rules that
   define a partial ordering on the set of addresses that are available
   for use.  In the case of source address selection, a node typically
   has multiple addresses assigned to its interfaces, and the source
   address ordering rules in section 5 define which address is the
   "best" one to use.  In the case of destination address selection, the
   DNS may return a set of addresses for a given name, and an
   application needs to decide which one to use first, and in what order
   to try others should the first one not be reachable.  The destination
   address ordering rules in section 6, when applied to the set of
   addresses returned by the DNS, provide such a recommended ordering.

アルゴリズムは使用に利用可能なアドレスのセットで順序を定義する1セットの規則として本書では指定されます。 ソースアドレス選択の場合では、ノードで、セクション5の規則が使用するためにどのアドレスが「最も良い」ものであるかを定義するインタフェース、およびソースアドレス注文に複数のアドレスを通常割り当てます。 選択、DNSが名のための1セットのアドレスを返すかもしれなくて、最初の届かないならアプリケーションが最初に、そして、どんなオーダーを試みたらよいかで他のものを使用するのにどれを決める必要がある送付先アドレスの場合で。 DNSによって返されたアドレスのセットに適用されると送付先アドレスがセクション6で規則を注文して、そのようなお勧めの注文を提供してください。

   This document specifies source address selection and destination
   address selection separately, but using a common context so that
   together the two algorithms yield useful results.  The algorithms
   attempt to choose source and destination addresses of appropriate
   scope and configuration status (preferred or deprecated in the RFC
   2462 sense).  Furthermore, this document suggests a preferred method,
   longest matching prefix, for choosing among otherwise equivalent
   addresses in the absence of better information.

このドキュメントは別々にソースアドレス選択と目的地アドレス選択を指定しますが、一緒にいるように一般的な文脈を使用して、2つのアルゴリズムが役に立つ結果をもたらします。 アルゴリズムは、(RFC2462意味で都合のよいか推奨しない)の適切な範囲と構成状態のソースと送付先アドレスを選ぶのを試みます。 その上、このドキュメントは適した方法を示します、最も長い合っている接頭語、より良い情報がないときそうでなければ、同等なアドレスの中で選ぶために。

   This document also specifies policy hooks to allow administrative
   override of the default behavior.  For example, using these hooks an
   administrator can specify a preferred source prefix for use with a
   destination prefix, or prefer destination addresses with one prefix
   over addresses with another prefix.  These hooks give an
   administrator flexibility in dealing with some multi-homing and
   transition scenarios, but they are certainly not a panacea.

また、このドキュメントは、デフォルトの振舞いの管理オーバーライドを許容するために方針フックを指定します。 例えば、これらのフックを使用して、管理者は、目的地接頭語で都合のよいソース接頭語を使用に指定するか、またはアドレスの上に1つの接頭語がある状態で、別の接頭語で送付先アドレスを好むことができます。 これらのフックは何らかのマルチホーミングと変遷シナリオに対処する際に管理者の柔軟性を与えますが、確かに、それらは万能薬ではありません。

Draves                      Standards Track                     [Page 3]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[3ページ]RFC3484デフォルトアドレス選択

   The selection rules specified in this document MUST NOT be construed
   to override an application or upper-layer's explicit choice of a
   legal destination or source address.

法的な目的地かソースアドレスのアプリケーションか上側の層の明白な選択をくつがえすために本書では指定された選択規則を解釈してはいけません。

1.1. Conventions Used in This Document

1.1. 本書では使用されるコンベンション

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119 [4].

キーワード“MUST"、「必須NOT」が「必要です」、“SHALL"、「」、“SHOULD"、「「推薦され」て、「5月」の、そして、「任意」のNOTはBCP14(RFC2119[4])で説明されるように本書では解釈されることであるべきです。

2. Context in Which the Algorithms Operate

2. アルゴリズムが作動する文脈

   Our context for address selection derives from the most common
   implementation architecture, which separates the choice of
   destination address from the choice of source address.  Consequently,
   we have two separate algorithms for these tasks.  The algorithms are
   designed to work well together and they share a mechanism for
   administrative policy override.

アドレス選択のための私たちの文脈が最も一般的な実装アーキテクチャに由来しています。(それは、ソースアドレスの選択と送付先アドレスの選択を切り離します)。 その結果、私たちには、これらのタスクのための2つの別々のアルゴリズムがあります。 アルゴリズムは一緒にうまくいくように設計されています、そして、それらは施政方針オーバーライドのためにメカニズムを共有します。

   In this implementation architecture, applications use APIs [10] like
   getaddrinfo() that return a list of addresses to the application.
   This list might contain both IPv6 and IPv4 addresses (sometimes
   represented as IPv4-mapped addresses).  The application then passes a
   destination address to the network stack with connect() or sendto().
   The application would then typically try the first address in the
   list, looping over the list of addresses until it finds a working
   address.  In any case, the network layer is never in a situation
   where it needs to choose a destination address from several
   alternatives.  The application might also specify a source address
   with bind(), but often the source address is left unspecified.
   Therefore the network layer does often choose a source address from
   several alternatives.

この実装アーキテクチャでは、アプリケーションはgetaddrinfo()のような住所録をアプリケーションに返すAPI[10]を使用します。 このリストはIPv6とIPv4アドレスの両方(IPv4によって写像されたアドレスとして時々表される)を含むかもしれません。 ネットワークへの送付先アドレスが積み重ねるアプリケーションの当時のパスは()かsendto()を接続します。 次に、アプリケーションはリストにおける最初のアドレスを通常試みるでしょう、働くアドレスを見つけるまで住所録の上で輪にして。 どのような場合でも、ネットワーク層がそれがいくつかの選択肢からの送付先アドレスを選ぶ必要があるところに状況に決してありません。 また、アプリケーションはひも()でソースアドレスを指定するかもしれませんが、しばしば、ソースアドレスは不特定のままにされます。 したがって、ネットワーク層はしばしばいくつかの選択肢からのソースアドレスを選びます。

   As a consequence, we intend that implementations of getaddrinfo()
   will use the destination address selection algorithm specified here
   to sort the list of IPv6 and IPv4 addresses that they return.
   Separately, the IPv6 network layer will use the source address
   selection algorithm when an application or upper-layer has not
   specified a source address.  Application of this specification to
   source address selection in an IPv4 network layer may be possible but
   this is not explored further here.

結果として、私たちは、getaddrinfo()の実装がIPv6のリストを分類するためにここで指定された目的地アドレス選択アルゴリズムとそれらが返すIPv4アドレスを使用することを意図します。 アプリケーションか上側の層がソースアドレスを指定していないとき、別々に、IPv6ネットワーク層はソースアドレス選択アルゴリズムを使用するでしょう。 IPv4ネットワーク層におけるソースアドレス選択へのこの仕様の適用は可能であるかもしれませんが、これはここでさらに探検されません。

   Well-behaved applications SHOULD iterate through the list of
   addresses returned from getaddrinfo() until they find a working
   address.

彼らが働くアドレスを見つけるまで、SHOULDが住所録を通して繰り返す行儀のよいアプリケーションはgetaddrinfo()から戻りました。

Draves                      Standards Track                     [Page 4]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[4ページ]RFC3484デフォルトアドレス選択

   The algorithms use several criteria in making their decisions.  The
   combined effect is to prefer destination/source address pairs for
   which the two addresses are of equal scope or type, prefer smaller
   scopes over larger scopes for the destination address, prefer non-
   deprecated source addresses, avoid the use of transitional addresses
   when native addresses are available, and all else being equal prefer
   address pairs having the longest possible common prefix.  For source
   address selection, public addresses [3] are preferred over temporary
   addresses.  In mobile situations [8], home addresses are preferred
   over care-of addresses.  If an address is simultaneously a home
   address and a care-of address (indicating the mobile node is "at
   home" for that address), then the home/care-of address is preferred
   over addresses that are solely a home address or solely a care-of
   address.

アルゴリズムは彼らの決定をする際にいくつかの評価基準を使用します。 結合された効果が2つのアドレスが等しい範囲のものである目的地/ソースアドレス組を好むか、またはタイプすることであり、送付先アドレスのために、より大きい範囲より小さい範囲を好んでください、そして、非推奨しないソースアドレスを好んでください、そして、固有のアドレスがいつ利用可能であるか、そして、すべてのほかの存在同輩が可能な限り長い一般的な接頭語を持っている組に演説するのを好む過渡的なアドレスの使用を避けてください。 ソースアドレス選択において、場内放送[3]は仮の住所より好まれます。 モバイル状況[8]で、ホームアドレスが好まれる、終わっている、注意、-、アドレス。 同時にアドレスがホームアドレスとaである、注意、-、次に、ホーム/を扱う、(モバイルノードがそのアドレスのために「ホーム」にあるのを示します)注意、-、アドレスが唯一ホームアドレスであるアドレスの上か唯一好まれる、注意、-、アドレス

   This specification optionally allows for the possibility of
   administrative configuration of policy that can override the default
   behavior of the algorithms.  The policy override takes the form of a
   configurable table that specifies precedence values and preferred
   source prefixes for destination prefixes.  If an implementation is
   not configurable, or if an implementation has not been configured,
   then the default policy table specified in this document SHOULD be
   used.

この仕様は任意にアルゴリズムのデフォルトの振舞いをくつがえすことができる方針の管理構成の可能性を考慮します。方針オーバーライドは先行値と都合のよいソース接頭語を目的地接頭語に指定する構成可能なテーブルの形を取ります。 実装が構成可能でないか、または実装が構成されていないなら、デフォルト方針テーブルは本書ではSHOULDを指定しました。使用されます。

2.1. Policy Table

2.1. 方針テーブル

   The policy table is a longest-matching-prefix lookup table, much like
   a routing table.  Given an address A, a lookup in the policy table
   produces two values:  a precedence value Precedence(A) and a
   classification or label Label(A).

方針テーブルは経路指定テーブルのように最も長い合っている接頭語ルックアップ表です。 アドレスAを考えて、方針テーブルのルックアップは2つの値を生産します: 先行価値のPrecedence(A)と分類かラベルLabel(A)。

   The precedence value Precedence(A) is used for sorting destination
   addresses.  If Precedence(A) > Precedence(B), we say that address A
   has higher precedence than address B, meaning that our algorithm will
   prefer to sort destination address A before destination address B.

先行価値のPrecedence(A)はソーティング送付先アドレスに使用されます。 Precedence(A)>Precedence(B)であるなら、私たちは、アドレスAにはBを扱うより高い先行があると言います、私たちのアルゴリズムが送付先アドレスBの前に送付先アドレスAを分類するのを好む意味。

   The label value Label(A) allows for policies that prefer a particular
   source address prefix for use with a destination address prefix.  The
   algorithms prefer to use a source address S with a destination
   address D if Label(S) = Label(D).

ラベル価値のLabel(A)は目的地アドレス接頭語による使用のために特定のソースアドレス接頭語を好む方針を考慮します。 Label(S)がラベル(D)と等しいなら、アルゴリズムは、送付先アドレスDがあるソースアドレスSを使用するのを好みます。

   IPv6 implementations SHOULD support configurable address selection
   via a mechanism at least as powerful as the policy tables defined
   here.  Note that at the time of this writing there is only limited
   experience with the use of policies that select from a set of
   possible IPv6 addresses.  As more experience is gained, the
   recommended default policies may change.  Consequently it is
   important that implementations provide a way to change the default

IPv6実装SHOULDは、構成可能なアドレスが選択であるとここで定義された方針テーブルと少なくとも同じくらい強力なメカニズムでサポートします。 そこでのこの書くこと時点のそれが1セットの可能なIPv6アドレスから選び抜く方針の使用の限られた経験にすぎないことに注意してください。 より多くの経験をするのに従って、お勧めのデフォルト方針は変化するかもしれません。 その結果、実装がデフォルトを変える方法を提供するのは、重要です。

Draves                      Standards Track                     [Page 5]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[5ページ]RFC3484デフォルトアドレス選択

   policies as more experience is gained.  Sections 10.3 and 10.4
   provide examples of the kind of changes that might be needed.

より多くの経験をするような方針。 セクション10.3と10.4は必要であるかもしれない変化の種類に関する例を提供します。

   If an implementation is not configurable or has not been configured,
   then it SHOULD operate according to the algorithms specified here in
   conjunction with the following default policy table:

実装は、構成可能でないか、または構成されていなくて、次に、それはSHOULDです。ここで以下のデフォルト方針テーブルに関連して指定されたアルゴリズムに従って、作動してください:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96         10     4

接頭語先行は以下をラベルします:1/128 50 0 ::/0 40 1 2002::/16 30 2 ::/96 20 3 ::ffff: 0:0/96 10 4

   One effect of the default policy table is to prefer using native
   source addresses with native destination addresses, 6to4 [5] source
   addresses with 6to4 destination addresses, and v4-compatible [1]
   source addresses with v4-compatible destination addresses.  Another
   effect of the default policy table is to prefer communication using
   IPv6 addresses to communication using IPv4 addresses, if matching
   source addresses are available.

デフォルト方針テーブルの1つの効果は固有の送付先アドレスがある固有のソースアドレス、6to4送付先アドレスがある6to4[5]ソースアドレス、およびv4コンパチブル送付先アドレスがあるv4コンパチブル[1]ソースアドレスを使用するのを好むことです。 デフォルト方針テーブルの別の効果はIPv4アドレスを使用することでIPv6アドレスをコミュニケーションに使用することでコミュニケーションを好むことです、合っているソースアドレスが利用可能であるなら。

   Policy table entries for scoped address prefixes MAY be qualified
   with an optional zone index.  If so, a prefix table entry only
   matches against an address during a lookup if the zone index also
   matches the address's zone index.

見られたアドレス接頭語のための方針テーブル項目は任意のゾーンインデックスで資格があるかもしれません。 そうだとすれば、また、ゾーンインデックスがアドレスsのゾーンインデックスに合っている場合にだけ、接頭語テーブルエントリーはアドレスに対してルックアップの間、合っています。

2.2. Common Prefix Length

2.2. 一般的な接頭語の長さ

   We define the common prefix length CommonPrefixLen(A, B) of two
   addresses A and B as the length of the longest prefix (looking at the
   most significant, or leftmost, bits) that the two addresses have in
   common.  It ranges from 0 to 128.

私たちは2つのアドレスが共通である中で最も長い接頭語(最も重要であるか、または一番左のビットを見る)の長さと2つのアドレスAとBの一般的な接頭語の長さのCommonPrefixLen(A、B)を定義します。 それは0〜128まで及びます。

3. Address Properties

3. アドレスの特性

   In the rules given in later sections, addresses of different types
   (e.g., IPv4, IPv6, multicast and unicast) are compared against each
   other.  Some of these address types have properties that aren't
   directly comparable to each other.  For example, IPv6 unicast
   addresses can be "preferred" or "deprecated" [2], while IPv4
   addresses have no such notion.  To compare such addresses using the
   ordering rules (e.g., to use "preferred" addresses in preference to
   "deprecated" addresses), the following mappings are defined.

後のセクションで与えられた規則で、異なったタイプ(例えば、IPv4、IPv6、マルチキャスト、およびユニキャスト)のアドレスは互いに対して比較されます。 これらのアドレスタイプの中には、直接互いに匹敵しない特性を持っている人もいます。 例えば、IPv6ユニキャストアドレスは「都合のよい」か「推奨しない」[2]であることができますが、IPv4アドレスには、どんなそのような考えもありません。 注文規則(例えば「推奨しない」アドレスに優先して「都合のよい」アドレスを使用する)を使用することでそのようなアドレスを比較するために、以下のマッピングは定義されます。

Draves                      Standards Track                     [Page 6]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[6ページ]RFC3484デフォルトアドレス選択

3.1. Scope Comparisons

3.1. 範囲比較

   Multicast destination addresses have a 4-bit scope field that
   controls the propagation of the multicast packet.  The IPv6
   addressing architecture defines scope field values for interface-
   local (0x1), link-local (0x2), subnet-local (0x3), admin-local (0x4),
   site-local (0x5), organization-local (0x8), and global (0xE)
   scopes [11].

マルチキャスト送付先アドレスには、マルチキャストパケットの伝播を制御する4ビットの範囲分野があります。 IPv6アドレッシング体系はインタフェースの地方の(0×1)のために範囲分野値を定義します、リンク地方です(0×2)、サブネット地方です(0×3)、アドミン地方です(0×4)、サイト地方です(0×5)、組織地方(0×8)の、そして、グローバルな(0xE)範囲[11]。

   Use of the source address selection algorithm in the presence of
   multicast destination addresses requires the comparison of a unicast
   address scope with a multicast address scope.  We map unicast link-
   local to multicast link-local, unicast site-local to multicast site-
   local, and unicast global scope to multicast global scope.  For
   example, unicast site-local is equal to multicast site-local, which
   is smaller than multicast organization-local, which is smaller than
   unicast global, which is equal to multicast global.

マルチキャスト送付先アドレスがあるときソースアドレス選択アルゴリズムの使用はマルチキャストアドレスの範囲とのユニキャストアドレスの範囲の比較を必要とします。 私たちはリンク地方でマルチキャストへの地方のユニキャストリンクを写像します、マルチキャストのグローバルな範囲へのユニキャストのマルチキャストサイトへのサイト地方の地方の、そして、ユニキャストグローバルな範囲。 例えば、ユニキャストサイトローカルはマルチキャストサイトローカルに堪えます。(そのローカルは、マルチキャスト組織ローカルより小さいです)。(そのローカルは、ユニキャストグローバルであるというよりも小さく、マルチキャストにグローバルな同輩です)。

   We write Scope(A) to mean the scope of address A.  For example, if A
   is a link-local unicast address and B is a site-local multicast
   address, then Scope(A) < Scope(B).

私たちはアドレスA.Forの例の範囲を意味するためにScope(A)に書きます、Aがリンクローカルのユニキャストアドレスであり、Bがサイトローカルのマルチキャストアドレス、当時のScope(A)<Scope(B)であるなら。

   This mapping implicitly conflates unicast site boundaries and
   multicast site boundaries [11].

このマッピングはそれとなくユニキャストサイト境界とマルチキャストサイト境界[11]を融合します。

3.2. IPv4 Addresses and IPv4-Mapped Addresses

3.2. IPv4アドレスとIPv4によって写像されたアドレス

   The destination address selection algorithm operates on both IPv6 and
   IPv4 addresses.  For this purpose, IPv4 addresses should be
   represented as IPv4-mapped addresses [1].  For example, to lookup the
   precedence or other attributes of an IPv4 address in the policy
   table, lookup the corresponding IPv4-mapped IPv6 address.

目的地アドレス選択アルゴリズムはIPv6とIPv4アドレスの両方を作動させます。 このために、IPv4アドレスはIPv4によって写像されたアドレス[1]として表されるべきです。 例えば方針テーブルのIPv4アドレスのルックアップの他の先行か属性への対応するIPv4によって写像されたIPv6が扱うルックアップ。

   IPv4 addresses are assigned scopes as follows.  IPv4 auto-
   configuration addresses [9], which have the prefix 169.254/16, are
   assigned link-local scope.  IPv4 private addresses [12], which have
   the prefixes 10/8, 172.16/12, and 192.168/16, are assigned site-local
   scope.  IPv4 loopback addresses [12, section 4.2.2.11], which have
   the prefix 127/8, are assigned link-local scope (analogously to the
   treatment of the IPv6 loopback address [11, section 4]).  Other IPv4
   addresses are assigned global scope.

以下の範囲はIPv4アドレスに割り当てられます。 リンク地方の範囲はIPv4自動構成アドレス[9](接頭語169.254/16を持っています)に割り当てられます。 サイト地方の範囲はIPv4プライベート・アドレス[12](接頭語10/8、172.16/12、および192.168/16を持っています)に割り当てられます。 IPv4ループバックアドレス、[12、4.2に、リンク地方で.11(接頭語127/8を持っている)が]割り当てられる.2を区分してください、範囲、(類似して、IPv6ループバックアドレス[11、セクション4)の処理に。 グローバルな範囲は他のIPv4アドレスに割り当てられます。

   IPv4 addresses should be treated as having "preferred" (in the RFC
   2462 sense) configuration status.

IPv4アドレスは構成状態が「好み」であったとして(RFC2462意味で)扱われるべきです。

Draves                      Standards Track                     [Page 7]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[7ページ]RFC3484デフォルトアドレス選択

3.3. Other IPv6 Addresses with Embedded IPv4 Addresses

3.3. 他のIPv6は埋め込まれたIPv4と共にアドレスを扱います。

   IPv4-compatible addresses [1], IPv4-mapped [1], IPv4-translatable [6]
   and 6to4 addresses [5] contain an embedded IPv4 address.  For the
   purposes of this document, these addresses should be treated as
   having global scope.

IPv4コンパチブルアドレスIPv4によって写像された[1]、[1]、IPv4翻訳できる[6]、および6to4アドレス[5]は埋め込まれたIPv4アドレスを含んでいます。 このドキュメントの目的のために、これらのアドレスはグローバルな範囲を持っているとして扱われるべきです。

   IPv4-compatible, IPv4-mapped, and IPv4-translatable addresses should
   be treated as having "preferred" (in the RFC 2462 sense)
   configuration status.

IPv4コンパチブル、そして、IPv4によって写像されて、IPv4翻訳できるアドレスは構成状態が「好み」であったとして(RFC2462意味で)扱われるべきです。

3.4. IPv6 Loopback Address and Other Format Prefixes

3.4. IPv6ループバックアドレスと他の形式接頭語

   The loopback address should be treated as having link-local scope
   [11, section 4] and "preferred" (in the RFC 2462 sense) configuration
   status.

ループバックアドレスはリンク地方の範囲[11、セクション4]と「都合のよい」(RFC2462意味における)構成状態を持っているとして扱われるべきです。

   NSAP addresses and other addresses with as-yet-undefined format
   prefixes should be treated as having global scope and "preferred" (in
   the RFC 2462) configuration status.  Later standards may supersede
   this treatment.

NSAPアドレスと他のアドレス、まだ未定義の形式として、接頭語はグローバルな範囲と「都合のよい」(RFC2462の)構成状態を持っているとして扱われるべきです。 後の規格はこの処理に取って代わるかもしれません。

3.5. Mobility Addresses

3.5. 移動性アドレス

   Some nodes may support mobility using the concepts of a home address
   and a care-of address (for example see [8]). Conceptually, a home
   address is an IP address assigned to a mobile node and used as the
   permanent address of the mobile node. A care-of address is an IP
   address associated with a mobile node while visiting a foreign link.
   When a mobile node is on its home link, it may have an address that
   is simultaneously a home address and a care-of address.

いくつかのノードが移動性がホームアドレスの概念を使用して、aであることを支えるかもしれない、注意、-、アドレス、(例えば、[8])を見てください。 概念的に、ホームアドレスはモバイルノードに割り当てられて、モバイルノードの本籍として使用されるIPアドレスです。 注意、-、アドレス、IPアドレスは外国リンクを訪問する間、モバイルノードに関連していますか? そして、ホームのリンクの上にモバイルノードがあるときそれには同時にホームアドレスであるアドレスがあるかもしれない、注意、-、アドレス

   For the purposes of this document, it is sufficient to know whether
   or not one's own addresses are designated as home addresses or care-
   of addresses.  Whether or not an address should be designated a home
   address or care-of address is outside the scope of this document.

このドキュメントの目的のために、自分自身のアドレスがアドレスのホームアドレスか注意として指定されるかどうかを知るのは十分です。 または、アドレスがホームアドレスに指定されるべきである、注意、-、このドキュメントの範囲の外にアドレスがあります。

4. Candidate Source Addresses

4. 候補ソースアドレス

   The source address selection algorithm uses the concept of a
   "candidate set" of potential source addresses for a given destination
   address.  The candidate set is the set of all addresses that could be
   used as a source address; the source address selection algorithm will
   pick an address out of that set.  We write CandidateSource(A) to
   denote the candidate set for the address A.

ソースアドレス選択アルゴリズムは与えられた送付先アドレスに潜在的ソースアドレスの「候補セット」の概念を使用します。 候補セットはソースアドレスとして使用できたすべてのアドレスのセットです。 ソースアドレス選択アルゴリズムはそのセットからアドレスを選ぶでしょう。 私たちは、アドレスAのために候補セットを指示するためにCandidateSource(A)に書きます。

Draves                      Standards Track                     [Page 8]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[8ページ]RFC3484デフォルトアドレス選択

   It is RECOMMENDED that the candidate source addresses be the set of
   unicast addresses assigned to the interface that will be used to send
   to the destination.  (The "outgoing" interface.)  On routers, the
   candidate set MAY include unicast addresses assigned to any interface
   that forwards packets, subject to the restrictions described below.

候補ソースアドレスが目的地に発信するのに使用されるインタフェースに割り当てられたユニキャストアドレスのセットであることはRECOMMENDEDです。 (「送信する」インタフェース。) ルータでは、候補セットは以下で説明された制限を条件としてパケットを進めるどんなインタフェースにも割り当てられたユニキャストアドレスを含むかもしれません。

      Discussion:  The Neighbor Discovery Redirect mechanism [14]
      requires that routers verify that the source address of a packet
      identifies a neighbor before generating a Redirect, so it is
      advantageous for hosts to choose source addresses assigned to the
      outgoing interface.  Implementations that wish to support the use
      of global source addresses assigned to a loopback interface should
      behave as if the loopback interface originates and forwards the
      packet.

議論: NeighborディスカバリーRedirectメカニズム[14]は、ルータが、Redirectを生成する前にパケットのソースアドレスが隣人を特定するのでホストが外向的なインタフェースに割り当てられたソースアドレスを選ぶのが、有利であることを確かめるのを必要とします。 まるでループバックインタフェースがパケットを溯源して、進めるかのようにループバックインタフェースに割り当てられたグローバルなソースアドレスの使用をサポートしたがっている実装は振る舞うべきです。

   In some cases the destination address may be qualified with a zone
   index or other information that will constrain the candidate set.

いくつかの場合、送付先アドレスは候補セットを抑制するゾーンインデックスか他の情報で資格があるかもしれません。

   For multicast and link-local destination addresses, the set of
   candidate source addresses MUST only include addresses assigned to
   interfaces belonging to the same link as the outgoing interface.

マルチキャストとリンクローカルの送付先アドレスのために、候補ソースアドレスのセットは外向的なインタフェースと同じリンクに属すインタフェースに割り当てられたアドレスを含むだけでよいです。

      Discussion:  The restriction for multicast destination addresses
      is necessary because currently-deployed multicast forwarding
      algorithms use Reverse Path Forwarding (RPF) checks.

議論: 現在配布しているマルチキャスト推進アルゴリズムがReverse Path Forwarding(RPF)チェックを使用するので、マルチキャスト送付先アドレスのための制限が必要です。

   For site-local destination addresses, the set of candidate source
   addresses MUST only include addresses assigned to interfaces
   belonging to the same site as the outgoing interface.

サイトローカルの送付先アドレスのために、候補ソースアドレスのセットは外向的なインタフェースと同じサイトに属すインタフェースに割り当てられたアドレスを含むだけでよいです。

   In any case, anycast addresses, multicast addresses, and the
   unspecified address MUST NOT be included in a candidate set.

どのような場合でも、候補セットにanycastアドレス、マルチキャストアドレス、および不特定のアドレスを含んではいけません。

   If an application or upper-layer specifies a source address that is
   not in the candidate set for the destination, then the network layer
   MUST treat this as an error.  The specified source address may
   influence the candidate set, by affecting the choice of outgoing
   interface.  If the application or upper-layer specifies a source
   address that is in the candidate set for the destination, then the
   network layer MUST respect that choice.  If the application or
   upper-layer does not specify a source address, then the network layer
   uses the source address selection algorithm specified in the next
   section.

アプリケーションか上側の層が候補セットにないソースアドレスを目的地に指定するなら、ネットワーク層は誤りとしてこれを扱わなければなりません。 外向的なインタフェースの選択に影響することによって、指定されたソースアドレスは候補セットに影響を及ぼすかもしれません。 アプリケーションか上側の層が候補セットにあるソースアドレスを目的地に指定するなら、ネットワーク層はその選択を尊敬しなければなりません。 アプリケーションか上側の層がソースアドレスを指定しないなら、ネットワーク層は次のセクションで指定されたソースアドレス選択アルゴリズムを使用します。

   On IPv6-only nodes that support SIIT [6, especially section 5], if
   the destination address is an IPv4-mapped address then the candidate
   set MUST contain only IPv4-translatable addresses.  If the

SIITが[6、特にセクション5]であると支えるIPv6だけノードの上では、候補セットは送付先アドレスがIPv4によって写像されたアドレスであるならIPv4翻訳できるアドレスだけを含まなければなりません。 the

Draves                      Standards Track                     [Page 9]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[9ページ]RFC3484デフォルトアドレス選択

   destination address is not an IPv4-mapped address, then the candidate
   set MUST NOT contain IPv4-translatable addresses.

送付先アドレスがIPv4によって写像されたアドレスでない、そして、候補セットはIPv4翻訳できるアドレスを含んではいけません。

5. Source Address Selection

5. ソースアドレス選択

   The source address selection algorithm produces as output a single
   source address for use with a given destination address.  This
   algorithm only applies to IPv6 destination addresses, not IPv4
   addresses.

選択アルゴリズムが生産するソースアドレスは与えられた送付先アドレスで使用のためのただ一つのソースアドレスを出力しました。 このアルゴリズムはIPv4アドレスではなく、IPv6送付先アドレスに適用されるだけです。

   The algorithm is specified here in terms of a list of pair-wise
   comparison rules that (for a given destination address D) imposes a
   "greater than" ordering on the addresses in the candidate set
   CandidateSource(D).  The address at the front of the list after the
   algorithm completes is the one the algorithm selects.

アルゴリズムがここでaを課す(与えられた送付先アドレスDのために)対状比較規則のリストで指定される、「」 候補のアドレスで注文するのがセットしたよりすばらしいCandidateSource(D)。 アルゴリズムの後のリストの前部のアドレスが完成する、アルゴリズムが選択するのはそうです。

   Note that conceptually, a sort of the candidate set is being
   performed, where a set of rules define the ordering among addresses.
   But because the output of the algorithm is a single source address,
   an implementation need not actually sort the set; it need only
   identify the "maximum" value that ends up at the front of the sorted
   list.

概念的に、候補セットの種類が実行されていることに注意してください、1セットの規則がアドレスの中で注文を定義するところで。 しかし、アルゴリズムの出力がただ一つのソースアドレスであるので、実装は実際にセットを分類する必要はありません。 それは分類されたリストの前部で終わる「最大」の値を特定するだけでよいです。

   The ordering of the addresses in the candidate set is defined by a
   list of eight pair-wise comparison rules, with each rule placing a
   "greater than," "less than" or "equal to" ordering on two source
   addresses with respect to each other (and that rule).  In the case
   that a given rule produces a tie, i.e., provides an "equal to" result
   for the two addresses, the remaining rules are applied (in order) to
   just those addresses that are tied to break the tie.  Note that if a
   rule produces a single clear "winner" (or set of "winners" in the
   case of ties), those addresses not in the winning set can be
   discarded from further consideration, with subsequent rules applied
   only to the remaining addresses.  If the eight rules fail to choose a
   single address, some unspecified tie-breaker should be used.

The ordering of the addresses in the candidate set is defined by a list of eight pair-wise comparison rules, with each rule placing a "greater than," "less than" or "equal to" ordering on two source addresses with respect to each other (and that rule). In the case that a given rule produces a tie, i.e., provides an "equal to" result for the two addresses, the remaining rules are applied (in order) to just those addresses that are tied to break the tie. Note that if a rule produces a single clear "winner" (or set of "winners" in the case of ties), those addresses not in the winning set can be discarded from further consideration, with subsequent rules applied only to the remaining addresses. If the eight rules fail to choose a single address, some unspecified tie-breaker should be used.

   When comparing two addresses SA and SB from the candidate set, we say
   "prefer SA" to mean that SA is "greater than" SB, and similarly we
   say "prefer SB" to mean that SA is "less than" SB.

When comparing two addresses SA and SB from the candidate set, we say "prefer SA" to mean that SA is "greater than" SB, and similarly we say "prefer SB" to mean that SA is "less than" SB.

   Rule 1:  Prefer same address.
   If SA = D, then prefer SA.  Similarly, if SB = D, then prefer SB.

Rule 1: Prefer same address. If SA = D, then prefer SA. Similarly, if SB = D, then prefer SB.

   Rule 2:  Prefer appropriate scope.
   If Scope(SA) < Scope(SB): If Scope(SA) < Scope(D), then prefer SB
   and otherwise prefer SA.  Similarly, if Scope(SB) < Scope(SA): If
   Scope(SB) < Scope(D), then prefer SA and otherwise prefer SB.

Rule 2: Prefer appropriate scope. If Scope(SA) < Scope(SB): If Scope(SA) < Scope(D), then prefer SB and otherwise prefer SA. Similarly, if Scope(SB) < Scope(SA): If Scope(SB) < Scope(D), then prefer SA and otherwise prefer SB.

Draves                      Standards Track                    [Page 10]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 10] RFC 3484 Default Address Selection for IPv6 February 2003

   Rule 3:  Avoid deprecated addresses.
   The addresses SA and SB have the same scope.  If one of the two
   source addresses is "preferred" and one of them is "deprecated" (in
   the RFC 2462 sense), then prefer the one that is "preferred."

Rule 3: Avoid deprecated addresses. The addresses SA and SB have the same scope. If one of the two source addresses is "preferred" and one of them is "deprecated" (in the RFC 2462 sense), then prefer the one that is "preferred."

   Rule 4:  Prefer home addresses.
   If SA is simultaneously a home address and care-of address and SB is
   not, then prefer SA.  Similarly, if SB is simultaneously a home
   address and care-of address and SA is not, then prefer SB.
   If SA is just a home address and SB is just a care-of address, then
   prefer SA.  Similarly, if SB is just a home address and SA is just a
   care-of address, then prefer SB.

Rule 4: Prefer home addresses. If SA is simultaneously a home address and care-of address and SB is not, then prefer SA. Similarly, if SB is simultaneously a home address and care-of address and SA is not, then prefer SB. If SA is just a home address and SB is just a care-of address, then prefer SA. Similarly, if SB is just a home address and SA is just a care-of address, then prefer SB.

   Implementations should provide a mechanism allowing an application to
   reverse the sense of this preference and prefer care-of addresses
   over home addresses (e.g., via appropriate API extensions).  Use of
   the mechanism should only affect the selection rules for the invoking
   application.

Implementations should provide a mechanism allowing an application to reverse the sense of this preference and prefer care-of addresses over home addresses (e.g., via appropriate API extensions). Use of the mechanism should only affect the selection rules for the invoking application.

   Rule 5:  Prefer outgoing interface.
   If SA is assigned to the interface that will be used to send to D
   and SB is assigned to a different interface, then prefer SA.
   Similarly, if SB is assigned to the interface that will be used to
   send to D and SA is assigned to a different interface, then prefer
   SB.

Rule 5: Prefer outgoing interface. If SA is assigned to the interface that will be used to send to D and SB is assigned to a different interface, then prefer SA. Similarly, if SB is assigned to the interface that will be used to send to D and SA is assigned to a different interface, then prefer SB.

   Rule 6:  Prefer matching label.
   If Label(SA) = Label(D) and Label(SB) <> Label(D), then prefer SA.
   Similarly, if Label(SB) = Label(D) and Label(SA) <> Label(D), then
   prefer SB.

Rule 6: Prefer matching label. If Label(SA) = Label(D) and Label(SB) <> Label(D), then prefer SA. Similarly, if Label(SB) = Label(D) and Label(SA) <> Label(D), then prefer SB.

   Rule 7:  Prefer public addresses.
   If SA is a public address and SB is a temporary address, then prefer
   SA.  Similarly, if SB is a public address and SA is a temporary
   address, then prefer SB.

Rule 7: Prefer public addresses. If SA is a public address and SB is a temporary address, then prefer SA. Similarly, if SB is a public address and SA is a temporary address, then prefer SB.

   Implementations MUST provide a mechanism allowing an application to
   reverse the sense of this preference and prefer temporary addresses
   over public addresses (e.g., via appropriate API extensions).  Use of
   the mechanism should only affect the selection rules for the invoking
   application. This rule avoids applications potentially failing due to
   the relatively short lifetime of temporary addresses or due to the
   possibility of the reverse lookup of a temporary address either
   failing or returning a randomized name.  Implementations for which
   privacy considerations outweigh these application compatibility
   concerns MAY reverse the sense of this rule and by default prefer
   temporary addresses over public addresses.

Implementations MUST provide a mechanism allowing an application to reverse the sense of this preference and prefer temporary addresses over public addresses (e.g., via appropriate API extensions). Use of the mechanism should only affect the selection rules for the invoking application. This rule avoids applications potentially failing due to the relatively short lifetime of temporary addresses or due to the possibility of the reverse lookup of a temporary address either failing or returning a randomized name. Implementations for which privacy considerations outweigh these application compatibility concerns MAY reverse the sense of this rule and by default prefer temporary addresses over public addresses.

Draves                      Standards Track                    [Page 11]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 11] RFC 3484 Default Address Selection for IPv6 February 2003

   Rule 8:  Use longest matching prefix.
   If CommonPrefixLen(SA, D) > CommonPrefixLen(SB, D), then prefer SA.
   Similarly, if CommonPrefixLen(SB, D) > CommonPrefixLen(SA, D), then
   prefer SB.

Rule 8: Use longest matching prefix. If CommonPrefixLen(SA, D) > CommonPrefixLen(SB, D), then prefer SA. Similarly, if CommonPrefixLen(SB, D) > CommonPrefixLen(SA, D), then prefer SB.

   Rule 8 may be superseded if the implementation has other means of
   choosing among source addresses.  For example, if the implementation
   somehow knows which source address will result in the "best"
   communications performance.

Rule 8 may be superseded if the implementation has other means of choosing among source addresses. For example, if the implementation somehow knows which source address will result in the "best" communications performance.

   Rule 2 (prefer appropriate scope) MUST be implemented and given high
   priority because it can affect interoperability.

Rule 2 (prefer appropriate scope) MUST be implemented and given high priority because it can affect interoperability.

6. Destination Address Selection

6. Destination Address Selection

   The destination address selection algorithm takes a list of
   destination addresses and sorts the addresses to produce a new list.
   It is specified here in terms of the pair-wise comparison of
   addresses DA and DB, where DA appears before DB in the original list.

The destination address selection algorithm takes a list of destination addresses and sorts the addresses to produce a new list. It is specified here in terms of the pair-wise comparison of addresses DA and DB, where DA appears before DB in the original list.

   The algorithm sorts together both IPv6 and IPv4 addresses.  To find
   the attributes of an IPv4 address in the policy table, the IPv4
   address should be represented as an IPv4-mapped address.

The algorithm sorts together both IPv6 and IPv4 addresses. To find the attributes of an IPv4 address in the policy table, the IPv4 address should be represented as an IPv4-mapped address.

   We write Source(D) to indicate the selected source address for a
   destination D.  For IPv6 addresses, the previous section specifies
   the source address selection algorithm.  Source address selection for
   IPv4 addresses is not specified in this document.

We write Source(D) to indicate the selected source address for a destination D. For IPv6 addresses, the previous section specifies the source address selection algorithm. Source address selection for IPv4 addresses is not specified in this document.

   We say that Source(D) is undefined if there is no source address
   available for destination D.  For IPv6 addresses, this is only the
   case if CandidateSource(D) is the empty set.

We say that Source(D) is undefined if there is no source address available for destination D. For IPv6 addresses, this is only the case if CandidateSource(D) is the empty set.

   The pair-wise comparison of destination addresses consists of ten
   rules, which should be applied in order.  If a rule determines a
   result, then the remaining rules are not relevant and should be
   ignored.  Subsequent rules act as tie-breakers for earlier rules.
   See the previous section for a lengthier description of how pair-wise
   comparison tie-breaker rules can be used to sort a list.

The pair-wise comparison of destination addresses consists of ten rules, which should be applied in order. If a rule determines a result, then the remaining rules are not relevant and should be ignored. Subsequent rules act as tie-breakers for earlier rules. See the previous section for a lengthier description of how pair-wise comparison tie-breaker rules can be used to sort a list.

   Rule 1:  Avoid unusable destinations.
   If DB is known to be unreachable or if Source(DB) is undefined, then
   prefer DA.  Similarly, if DA is known to be unreachable or if
   Source(DA) is undefined, then prefer DB.

Rule 1: Avoid unusable destinations. If DB is known to be unreachable or if Source(DB) is undefined, then prefer DA. Similarly, if DA is known to be unreachable or if Source(DA) is undefined, then prefer DB.

      Discussion:  An implementation may know that a particular
      destination is unreachable in several ways.  For example, the
      destination may be reached through a network interface that is

Discussion: An implementation may know that a particular destination is unreachable in several ways. For example, the destination may be reached through a network interface that is

Draves                      Standards Track                    [Page 12]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 12] RFC 3484 Default Address Selection for IPv6 February 2003

      currently unplugged.  For example, the implementation may retain
      for some period of time information from Neighbor Unreachability
      Detection [14].  In any case, the determination of unreachability
      for the purposes of this rule is implementation-dependent.

currently unplugged. For example, the implementation may retain for some period of time information from Neighbor Unreachability Detection [14]. In any case, the determination of unreachability for the purposes of this rule is implementation-dependent.

   Rule 2:  Prefer matching scope.
   If Scope(DA) = Scope(Source(DA)) and Scope(DB) <> Scope(Source(DB)),
   then prefer DA.  Similarly, if Scope(DA) <> Scope(Source(DA)) and
   Scope(DB) = Scope(Source(DB)), then prefer DB.

Rule 2: Prefer matching scope. If Scope(DA) = Scope(Source(DA)) and Scope(DB) <> Scope(Source(DB)), then prefer DA. Similarly, if Scope(DA) <> Scope(Source(DA)) and Scope(DB) = Scope(Source(DB)), then prefer DB.

   Rule 3:  Avoid deprecated addresses.
   If Source(DA) is deprecated and Source(DB) is not, then prefer DB.
   Similarly, if Source(DA) is not deprecated and Source(DB) is
   deprecated, then prefer DA.

Rule 3: Avoid deprecated addresses. If Source(DA) is deprecated and Source(DB) is not, then prefer DB. Similarly, if Source(DA) is not deprecated and Source(DB) is deprecated, then prefer DA.

   Rule 4:  Prefer home addresses.
   If Source(DA) is simultaneously a home address and care-of address
   and Source(DB) is not, then prefer DA.  Similarly, if Source(DB) is
   simultaneously a home address and care-of address and Source(DA) is
   not, then prefer DB.

Rule 4: Prefer home addresses. If Source(DA) is simultaneously a home address and care-of address and Source(DB) is not, then prefer DA. Similarly, if Source(DB) is simultaneously a home address and care-of address and Source(DA) is not, then prefer DB.

   If Source(DA) is just a home address and Source(DB) is just a care-of
   address, then prefer DA.  Similarly, if Source(DA) is just a care-of
   address and Source(DB) is just a home address, then prefer DB.

If Source(DA) is just a home address and Source(DB) is just a care-of address, then prefer DA. Similarly, if Source(DA) is just a care-of address and Source(DB) is just a home address, then prefer DB.

   Rule 5:  Prefer matching label.
   If Label(Source(DA)) = Label(DA) and Label(Source(DB)) <> Label(DB),
   then prefer DA.  Similarly, if Label(Source(DA)) <> Label(DA) and
   Label(Source(DB)) = Label(DB), then prefer DB.

Rule 5: Prefer matching label. If Label(Source(DA)) = Label(DA) and Label(Source(DB)) <> Label(DB), then prefer DA. Similarly, if Label(Source(DA)) <> Label(DA) and Label(Source(DB)) = Label(DB), then prefer DB.

   Rule 6:  Prefer higher precedence.
   If Precedence(DA) > Precedence(DB), then prefer DA.  Similarly, if
   Precedence(DA) < Precedence(DB), then prefer DB.

Rule 6: Prefer higher precedence. If Precedence(DA) > Precedence(DB), then prefer DA. Similarly, if Precedence(DA) < Precedence(DB), then prefer DB.

   Rule 7:  Prefer native transport.
   If DA is reached via an encapsulating transition mechanism (e.g.,
   IPv6 in IPv4) and DB is not, then prefer DB.  Similarly, if DB
   is reached via encapsulation and DA is not, then prefer DA.

Rule 7: Prefer native transport. If DA is reached via an encapsulating transition mechanism (e.g., IPv6 in IPv4) and DB is not, then prefer DB. Similarly, if DB is reached via encapsulation and DA is not, then prefer DA.

      Discussion:  6-over-4 [15], ISATAP [16], and configured tunnels
      [17] are examples of encapsulating transition mechanisms for which
      the destination address does not have a specific prefix and hence
      can not be assigned a lower precedence in the policy table.  An
      implementation MAY generalize this rule by using a concept of
      interface preference, and giving virtual interfaces (like the
      IPv6-in-IPv4 encapsulating interfaces) a lower preference than
      native interfaces (like ethernet interfaces).

Discussion: 6-over-4 [15], ISATAP [16], and configured tunnels [17] are examples of encapsulating transition mechanisms for which the destination address does not have a specific prefix and hence can not be assigned a lower precedence in the policy table. An implementation MAY generalize this rule by using a concept of interface preference, and giving virtual interfaces (like the IPv6-in-IPv4 encapsulating interfaces) a lower preference than native interfaces (like ethernet interfaces).

Draves                      Standards Track                    [Page 13]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 13] RFC 3484 Default Address Selection for IPv6 February 2003

   Rule 8:  Prefer smaller scope.
   If Scope(DA) < Scope(DB), then prefer DA.  Similarly, if Scope(DA) >
   Scope(DB), then prefer DB.

Rule 8: Prefer smaller scope. If Scope(DA) < Scope(DB), then prefer DA. Similarly, if Scope(DA) > Scope(DB), then prefer DB.

   Rule 9:  Use longest matching prefix.
   When DA and DB belong to the same address family (both are IPv6 or
   both are IPv4): If CommonPrefixLen(DA, Source(DA)) >
   CommonPrefixLen(DB, Source(DB)), then prefer DA.  Similarly, if
   CommonPrefixLen(DA, Source(DA)) < CommonPrefixLen(DB, Source(DB)),
   then prefer DB.

Rule 9: Use longest matching prefix. When DA and DB belong to the same address family (both are IPv6 or both are IPv4): If CommonPrefixLen(DA, Source(DA)) > CommonPrefixLen(DB, Source(DB)), then prefer DA. Similarly, if CommonPrefixLen(DA, Source(DA)) < CommonPrefixLen(DB, Source(DB)), then prefer DB.

   Rule 10:  Otherwise, leave the order unchanged.
   If DA preceded DB in the original list, prefer DA.  Otherwise prefer
   DB.

Rule 10: Otherwise, leave the order unchanged. If DA preceded DB in the original list, prefer DA. Otherwise prefer DB.

   Rules 9 and 10 may be superseded if the implementation has other
   means of sorting destination addresses.  For example, if the
   implementation somehow knows which destination addresses will result
   in the "best" communications performance.

Rules 9 and 10 may be superseded if the implementation has other means of sorting destination addresses. For example, if the implementation somehow knows which destination addresses will result in the "best" communications performance.

7. Interactions with Routing

7. Interactions with Routing

   This specification of source address selection assumes that routing
   (more precisely, selecting an outgoing interface on a node with
   multiple interfaces) is done before source address selection.
   However, implementations may use source address considerations as a
   tiebreaker when choosing among otherwise equivalent routes.

This specification of source address selection assumes that routing (more precisely, selecting an outgoing interface on a node with multiple interfaces) is done before source address selection. However, implementations may use source address considerations as a tiebreaker when choosing among otherwise equivalent routes.

   For example, suppose a node has interfaces on two different links,
   with both links having a working default router.  Both of the
   interfaces have preferred (in the RFC 2462 sense) global addresses.
   When sending to a global destination address, if there's no routing
   reason to prefer one interface over the other, then an implementation
   may preferentially choose the outgoing interface that will allow it
   to use the source address that shares a longer common prefix with the
   destination.

For example, suppose a node has interfaces on two different links, with both links having a working default router. Both of the interfaces have preferred (in the RFC 2462 sense) global addresses. When sending to a global destination address, if there's no routing reason to prefer one interface over the other, then an implementation may preferentially choose the outgoing interface that will allow it to use the source address that shares a longer common prefix with the destination.

   Implementations may also use the choice of router to influence the
   choice of source address.  For example, suppose a host is on a link
   with two routers.  One router is advertising a global prefix A and
   the other router is advertising global prefix B.  Then when sending
   via the first router, the host may prefer source addresses with
   prefix A and when sending via the second router, prefer source
   addresses with prefix B.

Implementations may also use the choice of router to influence the choice of source address. For example, suppose a host is on a link with two routers. One router is advertising a global prefix A and the other router is advertising global prefix B. Then when sending via the first router, the host may prefer source addresses with prefix A and when sending via the second router, prefer source addresses with prefix B.

Draves                      Standards Track                    [Page 14]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 14] RFC 3484 Default Address Selection for IPv6 February 2003

8. Implementation Considerations

8. Implementation Considerations

   The destination address selection algorithm needs information about
   potential source addresses.  One possible implementation strategy is
   for getaddrinfo() to call down to the network layer with a list of
   destination addresses, sort the list in the network layer with full
   current knowledge of available source addresses, and return the
   sorted list to getaddrinfo().  This is simple and gives the best
   results but it introduces the overhead of another system call.  One
   way to reduce this overhead is to cache the sorted address list in
   the resolver, so that subsequent calls for the same name do not need
   to resort the list.

The destination address selection algorithm needs information about potential source addresses. One possible implementation strategy is for getaddrinfo() to call down to the network layer with a list of destination addresses, sort the list in the network layer with full current knowledge of available source addresses, and return the sorted list to getaddrinfo(). This is simple and gives the best results but it introduces the overhead of another system call. One way to reduce this overhead is to cache the sorted address list in the resolver, so that subsequent calls for the same name do not need to resort the list.

   Another implementation strategy is to call down to the network layer
   to retrieve source address information and then sort the list of
   addresses directly in the context of getaddrinfo().  To reduce
   overhead in this approach, the source address information can be
   cached, amortizing the overhead of retrieving it across multiple
   calls to getaddrinfo().  In this approach, the implementation may not
   have knowledge of the outgoing interface for each destination, so it
   MAY use a looser definition of the candidate set during destination
   address ordering.

Another implementation strategy is to call down to the network layer to retrieve source address information and then sort the list of addresses directly in the context of getaddrinfo(). To reduce overhead in this approach, the source address information can be cached, amortizing the overhead of retrieving it across multiple calls to getaddrinfo(). In this approach, the implementation may not have knowledge of the outgoing interface for each destination, so it MAY use a looser definition of the candidate set during destination address ordering.

   In any case, if the implementation uses cached and possibly stale
   information in its implementation of destination address selection,
   or if the ordering of a cached list of destination addresses is
   possibly stale, then it should ensure that the destination address
   ordering returned to the application is no more than one second out
   of date.  For example, an implementation might make a system call to
   check if any routing table entries or source address assignments that
   might affect these algorithms have changed.  Another strategy is to
   use an invalidation counter that is incremented whenever any
   underlying state is changed.  By caching the current invalidation
   counter value with derived state and then later comparing against the
   current value, the implementation could detect if the derived state
   is potentially stale.

In any case, if the implementation uses cached and possibly stale information in its implementation of destination address selection, or if the ordering of a cached list of destination addresses is possibly stale, then it should ensure that the destination address ordering returned to the application is no more than one second out of date. For example, an implementation might make a system call to check if any routing table entries or source address assignments that might affect these algorithms have changed. Another strategy is to use an invalidation counter that is incremented whenever any underlying state is changed. By caching the current invalidation counter value with derived state and then later comparing against the current value, the implementation could detect if the derived state is potentially stale.

9. Security Considerations

9. Security Considerations

   This document has no direct impact on Internet infrastructure
   security.

This document has no direct impact on Internet infrastructure security.

   Note that most source address selection algorithms, including the one
   specified in this document, expose a potential privacy concern.  An
   unfriendly node can infer correlations among a target node's
   addresses by probing the target node with request packets that force
   the target host to choose its source address for the reply packets.
   (Perhaps because the request packets are sent to an anycast or

Note that most source address selection algorithms, including the one specified in this document, expose a potential privacy concern. An unfriendly node can infer correlations among a target node's addresses by probing the target node with request packets that force the target host to choose its source address for the reply packets. (Perhaps because the request packets are sent to an anycast or

Draves                      Standards Track                    [Page 15]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 15] RFC 3484 Default Address Selection for IPv6 February 2003

   multicast address, or perhaps the upper-layer protocol chosen for the
   attack does not specify a particular source address for its reply
   packets.)  By using different addresses for itself, the unfriendly
   node can cause the target node to expose the target's own addresses.

multicast address, or perhaps the upper-layer protocol chosen for the attack does not specify a particular source address for its reply packets.) By using different addresses for itself, the unfriendly node can cause the target node to expose the target's own addresses.

10. Examples

10. Examples

   This section contains a number of examples, first of default behavior
   and then demonstrating the utility of policy table configuration.
   These examples are provided for illustrative purposes; they should
   not be construed as normative.

This section contains a number of examples, first of default behavior and then demonstrating the utility of policy table configuration. These examples are provided for illustrative purposes; they should not be construed as normative.

10.1. Default Source Address Selection

10.1. Default Source Address Selection

   The source address selection rules, in conjunction with the default
   policy table, produce the following behavior:

The source address selection rules, in conjunction with the default policy table, produce the following behavior:

   Destination: 2001::1
   Candidate Source Addresses: 3ffe::1 or fe80::1
   Result: 3ffe::1 (prefer appropriate scope)

Destination: 2001::1 Candidate Source Addresses: 3ffe::1 or fe80::1 Result: 3ffe::1 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: fe80::1 or fec0::1
   Result: fec0::1 (prefer appropriate scope)

Destination: 2001::1 Candidate Source Addresses: fe80::1 or fec0::1 Result: fec0::1 (prefer appropriate scope)

   Destination: fec0::1
   Candidate Source Addresses: fe80::1 or 2001::1
   Result: 2001::1 (prefer appropriate scope)

Destination: fec0::1 Candidate Source Addresses: fe80::1 or 2001::1 Result: 2001::1 (prefer appropriate scope)

   Destination: ff05::1
   Candidate Source Addresses: fe80::1 or fec0::1 or 2001::1
   Result: fec0::1 (prefer appropriate scope)

Destination: ff05::1 Candidate Source Addresses: fe80::1 or fec0::1 or 2001::1 Result: fec0::1 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: 2001::1 (deprecated) or 2002::1
   Result: 2001::1 (prefer same address)

Destination: 2001::1 Candidate Source Addresses: 2001::1 (deprecated) or 2002::1 Result: 2001::1 (prefer same address)

   Destination: fec0::1
   Candidate Source Addresses: fec0::2 (deprecated) or 2001::1
   Result: fec0::2 (prefer appropriate scope)

Destination: fec0::1 Candidate Source Addresses: fec0::2 (deprecated) or 2001::1 Result: fec0::2 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: 2001::2 or 3ffe::2
   Result: 2001::2 (longest-matching-prefix)

Destination: 2001::1 Candidate Source Addresses: 2001::2 or 3ffe::2 Result: 2001::2 (longest-matching-prefix)

Draves                      Standards Track                    [Page 16]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 16] RFC 3484 Default Address Selection for IPv6 February 2003

   Destination: 2001::1
   Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::2
   (home address)
   Result: 3ffe::2 (prefer home address)

Destination: 2001::1 Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::2 (home address) Result: 3ffe::2 (prefer home address)

   Destination: 2002:836b:2179::1
   Candidate Source Addresses: 2002:836b:2179::d5e3:7953:13eb:22e8
   (temporary) or 2001::2
   Result: 2002:836b:2179::d5e3:7953:13eb:22e8 (prefer matching label)

Destination: 2002:836b:2179::1 Candidate Source Addresses: 2002:836b:2179::d5e3:7953:13eb:22e8 (temporary) or 2001::2 Result: 2002:836b:2179::d5e3:7953:13eb:22e8 (prefer matching label)

   Destination: 2001::d5e3:0:0:1
   Candidate Source Addresses: 2001::2 or 2001::d5e3:7953:13eb:22e8
   (temporary)
   Result: 2001::2 (prefer public address)

Destination: 2001::d5e3:0:0:1 Candidate Source Addresses: 2001::2 or 2001::d5e3:7953:13eb:22e8 (temporary) Result: 2001::2 (prefer public address)

10.2. Default Destination Address Selection

10.2. Default Destination Address Selection

   The destination address selection rules, in conjunction with the
   default policy table and the source address selection rules, produce
   the following behavior:

The destination address selection rules, in conjunction with the default policy table and the source address selection rules, produce the following behavior:

   Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78
   Destination Address List: 2001::1 or 131.107.65.121
   Result: 2001::1 (src 2001::2) then 131.107.65.121 (src
   169.254.13.78) (prefer matching scope)

Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78 Destination Address List: 2001::1 or 131.107.65.121 Result: 2001::1 (src 2001::2) then 131.107.65.121 (src 169.254.13.78) (prefer matching scope)

   Candidate Source Addresses: fe80::1 or 131.107.65.117
   Destination Address List: 2001::1 or 131.107.65.121
   Result: 131.107.65.121 (src 131.107.65.117) then 2001::1 (src
   fe80::1) (prefer matching scope)

Candidate Source Addresses: fe80::1 or 131.107.65.117 Destination Address List: 2001::1 or 131.107.65.121 Result: 131.107.65.121 (src 131.107.65.117) then 2001::1 (src fe80::1) (prefer matching scope)

   Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4
   Destination Address List: 2001::1 or 10.1.2.3
   Result: 2001::1 (src 2001::2) then 10.1.2.3 (src 10.1.2.4) (prefer
   higher precedence)

Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4 Destination Address List: 2001::1 or 10.1.2.3 Result: 2001::1 (src 2001::2) then 10.1.2.3 (src 10.1.2.4) (prefer higher precedence)

   Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2
   Destination Address List: 2001::1 or fec0::1 or fe80::1
   Result: fe80::1 (src fe80::2) then fec0::1 (src fec0::2) then
   2001::1 (src 2001::2) (prefer smaller scope)

Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2 Destination Address List: 2001::1 or fec0::1 or fe80::1 Result: fe80::1 (src fe80::2) then fec0::1 (src fec0::2) then 2001::1 (src 2001::2) (prefer smaller scope)

   Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::1
   (home address) or fec0::2 (care-of address) or fe80::2 (care-of
   address)
   Destination Address List: 2001::1 or fec0::1
   Result: 2001:1 (src 3ffe::1) then fec0::1 (src fec0::2) (prefer home
   address)

Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::1 (home address) or fec0::2 (care-of address) or fe80::2 (care-of address) Destination Address List: 2001::1 or fec0::1 Result: 2001:1 (src 3ffe::1) then fec0::1 (src fec0::2) (prefer home address)

Draves                      Standards Track                    [Page 17]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 17] RFC 3484 Default Address Selection for IPv6 February 2003

   Candidate Source Addresses: 2001::2 or fec0::2 (deprecated) or
   fe80::2
   Destination Address List: 2001::1 or fec0::1
   Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) (avoid
   deprecated addresses)

Candidate Source Addresses: 2001::2 or fec0::2 (deprecated) or fe80::2 Destination Address List: 2001::1 or fec0::1 Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) (avoid deprecated addresses)

   Candidate Source Addresses: 2001::2 or 3f44::2 or fe80::2
   Destination Address List: 2001::1 or 3ffe::1
   Result: 2001::1 (src 2001::2) then 3ffe::1 (src 3f44::2) (longest
   matching prefix)

Candidate Source Addresses: 2001::2 or 3f44::2 or fe80::2 Destination Address List: 2001::1 or 3ffe::1 Result: 2001::1 (src 2001::2) then 3ffe::1 (src 3f44::2) (longest matching prefix)

   Candidate Source Addresses: 2002:836b:4179::2 or fe80::2
   Destination Address List: 2002:836b:4179::1 or 2001::1
   Result: 2002:836b:4179::1 (src 2002:836b:4179::2) then 2001::1 (src
   2002:836b:4179::2) (prefer matching label)

Candidate Source Addresses: 2002:836b:4179::2 or fe80::2 Destination Address List: 2002:836b:4179::1 or 2001::1 Result: 2002:836b:4179::1 (src 2002:836b:4179::2) then 2001::1 (src 2002:836b:4179::2) (prefer matching label)

   Candidate Source Addresses: 2002:836b:4179::2 or 2001::2 or fe80::2
   Destination Address List: 2002:836b:4179::1 or 2001::1
   Result: 2001::1 (src 2001::2) then 2002:836b:4179::1 (src
   2002:836b:4179::2) (prefer higher precedence)

Candidate Source Addresses: 2002:836b:4179::2 or 2001::2 or fe80::2 Destination Address List: 2002:836b:4179::1 or 2001::1 Result: 2001::1 (src 2001::2) then 2002:836b:4179::1 (src 2002:836b:4179::2) (prefer higher precedence)

10.3. Configuring Preference for IPv6 or IPv4

10.3. Configuring Preference for IPv6 or IPv4

   The default policy table gives IPv6 addresses higher precedence than
   IPv4 addresses.  This means that applications will use IPv6 in
   preference to IPv4 when the two are equally suitable.  An
   administrator can change the policy table to prefer IPv4 addresses by
   giving the ::ffff:0.0.0.0/96 prefix a higher precedence:

The default policy table gives IPv6 addresses higher precedence than IPv4 addresses. This means that applications will use IPv6 in preference to IPv4 when the two are equally suitable. An administrator can change the policy table to prefer IPv4 addresses by giving the ::ffff:0.0.0.0/96 prefix a higher precedence:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96        100     4

Prefix Precedence Label ::1/128 50 0 ::/0 40 1 2002::/16 30 2 ::/96 20 3 ::ffff:0:0/96 100 4

   This change to the default policy table produces the following
   behavior:

This change to the default policy table produces the following behavior:

   Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78
   Destination Address List: 2001::1 or 131.107.65.121
   Unchanged Result: 2001::1 (src 2001::2) then 131.107.65.121 (src
   169.254.13.78) (prefer matching scope)

Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78 Destination Address List: 2001::1 or 131.107.65.121 Unchanged Result: 2001::1 (src 2001::2) then 131.107.65.121 (src 169.254.13.78) (prefer matching scope)

   Candidate Source Addresses: fe80::1 or 131.107.65.117
   Destination Address List: 2001::1 or 131.107.65.121
   Unchanged Result: 131.107.65.121 (src 131.107.65.117) then 2001::1
   (src fe80::1) (prefer matching scope)

Candidate Source Addresses: fe80::1 or 131.107.65.117 Destination Address List: 2001::1 or 131.107.65.121 Unchanged Result: 131.107.65.121 (src 131.107.65.117) then 2001::1 (src fe80::1) (prefer matching scope)

Draves                      Standards Track                    [Page 18]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 18] RFC 3484 Default Address Selection for IPv6 February 2003

   Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4
   Destination Address List: 2001::1 or 10.1.2.3
   New Result: 10.1.2.3 (src 10.1.2.4) then 2001::1 (src 2001::2)
   (prefer higher precedence)

Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4 Destination Address List: 2001::1 or 10.1.2.3 New Result: 10.1.2.3 (src 10.1.2.4) then 2001::1 (src 2001::2) (prefer higher precedence)

10.4. Configuring Preference for Scoped Addresses

10.4. Configuring Preference for Scoped Addresses

   The destination address selection rules give preference to
   destinations of smaller scope.  For example, a site-local destination
   will be sorted before a global scope destination when the two are
   otherwise equally suitable.  An administrator can change the policy
   table to reverse this preference and sort global destinations before
   site-local destinations, and site-local destinations before link-
   local destinations:

The destination address selection rules give preference to destinations of smaller scope. For example, a site-local destination will be sorted before a global scope destination when the two are otherwise equally suitable. An administrator can change the policy table to reverse this preference and sort global destinations before site-local destinations, and site-local destinations before link- local destinations:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      fec0::/10             37     1
      fe80::/10             33     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96         10     4

Prefix Precedence Label ::1/128 50 0 ::/0 40 1 fec0::/10 37 1 fe80::/10 33 1 2002::/16 30 2 ::/96 20 3 ::ffff:0:0/96 10 4

   This change to the default policy table produces the following
   behavior:

This change to the default policy table produces the following behavior:

   Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2
   Destination Address List: 2001::1 or fec0::1 or fe80::1
   New Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) then
   fe80::1 (src fe80::2) (prefer higher precedence)

Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2 Destination Address List: 2001::1 or fec0::1 or fe80::1 New Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) then fe80::1 (src fe80::2) (prefer higher precedence)

   Candidate Source Addresses: 2001::2 (deprecated) or fec0::2 or
   fe80::2
   Destination Address List: 2001::1 or fec0::1
   Unchanged Result: fec0::1 (src fec0::2) then 2001::1 (src 2001::2)
   (avoid deprecated addresses)

Candidate Source Addresses: 2001::2 (deprecated) or fec0::2 or fe80::2 Destination Address List: 2001::1 or fec0::1 Unchanged Result: fec0::1 (src fec0::2) then 2001::1 (src 2001::2) (avoid deprecated addresses)

10.5. Configuring a Multi-Homed Site

10.5. Configuring a Multi-Homed Site

   Consider a site A that has a business-critical relationship with
   another site B.  To support their business needs, the two sites have
   contracted for service with a special high-performance ISP.  This is
   in addition to the normal Internet connection that both sites have
   with different ISPs.  The high-performance ISP is expensive and the
   two sites wish to use it only for their business-critical traffic
   with each other.

Consider a site A that has a business-critical relationship with another site B. To support their business needs, the two sites have contracted for service with a special high-performance ISP. This is in addition to the normal Internet connection that both sites have with different ISPs. The high-performance ISP is expensive and the two sites wish to use it only for their business-critical traffic with each other.

Draves                      Standards Track                    [Page 19]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 19] RFC 3484 Default Address Selection for IPv6 February 2003

   Each site has two global prefixes, one from the high-performance ISP
   and one from their normal ISP.  Site A has prefix 2001:aaaa:aaaa::/48
   from the high-performance ISP and prefix 2007:0:aaaa::/48 from its
   normal ISP.  Site B has prefix 2001:bbbb:bbbb::/48 from the high-
   performance ISP and prefix 2007:0:bbbb::/48 from its normal ISP.  All
   hosts in both sites register two addresses in the DNS.

Each site has two global prefixes, one from the high-performance ISP and one from their normal ISP. Site A has prefix 2001:aaaa:aaaa::/48 from the high-performance ISP and prefix 2007:0:aaaa::/48 from its normal ISP. Site B has prefix 2001:bbbb:bbbb::/48 from the high- performance ISP and prefix 2007:0:bbbb::/48 from its normal ISP. All hosts in both sites register two addresses in the DNS.

   The routing within both sites directs most traffic to the egress to
   the normal ISP, but the routing directs traffic sent to the other
   site's 2001 prefix to the egress to the high-performance ISP.  To
   prevent unintended use of their high-performance ISP connection, the
   two sites implement ingress filtering to discard traffic entering
   from the high-performance ISP that is not from the other site.

The routing within both sites directs most traffic to the egress to the normal ISP, but the routing directs traffic sent to the other site's 2001 prefix to the egress to the high-performance ISP. To prevent unintended use of their high-performance ISP connection, the two sites implement ingress filtering to discard traffic entering from the high-performance ISP that is not from the other site.

   The default policy table and address selection rules produce the
   following behavior:

The default policy table and address selection rules produce the following behavior:

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
   Result: 2007:0:bbbb::b (src 2007:0:aaaa::a) then 2001:bbbb:bbbb::b
   (src 2001:aaaa:aaaa::a) (longest matching prefix)

Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or fe80::a Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b Result: 2007:0:bbbb::b (src 2007:0:aaaa::a) then 2001:bbbb:bbbb::b (src 2001:aaaa:aaaa::a) (longest matching prefix)

   In other words, when a host in site A initiates a connection to a
   host in site B, the traffic does not take advantage of their
   connections to the high-performance ISP.  This is not their desired
   behavior.

In other words, when a host in site A initiates a connection to a host in site B, the traffic does not take advantage of their connections to the high-performance ISP. This is not their desired behavior.

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
   Result: 2001:cccc:cccc::c (src 2001:aaaa:aaaa::a) then
   2006:cccc:cccc::c (src 2007:0:aaaa::a) (longest matching prefix)

Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or fe80::a Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c Result: 2001:cccc:cccc::c (src 2001:aaaa:aaaa::a) then 2006:cccc:cccc::c (src 2007:0:aaaa::a) (longest matching prefix)

   In other words, when a host in site A initiates a connection to a
   host in some other site C, the reverse traffic may come back through
   the high-performance ISP.  Again, this is not their desired behavior.

In other words, when a host in site A initiates a connection to a host in some other site C, the reverse traffic may come back through the high-performance ISP. Again, this is not their desired behavior.

   This predicament demonstrates the limitations of the longest-
   matching-prefix heuristic in multi-homed situations.

This predicament demonstrates the limitations of the longest- matching-prefix heuristic in multi-homed situations.

   However, the administrators of sites A and B can achieve their
   desired behavior via policy table configuration.  For example, they
   can use the following policy table:

However, the administrators of sites A and B can achieve their desired behavior via policy table configuration. For example, they can use the following policy table:

Draves                      Standards Track                    [Page 20]

RFC 3484           Default Address Selection for IPv6      February 2003

Draves Standards Track [Page 20] RFC 3484 Default Address Selection for IPv6 February 2003

      Prefix              Precedence Label
      ::1                         50     0
      2001:aaaa:aaaa::/48         45     5
      2001:bbbb:bbbb::/48         45     5
      ::/0                        40     1
      2002::/16                   30     2
      ::/96                       20     3
      ::ffff:0:0/96               10     4

接頭語先行は以下をラベルします:1 50 0 2001:aaaa:aaaa:、:/48 45 5 2001:bbbb:bbbb:、:/48 45 5 ::/0 40 1 2002::/16 30 2 ::/96 20 3 ::ffff: 0:0/96 10 4

   This policy table produces the following behavior:

この方針テーブルは以下の振舞いを起こします:

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
   New Result: 2001:bbbb:bbbb::b (src 2001:aaaa:aaaa::a) then
   2007:0:bbbb::b (src 2007:0:aaaa::a) (prefer higher precedence)

候補ソースアドレス: 2001:aaaa:aaaa:、:aか2007:0:aaaa:、:aかfe80:、:目的地住所録: 2001:bbbb:bbbb:、:bか2007:0:bbbb:、:b新しいResult: 2001:bbbb:bbbb:、:b、(src2001:aaaa:aaaa: 次に、: a)2007:0:bbbb:、:b、(src2007:0:aaaa: : a)(より高い先行を好みます)

   In other words, when a host in site A initiates a connection to a
   host in site B, the traffic uses the high-performance ISP as desired.

言い換えれば、サイトAのホストがサイトBのホストに接続を開始するとき、交通は望まれているように高性能ISPを使用します。

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
   New Result: 2006:cccc:cccc::c (src 2007:0:aaaa::a) then
   2001:cccc:cccc::c (src 2007:0:aaaa::a) (longest matching prefix)

候補ソースアドレス: 2001:aaaa:aaaa:、:aか2007:0:aaaa:、:aかfe80:、:目的地住所録: 2001:cccc:cccc:、:cか2006:cccc:cccc:、:c新しいResult: 2006:cccc:cccc:、:c、(src2007:0:aaaa: 次に、: a)2001:cccc:cccc:、:c、(src2007:0:aaaa: : a)(最も長い合っている接頭語)

   In other words, when a host in site A initiates a connection to a
   host in some other site C, the traffic uses the normal ISP as
   desired.

言い換えれば、サイトAのホストがある他のサイトCのホストに接続を開始するとき、交通は望まれているように正常なISPを使用します。

Normative References

引用規格

   [1]  Hinden, R. and S. Deering, "IP Version 6 Addressing
        Architecture", RFC 2373, July 1998.

[1]HindenとR.とS.デアリング、「IPバージョン6アドレッシング体系」、RFC2373、1998年7月。

   [2]  Thompson, S. and T. Narten, "IPv6 Stateless Address
        Autoconfiguration", RFC 2462 , December 1998.

[2] トンプソンとS.とT.Narten、「IPv6の国がないアドレス自動構成」、RFC2462、1998年12月。

   [3]  Narten, T. and R. Draves, "Privacy Extensions for Stateless
        Address Autoconfiguration in IPv6", RFC 3041, January 2001.

[3]NartenとT.とR.Draves、「IPv6"での国がないアドレス自動構成のためのプライバシー拡大、RFC3041、2001年1月。」

   [4]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

[4] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [5]  Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4
        Clouds", RFC 3056, February 2001.

[5] 大工とB.とK.ムーア、「IPv4 Cloudsを通したIPv6 Domainsの接続」、RFC3056、2001年2月。

Draves                      Standards Track                    [Page 21]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[21ページ]RFC3484デフォルトアドレス選択

   [6]  Nordmark, E., "Stateless IP/ICMP Translation Algorithm (SIIT)",
        RFC 2765, February 2000.

[6]Nordmark、E.、「国がないIP/ICMP変換アルゴリズム(SIIT)」、RFC2765、2000年2月。

Informative References

有益な参照

   [7]  Bradner, S., "The Internet Standards Process -- Revision 3", BCP
        9, RFC 2026, October 1996.

[7] ブラドナー、S.、「改正3インチ、BCP9、RFC2026、1996年インターネット標準化過程--10月。」

   [8]  Johnson, D. and C. Perkins, "Mobility Support in IPv6", Work in
        Progress.

[8] ジョンソンとD.とC.パーキンス、「IPv6"での移動性サポート、進行中の仕事。」

   [9]  S. Cheshire, B. Aboba, "Dynamic Configuration of IPv4 Link-local
        Addresses", Work in Progress.

[9] S.チェーシャー州、「IPv4のリンクローカルのアドレスの動的設定」というB.Abobaは進行中で働いています。

   [10] Gilligan, R., Thomson, S., Bound, J. and W. Stevens, "Basic
        Socket Interface Extensions for IPv6", RFC 2553, March 1999.

[10] ギリガンとR.とトムソンとS.とバウンドとJ.とW.スティーブンス、「IPv6"、RFC2553、1999年3月のための基本的なソケットインタフェース拡大。」

   [11] S. Deering et. al, "IP Version 6 Scoped Address Architecture",
        Work in Progress.

[11] et S.デアリングアル、「IPバージョン6はアドレス体系を見た」ProgressのWork。

   [12] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. and E.
        Lear, "Address Allocation for Private Internets", BCP 5, RFC
        1918, February 1996.

[12] Rekhter(Y.、マスコウィッツ、B.、Karrenberg、D.、deグルート、G.、およびE.リア)は「個人的なインターネットのための配分を記述します」、BCP5、RFC1918、1996年2月。

   [13] Baker, F, "Requirements for IP Version 4 Routers", RFC 1812,
        June 1995.

[13] ベイカー、F、「IPバージョン4ルータのための要件」、RFC1812、1995年6月。

   [14] Narten, T. and E. Nordmark, and W. Simpson, "Neighbor Discovery
        for IP Version 6", RFC 2461, December 1998.

IPのために発見を近所付き合いさせてください。[14] Narten、T.、E.Nordmark、およびW.シンプソン、「バージョン6インチ、RFC2461、1998インチ年12月。

   [15] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
        Domains without Explicit Tunnels", RFC 2529, March 1999.

[15] 大工とB.とC.ユング、「明白なTunnelsのいないIPv4ドメインの上のIPv6のトランスミッション」、RFC2529、1999年3月。

   [16] F. Templin et. al, "Intra-Site Automatic Tunnel Addressing
        Protocol (ISATAP)", Work in Progress.

[16] et F.テンプリンアル、「イントラサイトの自動トンネルアドレシングプロトコル(ISATAP)」、ProgressのWork。

   [17] Gilligan, R. and E. Nordmark, "Transition Mechanisms for IPv6
        Hosts and Routers", RFC 1933, April 1996.

[17] ギリガンとR.とE.Nordmark、「IPv6ホストとルータのための変遷メカニズム」、RFC1933、1996年4月。

Draves                      Standards Track                    [Page 22]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[22ページ]RFC3484デフォルトアドレス選択

Acknowledgments

承認

   The author would like to acknowledge the contributions of the IPng
   Working Group, particularly Marc Blanchet, Brian Carpenter, Matt
   Crawford, Alain Durand, Steve Deering, Robert Elz, Jun-ichiro itojun
   Hagino, Tony Hain, M.T. Hollinger, JINMEI Tatuya, Thomas Narten, Erik
   Nordmark, Ken Powell, Markku Savela, Pekka Savola, Hesham Soliman,
   Dave Thaler, Mauro Tortonesi, Ole Troan, and Stig Venaas.  In
   addition, the anonymous IESG reviewers had many great comments and
   suggestions for clarification.

作者はIPng作業部会、特にマークBlanchet、ブライアンCarpenter、マット・クロフォード、アラン・ジュランド、スティーブ・デアリングロバートElz、6月-ichiro itojun Hagino、トニー・ハイン、M.T.ホリンガー、JINMEI Tatuya、トーマスNarten、エリックNordmark、ケン・パウエル、マルックSavela、ペッカSavola、Heshamソリマン、デーヴThaler、マウロTortonesi、Ole Troan、およびスティVenaasの貢献を承諾したがっています。 さらに、匿名のIESG評論家には、明確化のための多くの素晴らしいコメントと提案がありました。

Author's Address

作者のアドレス

   Richard Draves
   Microsoft Research
   One Microsoft Way
   Redmond, WA 98052

リチャードDravesマイクロソフトは1つのマイクロソフト方法でレッドモンド、ワシントン 98052について研究します。

   Phone: +1 425 706 2268
   EMail: richdr@microsoft.com

以下に電話をしてください。 +1 2268年の425 706メール: richdr@microsoft.com

Draves                      Standards Track                    [Page 23]

RFC 3484           Default Address Selection for IPv6      February 2003

IPv6 February 2003のためのDraves標準化過程[23ページ]RFC3484デフォルトアドレス選択

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

Copyright(C)インターネット協会(2003)。 All rights reserved。

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部広げられた実現を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsの過程で定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

上に承諾された限られた許容は、永久であり、インターネット協会、後継者または案配によって取り消されないでしょう。

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Draves                      Standards Track                    [Page 24]

Draves標準化過程[24ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

COALESCE関数 NULL値でない最初の引数を返す

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る