RFC3579 日本語訳
3579 RADIUS (Remote Authentication Dial In User Service) Support ForExtensible Authentication Protocol (EAP). B. Aboba, P. Calhoun. September 2003. (Format: TXT=104469 bytes) (Updates RFC2869) (Updated by RFC5080) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文
Network Working Group B. Aboba Request for Comments: 3579 Microsoft Updates: 2869 P. Calhoun Category: Informational Airespace September 2003
Abobaがコメントのために要求するワーキンググループB.をネットワークでつないでください: 3579のマイクロソフトアップデート: 2869年のP.カルフーンカテゴリ: 情報のAirespace2003年9月
RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)
拡張認証プロトコルの半径(ユーザサービスにおけるリモート認証ダイヤル)サポート(EAP)
Status of this Memo
このMemoの状態
This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.
このメモはインターネットコミュニティのための情報を提供します。 それはどんな種類のインターネット標準も指定しません。 このメモの分配は無制限です。
Copyright Notice
版権情報
Copyright (C) The Internet Society (2003). All Rights Reserved.
Copyright(C)インターネット協会(2003)。 All rights reserved。
Abstract
要約
This document defines Remote Authentication Dial In User Service (RADIUS) support for the Extensible Authentication Protocol (EAP), an authentication framework which supports multiple authentication mechanisms. In the proposed scheme, the Network Access Server (NAS) forwards EAP packets to and from the RADIUS server, encapsulated within EAP-Message attributes. This has the advantage of allowing the NAS to support any EAP authentication method, without the need for method-specific code, which resides on the RADIUS server. While EAP was originally developed for use with PPP, it is now also in use with IEEE 802.
このドキュメントは拡張認証プロトコル(EAP)のRemote Authentication Dial In User Service(RADIUS)サポートを定義します、複数の認証がメカニズムであるとサポートする認証フレームワーク。提案された体系では、Network Access Server(NAS)はパケットをサーバとEAP-メッセージ属性の中でカプセル化されたRADIUSサーバからEAPに送ります。 これには、NASがどんなEAP認証方法もサポートするのを許容する利点があります、メソッド特有のコードの必要性なしで。(コードはRADIUSサーバにあります)。EAPは元々PPPとの使用のために開発されましたが、また、それも現在、IEEE802と共に使用中です。
This document updates RFC 2869.
このドキュメントはRFC2869をアップデートします。
Aboba & Calhoun Informational [Page 1] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[1ページ]のRFC3579半径とEAP2003年9月
Table of Contents
目次
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Specification of Requirements. . . . . . . . . . . . . . 3 1.2. Terminology. . . . . . . . . . . . . . . . . . . . . . . 3 2. RADIUS Support for EAP . . . . . . . . . . . . . . . . . . . . 4 2.1. Protocol Overview. . . . . . . . . . . . . . . . . . . . 5 2.2. Invalid Packets. . . . . . . . . . . . . . . . . . . . . 9 2.3. Retransmission . . . . . . . . . . . . . . . . . . . . . 10 2.4. Fragmentation. . . . . . . . . . . . . . . . . . . . . . 10 2.5. Alternative uses . . . . . . . . . . . . . . . . . . . . 11 2.6. Usage Guidelines . . . . . . . . . . . . . . . . . . . . 11 3. Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1. EAP-Message. . . . . . . . . . . . . . . . . . . . . . . 15 3.2. Message-Authenticator. . . . . . . . . . . . . . . . . . 16 3.3. Table of Attributes. . . . . . . . . . . . . . . . . . . 18 4. Security Considerations. . . . . . . . . . . . . . . . . . . . 19 4.1. Security Requirements. . . . . . . . . . . . . . . . . . 19 4.2. Security Protocol. . . . . . . . . . . . . . . . . . . . 20 4.3. Security Issues. . . . . . . . . . . . . . . . . . . . . 22 5. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 30 6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1. Normative References . . . . . . . . . . . . . . . . . . 30 6.2. Informative References . . . . . . . . . . . . . . . . . 32 Appendix A - Examples. . . . . . . . . . . . . . . . . . . . . . . 34 Appendix B - Change Log. . . . . . . . . . . . . . . . . . . . . . 43 Intellectual Property Statement. . . . . . . . . . . . . . . . . . 44 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 44 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 45 Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 46
1. 序論. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1。 要件の仕様。 . . . . . . . . . . . . . 3 1.2. 用語。 . . . . . . . . . . . . . . . . . . . . . . 3 2. EAP. . . . . . . . . . . . . . . . . . . . 4 2.1の半径サポート。 概要について議定書の中で述べてください。 . . . . . . . . . . . . . . . . . . . 5 2.2. 無効のパケット。 . . . . . . . . . . . . . . . . . . . . 9 2.3. Retransmission. . . . . . . . . . . . . . . . . . . . . 10 2.4。 断片化。 . . . . . . . . . . . . . . . . . . . . . 10 2.5. 代替手段は.112.6を使用します。 用法ガイドライン. . . . . . . . . . . . . . . . . . . . 11 3。 属性. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1。 EAP-メッセージ。 . . . . . . . . . . . . . . . . . . . . . . 15 3.2. メッセージ固有識別文字。 . . . . . . . . . . . . . . . . . 16 3.3. 属性のテーブル。 . . . . . . . . . . . . . . . . . . 18 4. セキュリティ問題。 . . . . . . . . . . . . . . . . . . . 19 4.1. セキュリティ要件。 . . . . . . . . . . . . . . . . . 19 4.2. セキュリティは議定書を作ります。 . . . . . . . . . . . . . . . . . . . 20 4.3. 安全保障問題。 . . . . . . . . . . . . . . . . . . . . 22 5. IANA問題。 . . . . . . . . . . . . . . . . . . . . . 30 6. 参照. . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1。 引用規格. . . . . . . . . . . . . . . . . . 30 6.2。 有益な参照. . . . . . . . . . . . . . . . . 32付録A--例。 . . . . . . . . . . . . . . . . . . . . . . 34付録B--ログを変えてください。 . . . . . . . . . . . . . . . . . . . . . 43 知的所有権声明。 . . . . . . . . . . . . . . . . . 44の承認. . . . . . . . . . . . . . . . . . . . . . . . . 44の作者のアドレス. . . . . . . . . . . . . . . . . . . . . . . . 45の完全な著作権宣言文. . . . . . . . . . . . . . . . . . . . . 46
1. Introduction
1. 序論
The Remote Authentication Dial In User Service (RADIUS) is an authentication, authorization and accounting protocol used to control network access. RADIUS authentication and authorization is specified in [RFC2865], and RADIUS accounting is specified in [RFC2866]; RADIUS over IPv6 is specified in [RFC3162].
Remote Authentication Dial In User Service(RADIUS)はネットワークアクセサリーを制御するのに使用される認証と、承認と会計プロトコルです。 RADIUS認証と承認は[RFC2865]で指定されます、そして、RADIUS会計は[RFC2866]で指定されます。 IPv6の上のRADIUSは[RFC3162]で指定されます。
The Extensible Authentication Protocol (EAP), defined in [RFC2284], is an authentication framework which supports multiple authentication mechanisms. EAP may be used on dedicated links, switched circuits, and wired as well as wireless links.
[RFC2284]で定義された拡張認証プロトコル(EAP)は複数の認証がメカニズムであるとサポートする認証フレームワークです。EAPは専用リンク、交換回線網、およびワイヤードでワイヤレスのリンクの上に使用されるかもしれません。
To date, EAP has been implemented with hosts and routers that connect via switched circuits or dial-up lines using PPP [RFC1661]. It has also been implemented with bridges supporting [IEEE802]. EAP encapsulation on IEEE 802 wired media is described in [IEEE8021X].
これまで、EAPはPPP[RFC1661]を使用することで交換回線網かダイヤルアップ系列で接するホストとルータで実装されました。 また、ブリッジが[IEEE802]をサポートしていて、それは実装されました。 IEEE802ワイヤードなメディアのEAPカプセル化は[IEEE8021X]で説明されます。
Aboba & Calhoun Informational [Page 2] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[2ページ]のRFC3579半径とEAP2003年9月
RADIUS attributes are comprised of variable length Type-Length-Value 3-tuples. New attribute values can be added without disturbing existing implementations of the protocol. This specification describes RADIUS attributes supporting the Extensible Authentication Protocol (EAP): EAP-Message and Message-Authenticator. These attributes now have extensive field experience. The purpose of this document is to provide clarification and resolve interoperability issues.
RADIUS属性は可変長Type長さの価値の3-tuplesから成ります。 プロトコルの不穏な既存の実装なしで新しい属性値を加えることができます。 この仕様は拡張認証プロトコル(EAP)をサポートするRADIUS属性について説明します: EAP-メッセージとメッセージ固有識別文字。 これらの属性に、現在、広範囲な野外経験があります。 このドキュメントの目的は、明確化を提供して、相互運用性問題を解決することです。
As noted in [RFC2865], a Network Access Server (NAS) that does not implement a given service MUST NOT implement the RADIUS attributes for that service. This implies that a NAS that is unable to offer EAP service MUST NOT implement the RADIUS attributes for EAP. A NAS MUST treat a RADIUS Access-Accept requesting an unavailable service as an Access-Reject instead.
[RFC2865]に述べられるように、与えられたサービスを実装しないNetwork Access Server(NAS)は、そのサービスのためにRADIUSが属性であると実装してはいけません。 これは、サービスをEAPに提供できないNASが、EAPのためにRADIUSが属性であると実装してはいけないのを含意します。 A NAS MUSTは、代わりにAccess-廃棄物として入手できないサービスを要求しながら、RADIUS Access受け入れた状態でaを扱います。
1.1. Specification of Requirements
1.1. 要件の仕様
In this document, several words are used to signify the requirements of the specification. These words are often capitalized. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本書では、いくつかの単語が、仕様の要件を意味するのに使用されます。 これらの単語はしばしば大文字で書かれます。 キーワード“MUST"、「必須NOT」が「必要です」、“SHALL"、「」、“SHOULD"、「「推薦され」て、「5月」の、そして、「任意」のNOTは[RFC2119]で説明されるように本書では解釈されることであるべきですか?
1.2. Terminology
1.2. 用語
This document frequently uses the following terms:
このドキュメントは頻繁に次の用語を使用します:
authenticator The end of the link requiring the authentication. Also known as the Network Access Server (NAS) or RADIUS client. Within IEEE 802.1X terminology, the term Authenticator is used.
固有識別文字、認証を必要とするリンクの端。 また、Network Access Server(NAS)かRADIUSクライアントとして、知られています。 IEEE 802.1X用語の中では、Authenticatorという期間は使用されています。
peer The other end of the point-to-point link (PPP), point-to-point LAN segment (IEEE 802.1X) or wireless link, which is being authenticated by the authenticator. In IEEE 802.1X, this end is known as the Supplicant.
他が終わらせるポイントツーポイント接続(PPP)、二地点間LANセグメント(IEEE 802.1X)またはワイヤレスのリンクの同輩。(それは、固有識別文字によって認証されています)。 IEEE 802.1Xでは、この終わりはSupplicantとして知られています。
authentication server An authentication server is an entity that provides an authentication service to an authenticator (NAS). This service verifies from the credentials provided by the peer, the claim of identity made by the peer; it also may provide credentials allowing the peer to verify the identity of the authentication server. Within this document it is assumed that the NAS operates as a pass-through, forwarding EAP packets between the RADIUS server and the EAP peer.
認証サーバAn認証サーバは固有識別文字(NAS)への認証サービスを提供する実体です。 資格証明書から、同輩、同輩によって作られたアイデンティティのクレームで、提供しますこのサービスが、確かめる。 また、それは同輩が認証サーバのアイデンティティについて確かめることができる資格証明書を提供するかもしれません。このドキュメントの中では、NASが通じて通るとして作動すると思われます、RADIUSサーバとEAP同輩の間でパケットをEAPに送って。
Aboba & Calhoun Informational [Page 3] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[3ページ]のRFC3579半径とEAP2003年9月
Therefore the RADIUS server operates as an authentication server.
したがって、RADIUSサーバは認証サーバとして作動します。
silently discard This means the implementation discards the packet without further processing. The implementation SHOULD provide the capability of logging the error, including the contents of the silently discarded packet, and SHOULD record the event in a statistics counter.
さらに処理しながら、静かにThis手段を実装がパケットを捨てる捨ててください。 実装SHOULDは静かに捨てられたパケットのコンテンツを含む誤りを登録する能力を提供します、そして、SHOULDは統計カウンタに出来事を記録に残します。
displayable message This is interpreted to be a human readable string of characters, and MUST NOT affect operation of the protocol. The message encoding MUST follow the UTF-8 transformation format [RFC2279].
「ディスプレイ-可能」メッセージThisはキャラクタの人間の読み込み可能なストリングになるように解釈されて、プロトコルの操作に影響してはいけません。 メッセージコード化はUTF-8変換形式[RFC2279]に続かなければなりません。
Network Access Server (NAS) The device providing access to the network. Also known as the Authenticator (IEEE 802.1X or EAP terminology) or RADIUS client.
デバイス提供がネットワークにアクセスするAccess Server(NAS)をネットワークでつないでください。 また、Authenticator(IEEE 802.1XかEAP用語)かRADIUSクライアントとして、知られています。
service The NAS provides a service to the user, such as IEEE 802 or PPP.
NASがユーザに対するIEEE802かPPPなどのサービスを提供するサービス。
session Each service provided by the NAS to a peer constitutes a session, with the beginning of the session defined as the point where service is first provided and the end of the session defined as the point where service is ended. A peer may have multiple sessions in parallel or series if the NAS supports that, with each session generating a separate start and stop accounting record.
NASによって同輩に提供されたセッションEachサービスはセッションを構成します、セッションの始まりがサービスが最初に提供されるポイントと定義されて、セッションの終わりがサービスが終わるポイントと定義されている状態で。 同輩は、NASがそれをサポートするなら各セッションが別々の始めを生成していて平行な複数のセッションかシリーズを持って、会計帳簿を止めるかもしれません。
2. RADIUS Support for EAP
2. EAPの半径サポート
The Extensible Authentication Protocol (EAP), described in [RFC2284], provides a standard mechanism for support of additional authentication methods without the NAS to be upgraded to support each new method. Through the use of EAP, support for a number of authentication schemes may be added, including smart cards, Kerberos [RFC1510], Public Key [RFC2716], One Time Passwords [RFC2284], and others.
[RFC2284]で説明された拡張認証プロトコル(EAP)は、NASのない追加認証方法のサポートがそれぞれの新しいメソッドをサポートするためにアップグレードするように標準のメカニズムを提供します。 EAPの使用で、多くの認証体系のサポートは加えられるかもしれません、スマートカード、ケルベロス[RFC1510]、Public Key[RFC2716]、One Time Passwords[RFC2284]、および他のものを含んでいて。
One of the advantages of the EAP architecture is its flexibility. EAP is used to select a specific authentication mechanism. Rather than requiring the NAS to be updated to support each new authentication method, EAP permits the use of an authentication server implementing authentication methods, with the NAS acting as a pass-through for some or all methods and peers.
EAPアーキテクチャの利点の1つはその柔軟性です。 EAPは、特定の認証機構を選択するのに使用されます。 それぞれの新しい認証がメソッドであるとサポートするためにNASをアップデートするのが必要であるよりむしろ、EAPは認証がメソッドであると実装する認証サーバの使用を可能にします、NASがいくつかかすべてのメソッドと同輩のために通じて通るとして機能して。
Aboba & Calhoun Informational [Page 4] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[4ページ]のRFC3579半径とEAP2003年9月
A NAS MAY authenticate local peers while at the same time acting as a pass-through for non-local peers and authentication methods it does not implement locally. A NAS implementing this specification is not required to use RADIUS to authenticate every peer. However, once the NAS begins acting as a pass-through for a particular session, it can no longer perform local authentication for that session.
NAS MAYは同時に非地元の同輩とそれが局所的に実装しない認証方法のために通じて通るとして機能している間、地元の同輩を認証します。 この仕様を履行するNASは、すべての同輩を認証するのにRADIUSを使用するのに必要ではありません。 しかしながら、NASが特定のセッションのために通じて通るとしていったん機能し始めると、それはそのセッションのためにもう地方の認証を実行できません。
In order to support EAP within RADIUS, two new attributes, EAP-Message and Message-Authenticator, are introduced in this document. This section describes how these new attributes may be used for providing EAP support within RADIUS.
RADIUSの中でEAPをサポートするために、2つの新しい属性、EAP-メッセージ、およびMessage-固有識別文字が本書では紹介されます。 このセクションはこれらの新しい属性がRADIUSの中でサポートをEAPに供給するのにどう使用されるかもしれないかを説明します。
2.1. Protocol Overview
2.1. プロトコル概要
In RADIUS/EAP, RADIUS is used to shuttle RADIUS-encapsulated EAP Packets between the NAS and an authentication server.
RADIUS/EAPでは、RADIUSは、NASと認証サーバの間のRADIUSによってカプセル化されたEAP Packetsを往復させるのに使用されます。
The authenticating peer and the NAS begin the EAP conversation by negotiating use of EAP. Once EAP has been negotiated, the NAS SHOULD send an initial EAP-Request message to the authenticating peer. This will typically be an EAP-Request/Identity, although it could be an EAP-Request for an authentication method (Types 4 and greater). A NAS MAY be configured to initiate with a default authentication method. This is useful in cases where the identity is determined by another means (such as Called-Station-Id, Calling-Station-Id and/or Originating-Line-Info); where a single authentication method is required, which includes its own identity exchange; where identity hiding is desired, so that the identity is not requested until after a protected channel has been set up.
認証している同輩とNASは、EAPの使用を交渉することによって、EAPの会話を始めます。 EAPがいったん交渉されると、NAS SHOULDは初期のEAP-要求メッセージを認証している同輩に送ります。 認証方法(より4より多くのタイプ)を求めてそれはEAP-要求であるかもしれませんが、これは通常アイデンティティにEAP-要求/なるでしょう。 NAS MAY、デフォルト認証方法によって開始に構成されてください。 これは別の手段(Called駅のイド、Calling駅のイド、そして/または、Originating線インフォメーションなどの)でアイデンティティが決定する場合で役に立ちます。 ただ一つの認証方法(それ自身のアイデンティティ交換を含んでいる)が必要であるところ。 アイデンティティ隠れることが望まれているのでアイデンティティがどこで保護されたチャンネルの後まで要求されていないかはセットアップされました。
The peer replies with an EAP-Response. The NAS MAY determine from the Response that it should proceed with local authentication. Alternatively, the NAS MAY act as a pass-through, encapsulating the EAP-Response within EAP-Message attribute(s) sent to the RADIUS server within a RADIUS Access-Request packet. If the NAS sends an EAP-Request/Identity message as the initial packet, the peer responds with an EAP-Response/Identity. The NAS may determine that the peer is local and proceed with local authentication. If no match is found against the list of local users, the NAS encapsulates the EAP-Response/Identity message within an EAP-Message attribute, enclosed within an Access-Request packet.
同輩はEAP-応答で返答します。 NAS MAYは、Responseから地方の認証を続けるべきであることを決定します。 あるいはまた、NAS MAYは通じて通るとして機能します、RADIUS Access-リクエスト・パケットの中のRADIUSサーバに送られたEAP-メッセージ属性の中でEAP-応答をカプセル化して。 NASが初期のパケットとしてEAP-要求/アイデンティティメッセージを送るなら、同輩はEAP-応答/アイデンティティで応じます。 NASは同輩が地元であることを決定して、地方の認証を続けるかもしれません。 マッチが全く地元のユーザのリストに対して見つけられないなら、NASはAccess-リクエスト・パケットの中に同封されたEAP-メッセージ属性の中でEAP-応答/アイデンティティメッセージをカプセル化します。
On receiving a valid Access-Request packet containing EAP-Message attribute(s), a RADIUS server compliant with this specification and wishing to authenticate with EAP MUST respond with an Access-Challenge packet containing EAP-Message attribute(s). If the RADIUS server does not support EAP or does not wish to authenticate with EAP, it MUST respond with an Access-Reject.
EAP-メッセージ属性を含んでいて、有効なAccess-リクエスト・パケットを受けると、Access-挑戦パケットがEAP-メッセージ属性を含んでいて、この仕様による対応することのRADIUSサーバとEAP MUSTと共に認証する願望は反応します。 RADIUSサーバがEAPをサポートしないか、またはEAPと共に認証するどんな願望もしないなら、それはAccess-廃棄物で応じなければなりません。
Aboba & Calhoun Informational [Page 5] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[5ページ]のRFC3579半径とEAP2003年9月
EAP-Message attribute(s) encapsulate a single EAP packet which the NAS decapsulates and passes on to the authenticating peer. The peer then responds with an EAP-Response packet, which the NAS encapsulates within an Access-Request containing EAP-Message attribute(s). EAP is a 'lock step' protocol, so that other than the initial Request, a new Request cannot be sent prior to receiving a valid Response.
EAP-メッセージ属性が単一のEAPパケットをカプセルに入れる、どれ、認証している同輩にとって、オンなNAS decapsulatesとパス。 そして、同輩はEAP-応答パケットで応じます。(NASはEAP-メッセージ属性を含むAccess-要求で中それをカプセルに入れります)。 EAPは'ロックステップ'プロトコルです、有効なResponseを受ける前に初期のRequest以外に、新しいRequestを送ることができないように。
The conversation continues until either a RADIUS Access-Reject or Access-Accept packet is received from the RADIUS server. Reception of a RADIUS Access-Reject packet MUST result in the NAS denying access to the authenticating peer. A RADIUS Access-Accept packet successfully ends the authentication phase. The NAS MUST NOT "manufacture" a Success or Failure packet as the result of a timeout. After a suitable number of timeouts have elapsed, the NAS SHOULD instead end the EAP conversation.
会話はRADIUSサーバからRADIUS Access-廃棄物かAccess受け入れているパケットのどちらかを受け取るまで続きます。RADIUS Access-廃棄物パケットのレセプションは認証している同輩へのアクセスを拒絶するNASをもたらさなければなりません。 RADIUS Access受け入れているパケットは認証フェーズを首尾よく終わらせます。 NAS MUST NOTはタイムアウトの結果としてSuccessかFailureパケットを「製造しています」。 適当な数のタイムアウトが経過した後に、NAS SHOULDは代わりにEAPの会話を終わらせます。
Using RADIUS, the NAS can act as a pass-through for an EAP conversation between the peer and authentication server, without needing to implement the EAP method used between them. Where the NAS initiates the conversation by sending an EAP-Request for an authentication method, it may not be required that the NAS fully implement the EAP method reflected in the initial EAP-Request. Depending on the initial method, it may be sufficient for the NAS to be configured with the initial packet to be sent to the peer, and for the NAS to act as a pass-through for subsequent messages. Note that since the NAS only encapsulates the EAP-Response in its initial Access-Request, the initial EAP-Request within the authentication method is not available to the RADIUS server. For the RADIUS server to be able to continue the conversation, either the initial EAP-Request is vestigial, so that the RADIUS server need not be aware of it, or the relevant information from the initial EAP-Request (such as a nonce) is reflected in the initial EAP-Response, so that the RADIUS server can obtain it without having received the initial EAP-Request.
RADIUSを使用して、NASは同輩と認証サーバとのEAPの会話のために通じて通るとして機能できます、EAPが彼らの間で使用されるメソッドであると実装する必要はなくて。 NASが認証方法を求めるEAP-要求を送ることによって会話を開始するところでは、NASが、EAPが初期のEAP-要求に反映されたメソッドであると完全に実装するのが必要でないかもしれません。 初期のメソッドによって、NASが初期のパケットによって構成されて、同輩に送られて、NASがその後のメッセージのために通じて通るとして機能するのは、十分であるかもしれません。 NASが初期のAccess-要求におけるEAP-応答をカプセル化するだけであるので認証方法の中の初期のEAP-要求がRADIUSサーバに利用可能でないことに注意してください。RADIUSサーバが会話を続けることができるように、初期のEAP-要求はなごりです; それで、RADIUSサーバがそれ、または初期のEAP-要求(一回だけなどの)からの関連情報を意識している必要はないのは初期のEAP-応答に反映されます、RADIUSサーバが初期のEAP-要求を受け取っていなくてそれを得ることができるように。
Where the initial EAP-Request sent by the NAS is for an authentication Type (4 or greater), the peer MAY respond with a Nak indicating that it would prefer another authentication method that is not implemented locally. In this case, the NAS SHOULD send Access-Request encapsulating the received EAP-Response/Nak. This provides the RADIUS server with a hint about the authentication method(s) preferred by the peer, although it does not provide information on the Type of the original Request. It also provides the server with the Identifier used in the initial EAP-Request, so that Identifier conflicts can be avoided.
NASによって送られた初期のEAP-要求が認証Type(4以上)のためのものであるところでは、Nakが、局所的に実装されない別の認証方法を好むのを示していて、同輩は応じるかもしれません。 この場合、NAS SHOULDは容認されたEAP-応答/NakをAccess-要求要約に送ります。 これは同輩によって好まれた認証方法に関するヒントをRADIUSサーバに提供します、オリジナルのRequestのTypeの情報を提供しませんが。 また、それはIdentifier闘争を避けることができるように初期のEAP-要求で使用されるIdentifierをサーバに提供します。
Aboba & Calhoun Informational [Page 6] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[6ページ]のRFC3579半径とEAP2003年9月
In order to evaluate whether the alternatives preferred by the authenticating peer are allowed, the RADIUS server will typically respond with an Access-Challenge containing EAP-Message attribute(s) encapsulating an EAP-Request/Identity (Type 1). This allows the RADIUS server to determine the peer identity, so as to be able to retrieve the associated authentication policy. Alternatively, an EAP-Request for an authentication method (Type 4 or greater) could be sent. Since the RADIUS server may not be aware of the Type of the initial EAP-Request, it is possible for the RADIUS server to choose an unacceptable method, and for the peer to respond with another Nak.
認証している同輩によって好まれた代替手段が許容されているかどうか評価するために、EAP-要求/アイデンティティをカプセル化しながらEAP-メッセージ属性を含んでいて、RADIUSサーバはAccess-挑戦で通常反応するでしょう(1をタイプしてください)。 これで、RADIUSサーバは同輩のアイデンティティを決定できます、関連認証方針を検索できるように。 あるいはまた、認証方法(4以上をタイプする)を求めるEAP-要求を送ることができました。 RADIUSサーバが初期のEAP-要求のTypeを意識していないかもしれないので、RADIUSサーバが容認できないメソッドを選んで、同輩が別のNakと共に応じるのは、可能です。
In order to permit non-EAP aware RADIUS proxies to forward the Access-Request packet, if the NAS initially sends an EAP-Request/Identity message to the peer, the NAS MUST copy the contents of the Type-Data field of the EAP-Response/Identity received from the peer into the User-Name attribute and MUST include the Type-Data field of the EAP-Response/Identity in the User-Name attribute in every subsequent Access-Request. Since RADIUS proxies are assumed to act as a pass-through, they cannot be expected to parse an EAP-Response/Identity encapsulated within EAP-Message attribute(s). If the NAS initially sends an EAP-Request for an authentication method, and the peer identity cannot be determined from the EAP-Response, then the User-Name attribute SHOULD be determined by another means. As noted in [RFC2865] Section 5.6, it is recommended that Access-Requests use the value of the Calling-Station-Id as the value of the User-Name attribute.
NASが初めはEAP-要求/アイデンティティメッセージを同輩に送るなら非EAPの意識しているRADIUSプロキシがAccess-リクエスト・パケットを進めることを許可するために、EAP-応答/アイデンティティのType-データ・フィールドのコンテンツが同輩からUser-名前に受けたNAS MUSTコピーは、あらゆるその後のAccess-要求におけるUser-名前属性におけるEAP-応答/アイデンティティのType-データ・フィールドを結果と考えて、含まなければなりません。 RADIUSプロキシが通じて通るとして機能すると思われて、彼らがEAP-メッセージ属性の中でカプセル化されたEAP-応答/アイデンティティを分析することを期待できません。 NASが初めは、認証方法を求めるEAP-要求を送って、同輩のアイデンティティがEAP-応答から決定できないなら、User-名前はSHOULDを結果と考えます。別の手段で、断固としてください。 [RFC2865]セクション5.6に述べられるように、Access-要求がUser-名前属性の値としてCalling駅のイドの値を使用するのは、お勧めです。
Having the NAS send the initial EAP-Request packet has a number of advantages:
NASに初期のEAP-リクエスト・パケットを送らせるのにおいて、多くの利点があります:
[1] It saves a round trip between the NAS and RADIUS server.
[1] それはNASとRADIUSサーバの間の周遊旅行を保存します。
[2] An Access-Request is only sent to the RADIUS server if the authenticating peer sends an EAP-Response, confirming that it supports EAP. In situations where peers may be EAP unaware, initiating a RADIUS Access-Request on a "carrier sense" or "media up" indication may result in many authentication exchanges that cannot complete successfully. For example, on wired networks [IEEE8021X] Supplicants typically do not initiate the 802.1X conversation with an EAPOL-Start. Therefore an IEEE 802.1X-enabled bridge may not be able to determine whether the peer supports EAP until it receives a Response to the initial EAP-Request.
[2] 認証している同輩がEAP-応答を送る場合にだけ、Access-要求をRADIUSサーバに送ります、EAPをサポートすると確認して。 「キャリア検知」か「メディアは上昇すること」に関するRADIUS Access-要求を開始して、同輩がEAP気づかないかもしれない状況で、指示がそれが首尾よく終了できない多くの認証交換をもたらすかもしれません。 例えば、有線ネットワーク[IEEE8021X]では、哀願者はEAPOL-始めとの802.1Xの会話を通常開始しません。 したがって、IEEE 802.1Xによって可能にされたブリッジは、初期のEAP-要求にResponseを受けるまで同輩がEAPをサポートするかどうか決定できないかもしれません。
[3] It allows some peers to be authenticated locally.
[3] それは、何人かの同輩が局所的に認証されるのを許容します。
Aboba & Calhoun Informational [Page 7] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[7ページ]のRFC3579半径とEAP2003年9月
Although having the NAS send the initial EAP-Request packet has substantial advantages, this technique cannot be universally employed. There are circumstances in which the peer identity is already known (such as when authentication and accounting is handled based on Called-Station-Id, Calling-Station-Id and/or Originating-Line-Info), but where the appropriate EAP method may vary based on that identity.
NASを発信させますが、初期のEAP-リクエスト・パケットにはかなりの利益があって、一般にこのテクニックは使うことができません。 同輩のアイデンティティが既に知られている事情(認証と会計がCalled駅のイド、Calling駅のイド、そして/または、Originating線インフォメーションに基づいて扱われる時などの)がありますが、そのアイデンティティに基づいて適切なEAPメソッドが異なるかもしれないところで異なってください。
Rather than sending an initial EAP-Request packet to the authenticating peer, on detecting the presence of the peer, the NAS MAY send an Access-Request packet to the RADIUS server containing an EAP-Message attribute signifying EAP-Start. The RADIUS server will typically respond with an Access-Challenge containing EAP-Message attribute(s) encapsulating an EAP-Request/Identity (Type 1). However, an EAP-Request for an authentication method (Type 4 or greater) can also be sent by the server.
初期のEAP-リクエスト・パケットを認証している同輩に送るよりむしろ、同輩の存在を検出するとき、NAS MAYはEAP-始めを意味するEAP-メッセージ属性を含むRADIUSサーバにAccess-リクエスト・パケットを送ります。 EAP-要求/アイデンティティをカプセル化しながらEAP-メッセージ属性を含んでいて、RADIUSサーバはAccess-挑戦で通常反応するでしょう(1をタイプしてください)。 しかしながら、また、サーバは認証方法(4以上をタイプする)を求めるEAP-要求を送ることができます。
EAP-Start is indicated by sending an EAP-Message attribute with a length of 2 (no data). The Calling-Station-Id SHOULD be included in the User-Name attribute. This may result in a RADIUS Access-Request being sent by the NAS to the RADIUS server without first confirming that the peer supports EAP. Since this technique can result in a large number of uncompleted RADIUS conversations, in situations where EAP unaware peers are common, or where peer support for EAP cannot be determined on initial contact (e.g. [IEEE8021X] Supplicants not initiating the conversation with an EAPOL-Start) it SHOULD NOT be employed by default.
EAP-始めは、2(データがない)の長さと共にEAP-メッセージ属性を送ることによって、示されます。 Calling駅のイドSHOULD、User-名前属性で含められてください。 最初に同輩がEAPをサポートすると確認しないNASによってRADIUSサーバに送られながら、これはRADIUS Access-要求をもたらすかもしれません。 このテクニックが多くの未完成のRADIUSの会話をもたらすことができるので、EAPの気づかない同輩が一般的であるか、または初期でEAPのピアサポートについて決めることができない状況で、それに連絡してください、(例えば、EAPOL-始めとの会話を開始しない[IEEE8021X]哀願者)SHOULD NOT、デフォルトで使われてください。
For proxied RADIUS requests, there are two methods of processing. If the domain is determined based on the Calling-Station-Id, Called-Station-Id and/or Originating-Line-Info, the RADIUS server may proxy the initial RADIUS Access-Request/EAP-Start. If the realm is determined based on the peer identity, the local RADIUS server MUST respond with a RADIUS Access-Challenge including an EAP-Message attribute encapsulating an EAP-Request/Identity packet. The response from the authenticating peer SHOULD be proxied to the final authentication server.
proxied RADIUS要求のために、処理の2つのメソッドがあります。 ドメインがCalling駅のイド、Called駅のイド、そして/または、Originating線インフォメーションに基づいて決定しているなら、RADIUSサーバは初期がRADIUS Access要求するか、またはEAP始めるプロキシを決定します。 分野が同輩のアイデンティティに基づいて決定しているなら、EAP-要求/アイデンティティパケットをカプセルに入れるEAP-メッセージ属性を含んでいて、ローカルのRADIUSサーバはRADIUS Access-挑戦で反応しなければなりません。 応答、認証している同輩SHOULDから、最終的な認証サーバにproxiedされます。
If an Access-Request is sent to a RADIUS server which does not support the EAP-Message attribute, then an Access-Reject MUST be sent in response. On receiving an Access-Reject, the NAS MUST deny access to the authenticating peer.
EAP-メッセージ属性をサポートしないRADIUSサーバにAccess-要求を送るなら、応答でAccess-廃棄物を送らなければなりません。 Access-廃棄物を受けると、NAS MUSTは認証している同輩へのアクセスを拒絶します。
Aboba & Calhoun Informational [Page 8] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[8ページ]のRFC3579半径とEAP2003年9月
2.2. Invalid Packets
2.2. 無効のパケット
While acting as a pass-through, the NAS MUST validate the EAP header fields (Code, Identifier, Length) prior to forwarding an EAP packet to or from the RADIUS server. On receiving an EAP packet from the peer, the NAS checks the Code (2) and Length fields, and matches the Identifier value against the current Identifier, supplied by the RADIUS server in the most recently validated EAP-Request. On receiving an EAP packet from the RADIUS server (encapsulated within an Access-Challenge), the NAS checks the Code (1) and Length fields, then updates the current Identifier value. Pending EAP Responses that do not match the current Identifier value are silently discarded by the NAS.
通じて通るとして機能している間、サーバかRADIUSサーバからEAPパケットを進める前に、NAS MUSTはEAPヘッダーフィールド(コード、Identifier、Length)を有効にします。同輩からEAPパケットを受けるとき、NASは最も最近有効にされたEAP-要求におけるRADIUSサーバによって供給された現在のIdentifierに対してCode(2)とLength分野をチェックして、Identifier値に合っています。 RADIUSサーバ(Access-挑戦の中で要約する)からEAPパケットを受けると、NASはCode(1)とLength分野をチェックして、次に、現在のIdentifier値をアップデートします。 現在のIdentifier値に合っていない未定のEAP ResponsesがNASによって静かに捨てられます。
Since EAP method fields (Type, Type-Data) are typically not validated by a NAS operating as a pass-through, despite these checks it is possible for a NAS to forward an invalid EAP packet to or from the RADIUS server. A RADIUS server receiving EAP-Message attribute(s) it does not understand SHOULD make the determination of whether the error is fatal or non-fatal based on the EAP Type. A RADIUS server determining that a fatal error has occurred MUST send an Access-Reject containing an EAP-Message attribute encapsulating EAP-Failure.
EAPメソッド分野(タイプ、Type-データ)が通じて通るとして作動するNASによって通常有効にされないので、これらのチェックにもかかわらず、NASがEAP-メッセージ属性を受けながらサーバRADIUSかRADIUSからRADIUSサーバを無効のEAPパケットに送るように、SHOULDが誤りが致命的であるか、または非致命的であるかに関する決断をEAP Typeに基づかせているのを理解していないのは可能です。 致命的な誤りが発生したことを決定するRADIUSサーバで、EAP-メッセージ属性を含むAccess-廃棄物はEAP-失敗をカプセル化しなければなりません。
A RADIUS server determining that a non-fatal error has occurred MAY send an Access-Challenge to the NAS including EAP-Message attribute(s) as well as an Error-Cause attribute [RFC3576] with value 202 (decimal), "Invalid EAP Packet (Ignored)". The Access-Challenge SHOULD encapsulate within EAP-Message attribute(s) the most recently sent EAP-Request packet (including the same Identifier value). On receiving such an Access-Challenge, a NAS implementing previous versions of this specification will decapsulate the EAP-Request and send it to the peer, which will retransmit the EAP-Response.
非致命的な誤りが発生したことを決定するRADIUSサーバは値202の(小数)があるError-原因属性[RFC3576]、「無効のEAPパケット(無視される)」と同様にEAP-メッセージ属性を含むNASへのAccess-挑戦を送るかもしれません。 SHOULDが最も最近EAP-メッセージ属性の中でカプセル化するAccess-挑戦はEAP-リクエスト・パケットを送りました(同じIdentifier値を含んでいて)。 そのようなAccess-挑戦を受けると、この仕様の旧バージョンを実装するNASはEAP-要求をdecapsulateして、それを同輩に送るでしょう。(その同輩は、EAP-応答を再送するでしょう)。
A NAS compliant with this specification, on receiving an Access-Challenge with an Error-Cause attribute of value 202 (decimal) SHOULD discard the EAP-Response packet most recently transmitted to the RADIUS server and check whether additional EAP-Response packets have been received matching the current Identifier value. If so, a new EAP-Response packet, if available, MUST be sent to the RADIUS server within an Access-Request, and the EAP-Message attribute(s) included within the Access-Challenge are silently discarded. If no EAP-Response packet is available, then the EAP-Request encapsulated within the Access-Challenge is sent to the peer, and the retransmission timer is reset.
値202の(小数)SHOULDのError-原因属性でAccess-挑戦を受けることに関するこの仕様で言いなりになっているNASは、ごく最近RADIUSサーバに伝えられたEAP-応答パケットを捨てて、追加EAP-応答パケットが現在のIdentifier値を合わせながら受け取られたかどうかチェックします。 そうだとすれば、利用可能であるなら、Access-要求の中のRADIUSサーバに新しいEAP-応答パケットを送らなければなりません、そして、静かにAccess-挑戦の中に含まれていたEAP-メッセージ属性を捨てます。 どんなEAP-応答パケットも利用可能でないなら、Access-挑戦の中でカプセル化されたEAP-要求を同輩に送ります、そして、再送信タイマーをリセットします。
Aboba & Calhoun Informational [Page 9] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[9ページ]のRFC3579半径とEAP2003年9月
In order to provide protection against Denial of Service (DoS) attacks, it is advisable for the NAS to allocate a finite buffer for EAP packets received from the peer, and to discard packets according to an appropriate policy once that buffer has been exceeded. Also, the RADIUS server is advised to permit only a modest number of invalid EAP packets within a single session, prior to terminating the session with an Access-Reject. By default a value of 5 invalid EAP packets is recommended.
サービス妨害(DoS)攻撃に対する保護を提供するために、そのバッファがいったん超えられていると、NASが同輩から受け取られたEAPパケットのための有限バッファを割り当てて、適切な方針によると、パケットを捨てるのは賢明です。 また、RADIUSサーバがただ一つのセッション以内に穏やかな数の無効のEAPパケットだけを可能にするように教えられます、Access-廃棄物とのセッションを終える前に。 デフォルトで、5つの無効のEAPパケットの値はお勧めです。
2.3. Retransmission
2.3. Retransmission
As noted in [RFC2284], if an EAP packet is lost in transit between the authenticating peer and the NAS (or vice versa), the NAS will retransmit.
[RFC2284]に述べられるように、EAPパケットが認証している同輩とNAS(逆もまた同様である)の間のトランジットで失われていると、NASは再送するでしょう。
It may be necessary to adjust retransmission strategies and authentication timeouts in certain cases. For example, when a token card is used additional time may be required to allow the user to find the card and enter the token. Since the NAS will typically not have knowledge of the required parameters, these need to be provided by the RADIUS server. This can be accomplished by inclusion of Session-Timeout attribute within the Access-Challenge packet.
ある場合には「再-トランスミッション」戦略と認証タイムアウトを調整するのが必要であるかもしれません。 トークン・カードが使用されているとき、例えば、追加時間が、ユーザがカードを見つけて、トークンに入るのを許可するのに必要であるかもしれません。 以来、NASには、必要なパラメタ(これらのRADIUSサーバによって提供されるべき必要性)に関する知識が通常なくて、Access-挑戦パケットの中でSession-タイムアウト属性の包含でこれは達成できます。
If Session-Timeout is present in an Access-Challenge packet that also contains an EAP-Message, the value of the Session-Timeout is used to set the EAP retransmission timer for that EAP Request, and that Request alone. Once the EAP-Request has been sent, the NAS sets the retransmission timer, and if it expires without having received an EAP-Response corresponding to the Request, then the EAP-Request is retransmitted.
Session-タイムアウトがまた、EAP-メッセージを含むAccess-挑戦パケットに存在しているなら、Session-タイムアウトの値は、単独でそのEAP Request、およびそのRequestにEAP再送信タイマーを設定するのに使用されます。 いったんEAP-要求を送ると、NASは再送信タイマーを設定します、そして、Requestに対応するEAP-応答を受けていなくて期限が切れるなら、EAP-要求は再送されます。
2.4. Fragmentation
2.4. 断片化
Using the EAP-Message attribute, it is possible for the RADIUS server to encapsulate an EAP packet that is larger than the MTU on the link between the NAS and the peer. Since it is not possible for the RADIUS server to use MTU discovery to ascertain the link MTU, the Framed-MTU attribute may be included in an Access-Request packet containing an EAP-Message attribute so as to provide the RADIUS server with this information. A RADIUS server having received a Framed-MTU attribute in an Access-Request packet MUST NOT send any subsequent packet in this EAP conversation containing EAP-Message attributes whose values, when concatenated, exceed the length specified by the Framed-MTU value, taking the link type (specified by the NAS-Port-Type attribute) into account. For example, as noted in [RFC3580] Section 3.10, for a NAS-Port-Type value of IEEE 802.11, the
EAP-メッセージ属性を使用して、RADIUSサーバが、EAPパケットがそれであるとカプセル化するのが、NASの間のリンクの上のMTUと同輩より大きいのは、可能です。 RADIUSサーバがリンクMTUを確かめるのにMTU発見を使用するのが、可能でないので、Framed-MTU属性はこの情報をRADIUSサーバに提供するためにEAP-メッセージ属性を含むAccess-リクエスト・パケットに含まれるかもしれません。 Access-リクエスト・パケットでFramed-MTU属性を受けたならどんなその後のパケットも連結されると値が長さを超えているEAP-メッセージ属性を含むこのEAPの会話で送られてはいけないRADIUSサーバはFramed-MTU値で指定しました、リンク型(NASポートタイプ属性で、指定される)をアカウントに連れて行って。 IEEE802.11のNASポートタイプ値のために例えば[RFC3580]セクション3.10に述べられるように
Aboba & Calhoun Informational [Page 10] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[10ページ]のRFC3579半径とEAP2003年9月
RADIUS server may send an EAP packet as large as Framed-MTU minus four (4) octets, taking into account the additional overhead for the IEEE 802.1X Version (1), Type (1) and Body Length (2) fields.
RADIUSサーバは4(4)八重奏を引いてFramed-MTUと同じくらい大きいEAPパケットを送るかもしれません、IEEE 802.1Xバージョン(1)、Type(1)、およびBody Length(2)分野に追加オーバーヘッドを考慮に入れて。
2.5. Alternative Uses
2.5. 代替の用途
Currently the conversation between security servers and the RADIUS server is often proprietary because of lack of standardization. In order to increase standardization and provide interoperability between RADIUS vendors and security vendors, it is recommended that RADIUS- encapsulated EAP be used for this conversation.
現在の、セキュリティサーバとRADIUSサーバとの会話は標準化の不足のためにしばしば独占です。 RADIUSベンダーとセキュリティベンダーの間に標準化を増強して、相互運用性を提供するために、EAPであるとカプセル化されたRADIUSがこの会話に使用されるのは、お勧めです。
This has the advantage of allowing the RADIUS server to support EAP without the need for authentication-specific code within the RADIUS server. Authentication-specific code can then reside on a security server instead.
これには、RADIUSサーバがRADIUSサーバの中で認証特有のコードの必要性なしでEAPをサポートするのを許容する利点があります。次に、認証特有のコードは代わりにセキュリティサーバにあることができます。
In the case where RADIUS-encapsulated EAP is used in a conversation between a RADIUS server and a security server, the security server will typically return an Access-Accept message without inclusion of the expected attributes currently returned in an Access-Accept. This means that the RADIUS server MUST add these attributes prior to sending an Access-Accept message to the NAS.
RADIUSによってカプセル化されたEAPがRADIUSサーバとセキュリティサーバとの会話に使用される場合では、セキュリティサーバが現在返されている予想された属性の包含なしでAccess受け入れているメッセージを通常返す、Access受け入れてください。 これは、Access受け入れているメッセージをNASに送る前にRADIUSサーバがこれらの属性を加えなければならないことを意味します。
2.6. Usage Guidelines
2.6. 用法ガイドライン
2.6.1. Identifier Space
2.6.1. 識別子スペース
In EAP, each session has its own unique Identifier space. RADIUS server implementations MUST be able to distinguish between EAP packets with the same Identifier existing within distinct sessions, originating on the same NAS. For this purpose, sessions can be distinguished based on NAS and session identification attributes. NAS identification attributes include NAS-Identifier, NAS-IPv6-Address and NAS-IPv4-Address. Session identification attributes include User-Name, NAS-Port, NAS-Port-Type, NAS-Port-Id, Called-Station-Id, Calling-Station-Id and Originating-Line-Info.
EAPでは、各セッションはそれ自身のユニークなIdentifierスペースを持っています。 RADIUSサーバ実装は同じIdentifierが異なったセッション以内に存在しているEAPパケットを見分けることができなければなりません、同じNASで起因して。 このために、NASとセッション識別属性に基づいてセッションを区別できます。 NAS識別属性はNAS-識別子、NAS-IPv6-アドレス、およびNAS-IPv4-アドレスを含んでいます。 セッション識別属性はUser-名前、NAS-ポート、NASポートタイプ、NASポートイド、Called駅のイド、Calling駅のイド、およびOriginating線インフォメーションを含んでいます。
2.6.2. Role Reversal
2.6.2. 役割交替
Since EAP is a peer-to-peer protocol, an independent and simultaneous authentication may take place in the reverse direction. Both peers may act as authenticators and authenticatees at the same time.
EAPがピアツーピアプロトコルであるので、独立していて同時の認証は反対の方向に行われるかもしれません。 両方の同輩は同時に、固有識別文字とauthenticateesとして務めるかもしれません。
However, role reversal is not supported by this specification. A RADIUS server MUST respond to an Access-Request encapsulating an EAP-Request with an Access-Reject. In order to avoid retransmissions
しかしながら、役割交替はこの仕様でサポートされません。 Access-廃棄物とのEAP-要求をカプセル化して、RADIUSサーバはAccess-要求に応じなければなりません。 「再-トランスミッション」を避けます。
Aboba & Calhoun Informational [Page 11] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[11ページ]のRFC3579半径とEAP2003年9月
by the peer, the Access-Reject SHOULD include an EAP-Response/Nak packet indicating no preferred method, encapsulated within EAP-Message attribute(s).
同輩で、Access-廃棄物SHOULDはEAP-メッセージ属性の中でカプセル化されなかった適した方法を全く示すEAP-応答/Nakパケットを含んでいます。
2.6.3. Conflicting Messages
2.6.3. 闘争メッセージ
The NAS MUST make its access control decision based solely on the RADIUS Packet Type (Access-Accept/Access-Reject). The access control decision MUST NOT be based on the contents of the EAP packet encapsulated in one or more EAP-Message attributes, if present.
NAS MUSTは唯一RADIUS Packet Type(アクセスして受け入れるか、またはアクセスして拒絶する)に基づくアクセス制御決定をします。 アクセス制御決定は、1つ以上のEAP-メッセージ属性でカプセルに入れられたEAPパケットのコンテンツに基づいて、存在しているはずがありません。
Access-Accept packets SHOULD have only one EAP-Message attribute in them, containing EAP Success; similarly, Access-Reject packets SHOULD have only one EAP-Message attribute in them, containing EAP Failure.
EAP Successを含んでいて、アクセスして受け入れているパケットSHOULDはそれらに1つのEAP-メッセージ属性しか持っていません。 同様に、EAP Failureを含んでいて、Access-廃棄物パケットSHOULDはそれらに1つのEAP-メッセージ属性しか持っていません。
Where the encapsulated EAP packet does not match the result implied by the RADIUS Packet Type, the combination is likely to cause confusion, because the NAS and peer will arrive at different conclusions as to the outcome of the authentication.
カプセル化されたEAPパケットがRADIUS Packet Typeによって含意された結果に合っていないところでは、組み合わせは混乱を引き起こしそうです、NASと同輩が認証の結果に関して異なった結論に到達するので。
For example, if the NAS receives an Access-Reject with an encapsulated EAP Success, it will not grant access to the peer. However, on receiving the EAP Success, the peer will be lead to believe that it authenticated successfully.
例えば、NASがカプセル化されたEAP SuccessがあるAccess-廃棄物を受けると、それは同輩へのアクセスを承諾しないでしょう。 しかしながら、EAP Success、同輩を受けるところに、信じているそれが首尾よく認証したリードがあるでしょう。
If the NAS receives an Access-Accept with an encapsulated EAP Failure, it will grant access to the peer. However, on receiving an EAP Failure, the peer will be lead to believe that it failed authentication. If no EAP-Message attribute is included within an Access-Accept or Access-Reject, then the peer may not be informed as to the outcome of the authentication, while the NAS will take action to allow or deny access.
NASが受信する、カプセル化されたEAP Failureと共にAccess受け入れてください、そして、それは同輩へのアクセスを承諾するでしょう。 EAP Failureを受けるときの同輩がどのようにそうになっても、認証に失敗したと信じているように導いてください。 EAP-メッセージ属性が全く中に含まれていない、Access受け入れるか、Access拒絶、次に、同輩は認証の結果に関して知識がないかもしれません、NASがアクセサリーを許容するか、または否定するために行動を取るでしょうが
As described in [RFC2284], the EAP Success and Failure packets are not acknowledged, and these packets terminate the EAP conversation. As a result, if these packets are encapsulated within an Access-Challenge, no response will be received, and therefore the NAS will send no further Access-Requests to the RADIUS server for the session. As a result, the RADIUS server will not indicate to the NAS whether to allow or deny access, while the peer will be informed as to the outcome of the authentication.
[RFC2284]で説明されるように、EAP SuccessとFailureパケットは承認されません、そして、これらのパケットはEAPの会話を終えます。 その結果、Access-挑戦の中でこれらのパケットをカプセルに入れると、応答を全く受けないでしょう、そして、したがって、NASはこれ以上Access-要求をセッションのためのRADIUSサーバに送らないでしょう。 その結果、RADIUSサーバは、アクセスを許容するか、または拒絶するかをNASに示さないでしょう、同輩は認証の結果に関して知識があるようになるでしょうが。
Aboba & Calhoun Informational [Page 12] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[12ページ]のRFC3579半径とEAP2003年9月
To avoid these conflicts, the following combinations SHOULD NOT be sent by a RADIUS server:
これらの闘争、以下の組み合わせSHOULD NOTを避けるには、RADIUSサーバで、送ってください:
Access-Accept/EAP-Message/EAP Failure Access-Accept/no EAP-Message attribute Access-Accept/EAP-Start Access-Reject/EAP-Message/EAP Success Access-Reject/no EAP-Message attribute Access-Reject/EAP-Start Access-Challenge/EAP-Message/EAP Success Access-Challenge/EAP-Message/EAP Failure Access-Challenge/no EAP-Message attribute Access-Challenge/EAP-Start
EAP EAP Failure Access EAP EAP Success Access EAP EAP EAP Failure Access/EAP-メッセージ/受け入れている/EAP Success Access EAP-メッセージがない属性EAP Access受け入れている/EAP-スタートAccess-廃棄物/メッセージ/廃棄物/いいえ、EAP-メッセージ属性Access-廃棄物/スタートAccess-挑戦/メッセージ/挑戦/メッセージ/挑戦/いいえ、EAP-メッセージ属性Access-挑戦/始めをアクセスして受け入れてください。
Since the responsibility for avoiding conflicts lies with the RADIUS server, the NAS MUST NOT "manufacture" EAP packets in order to correct contradictory messages that it receives. This behavior, originally mandated within [IEEE8021X], will be deprecated in the future.
摩擦を避けることへの責任がRADIUSサーバにあるので、NAS MUST NOTは受信するという相容れないメッセージを修正するためにEAPパケットを「製造しています」。 この元々[IEEE8021X]の中で強制された振舞いは将来、推奨しなくなるでしょう。
2.6.4. Priority
2.6.4. 優先権
A RADIUS Access-Accept or Access-Reject packet may contain EAP- Message attribute(s). In order to ensure the correct processing of RADIUS packets, the NAS MUST first process the attributes, including the EAP-Message attribute(s), prior to processing the Accept/Reject indication.
Aは、パケットをRADIUS Access受け入れるか、またはAccess拒絶します。EAPメッセージ属性を含むかもしれません。 RADIUSパケットの正しい処理を確実にするために、NAS MUSTは最初に属性を処理します、EAP-メッセージ属性を含んでいて、Accept/廃棄物指示を処理する前に。
2.6.5. Displayable Messages
2.6.5. Displayableメッセージ
The Reply-Message attribute, defined in [RFC2865], Section 5.18, indicates text which may be displayed to the peer. This is similar in concept to EAP Notification, defined in [RFC2284]. When sending a displayable message to a NAS during an EAP conversation, the RADIUS server MUST encapsulate displayable messages within EAP-Message/EAP-Request/Notification attribute(s). Reply-Message attribute(s) MUST NOT be included in any RADIUS message containing an EAP-Message attribute. An EAP-Message/EAP-Request/Notification SHOULD NOT be included within an Access-Accept or Access-Reject packet.
[RFC2865]で定義されたReply-メッセージ属性(セクション5.18)は同輩に表示されるかもしれないテキストを示します。 これは、概念でEAP Notificationと同様で、[RFC2284]で定義されています。 EAPの会話の間「ディスプレイ-可能」メッセージをNASに送るとき、RADIUSサーバはEAP EAP-メッセージ/要求/通知属性の中で「ディスプレイ-可能」メッセージをカプセル化しなければなりません。 EAP-メッセージ属性を含むどんなRADIUSメッセージにも回答メッセージ属性を含んではいけません。 EAP-メッセージ/が、/通知SHOULD NOTが中に含まれているようEAP要求する、パケットをAccess受け入れるか、またはAccess拒絶してください。
In some existing implementations, a NAS receiving Reply-Message attribute(s) copies the Text field(s) into the Type-Data field of an EAP-Request/Notification packet, fills in the Identifier field, and sends this to the peer. However, several issues arise from this:
いくつかの既存の実装では、Reply-メッセージ属性を受けるNASは同輩にEAP-要求/通知パケットのType-データ・フィールドにText分野をコピーして、Identifier分野に記入して、これを送ります。 しかしながら、いくつかの問題がこれから起こります:
Aboba & Calhoun Informational [Page 13] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[13ページ]のRFC3579半径とEAP2003年9月
[1] Unexpected Responses. On receiving an EAP-Request/Notification, the peer will send an EAP-Response/Notification, and the NAS will pass this on to the RADIUS server, encapsulated within EAP-Message attribute(s). However, the RADIUS server may not be expecting an Access-Request containing an EAP-Message/EAP-Response/Notification attribute.
[1] 予期していなかった応答。 EAP-要求/通知を受け取ると、同輩はEAP-応答/通知を送るでしょう、そして、NASはEAP-メッセージ属性の中でカプセル化されたRADIUSサーバにこれを通過するでしょう。 しかしながら、EAP EAP-メッセージ/応答/通知属性を含んでいて、RADIUSサーバはAccess-要求を予想していないかもしれません。
For example, consider what happens when a Reply-Message is included within an Access-Accept or Access-Reject packet with no EAP-Message attribute(s) present. If the value of the Reply-Message attribute is copied into the Type-Data of an EAP-Request/Notification and sent to the peer, this will result in an Access-Request containing an EAP-Message/EAP-Response/Notification attribute being sent by the NAS to the RADIUS server. Since an Access-Accept or Access-Reject packet terminates the RADIUS conversation, such an Access-Request would not be expected, and could be interpreted as the start of another conversation.
例えば、Reply-メッセージが中に含まれているとき、何が起こるか考えてください、パケットをAccess受け入れるか、またはAccess拒絶してください、存在しているEAP-メッセージ属性なしで。 Reply-メッセージ属性の値をEAP-要求/通知に関するType-データにコピーして、以来同輩(NASによってRADIUSサーバに送られるEAP EAP-メッセージ/応答/通知属性を含むAccess-要求におけるこの意志の結果)に送る、パケットをAccess受け入れるか、またはAccess拒絶してください、終わり、RADIUSの会話、そのようなAccess-要求を予想しないで、別の会話の始まりとして解釈できました。
[2] Identifier conflicts. While the EAP-Request/Notification is an EAP packet containing an Identifier field, the Reply-Message attribute does not contain an Identifier field. As a result, a NAS receiving a Reply-Message attribute and wishing to translate this to an EAP-Request/Notification will need to choose an Identifier value. It is possible that the chosen Identifier value will conflict with a value chosen by the RADIUS server for another packet within the EAP conversation, potentially causing confusion between a new packet and a retransmission.
[2] 識別子は闘争します。 EAP-要求/通知はIdentifier分野を含むEAPパケットですが、Reply-メッセージ属性はIdentifier分野を含んでいません。 その結果、Reply-メッセージ属性を受けて、EAP-要求/通知にこれを翻訳したがっているNASは、Identifier値を選ぶ必要があるでしょう。 選ばれたIdentifier値がEAPの会話の中でRADIUSサーバによって別のパケットに選ばれている値と闘争するのは、可能です、潜在的に新しいパケットと「再-トランスミッション」の間の混乱を引き起こして。
To avoid these problems, a NAS receiving a Reply-Message attribute from the RADIUS server SHOULD silently discard the attribute, rather than attempting to translate it to an EAP Notification Request.
これらの問題を避けるために、それをEAP Notification Requestに翻訳するのを試みるよりRADIUSサーバSHOULDからReply-メッセージ属性を静かに受けるNASはむしろ属性を捨てます。
3. Attributes
3. 属性
The NAS-Port or NAS-Port-Id attributes SHOULD be included by the NAS in Access-Request packets, and either NAS-Identifier, NAS-IP-Address or NAS-IPv6-Address attributes MUST be included. In order to permit forwarding of the Access-Reply by EAP-unaware proxies, if a User-Name attribute was included in an Access-Request, the RADIUS server MUST include the User-Name attribute in subsequent Access-Accept packets. Without the User-Name attribute, accounting and billing becomes difficult to manage. The User-Name attribute within the Access- Accept packet need not be the same as the User-Name attribute in the Access-Request.
NAS-ポートかNASポートイド属性SHOULDがAccess-リクエスト・パケット、およびどちらのNAS-識別子にもNASによって含まれていて、NAS IPアドレスかNAS-IPv6-アドレス属性を含まなければなりません。 User-名前属性がEAP気づかないプロキシによるAccess-回答Access-要求に含まれていたなら進めることを許可するために、RADIUSサーバはその後のAccess受け入れているパケットにUser-名前属性を含まなければなりません。 User-名前属性、会計、および支払いなしで管理するのが難しくなります。 Accessの中のUser-名前属性はUser-名前と同じくらいがAccess-要求で属性でなければならなかったならパケットを受け入れます。
Aboba & Calhoun Informational [Page 14] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[14ページ]のRFC3579半径とEAP2003年9月
3.1. EAP-Message
3.1. EAP-メッセージ
Description
記述
This attribute encapsulates EAP [RFC2284] packets so as to allow the NAS to authenticate peers via EAP without having to understand the EAP method it is passing through.
この属性は、NASがEAP EAPメソッドが通り抜けるのを理解する必要はなくてを通して同輩を認証するのを許容するためにEAP[RFC2284]にパケットをカプセルに入れります。
The NAS places EAP messages received from the authenticating peer into one or more EAP-Message attributes and forwards them to the RADIUS server within an Access-Request message. If multiple EAP-Message attributes are contained within an Access-Request or Access-Challenge packet, they MUST be in order and they MUST be consecutive attributes in the Access-Request or Access-Challenge packet. The RADIUS server can return EAP-Message attributes in Access-Challenge, Access-Accept and Access-Reject packets.
NASは認証している同輩から受け取られたEAPメッセージを1つ以上のEAP-メッセージ属性に置いて、Access-要求メッセージの中のRADIUSサーバにそれらを送ります。 複数のEAP-メッセージ属性がAccess-要求かAccess-挑戦パケットの中に含まれているなら、彼らは整然とするに違いありません、そして、Access-要求かAccess-挑戦パケットの連続した属性であるに違いありません。 RADIUSサーバは、Access-挑戦におけるEAP-メッセージ属性を返して、Access受け入れて、パケットをAccess拒絶できます。
When RADIUS is used to enable EAP authentication, Access-Request, Access-Challenge, Access-Accept, and Access-Reject packets SHOULD contain one or more EAP-Message attributes. Where more than one EAP-Message attribute is included, it is assumed that the attributes are to be concatenated to form a single EAP packet.
RADIUSがEAP認証を可能にするのに使用されるとき、Access-要求、Access-挑戦はAccess受け入れます、そして、Access-廃棄物パケットSHOULDは1つ以上のEAP-メッセージ属性を含んでいます。 1つ以上のEAP-メッセージ属性が含まれているところでは、属性が単一のEAPパケットを形成するために連結されることであると思われます。
Multiple EAP packets MUST NOT be encoded within EAP-Message attributes contained within a single Access-Challenge, Access-Accept, Access-Reject or Access-Request packet.
ただ一つのAccess-挑戦の、そして、Access受け入れているAccess-廃棄物かAccess-リクエスト・パケットの中に含まれたEAP-メッセージ属性の中で複数のEAPパケットをコード化してはいけません。
It is expected that EAP will be used to implement a variety of authentication methods, including methods involving strong cryptography. In order to prevent attackers from subverting EAP by attacking RADIUS/EAP, (for example, by modifying EAP Success or EAP Failure packets) it is necessary that RADIUS provide per-packet authentication and integrity protection.
強い暗号を伴うメソッドを含んでいて、EAPがさまざまな認証がメソッドであると実装するのに使用されると予想されます。 攻撃者がRADIUS/EAPを攻撃することによってEAPを打倒するのを防ぐために、(例えばEAP SuccessかEAP Failureパケットを変更することによって)それがそのRADIUSが1パケットあたりの認証と保全保護を提供するのが必要です。
Therefore the Message-Authenticator attribute MUST be used to protect all Access-Request, Access-Challenge, Access-Accept, and Access-Reject packets containing an EAP-Message attribute.
したがって、Access-要求、Access-挑戦がAccess受け入れるすべて、およびEAP-メッセージ属性を含むAccess-廃棄物パケットを保護するのにMessage-固有識別文字属性を使用しなければなりません。
Access-Request packets including EAP-Message attribute(s) without a Message-Authenticator attribute SHOULD be silently discarded by the RADIUS server. A RADIUS server supporting the EAP-Message attribute MUST calculate the correct value of the Message-Authenticator and MUST silently discard the packet if it does not match the value sent. A RADIUS server not supporting the EAP-Message attribute MUST return an Access-Reject if it receives an Access-Request containing an EAP-Message attribute.
RADIUSサーバによって捨てられて、Message-固有識別文字属性SHOULDなしでEAP-メッセージ属性を含むアクセスリクエスト・パケットは静かにそうです。EAP-メッセージ属性をサポートするRADIUSサーバは、Message-固有識別文字の正しい値について計算しなければならなくて、送られた値を合わせないなら、静かにパケットを捨てなければなりません。 EAP-メッセージ属性を含んでいて、Access-要求を受け取るなら、EAP-メッセージ属性をサポートしないRADIUSサーバはAccess-廃棄物を返さなければなりません。
Aboba & Calhoun Informational [Page 15] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[15ページ]のRFC3579半径とEAP2003年9月
Access-Challenge, Access-Accept, or Access-Reject packets including EAP-Message attribute(s) without a Message-Authenticator attribute SHOULD be silently discarded by the NAS. A NAS supporting the EAP-Message attribute MUST calculate the correct value of the Message-Authenticator and MUST silently discard the packet if it does not match the value sent.
NASによって捨てられて、Access受け入れているアクセス挑戦かMessage-固有識別文字属性SHOULDなしでEAP-メッセージ属性を含むAccess-廃棄物パケットが静かにそうです。 EAP-メッセージ属性をサポートするNASはMessage-固有識別文字の正しい値について計算しなければならなくて、送られた値を合わせないなら、静かにパケットを捨てなければなりません。
A summary of the EAP-Message attribute format is shown below. The fields are transmitted from left to right.
EAP-メッセージ属性形式の概要は以下に示されます。 野原は左から右まで伝えられます。
0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | String... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| 結びます。 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
タイプ
79 for EAP-Message
79 EAP-メッセージのために
Length
長さ
>= 3
>= 3
String
ストリング
The String field contains an EAP packet, as defined in [RFC2284]. If multiple EAP-Message attributes are present in a packet their values should be concatenated; this allows EAP packets longer than 253 octets to be transported by RADIUS.
String分野は[RFC2284]で定義されるようにEAPパケットを含んでいます。 複数のEAP-メッセージ属性がパケットに存在しているなら、それらの値は連結されるべきです。 これは、253の八重奏より長いEAPパケットがRADIUSによって輸送されるのを許容します。
3.2. Message-Authenticator
3.2. メッセージ固有識別文字
Description
記述
This attribute MAY be used to authenticate and integrity-protect Access-Requests in order to prevent spoofing. It MAY be used in any Access-Request. It MUST be used in any Access-Request, Access-Accept, Access-Reject or Access-Challenge that includes an EAP-Message attribute.
この属性は、だますのを防ぐためにAccess-要求を認証して、保全して保護するのに使用されるかもしれません。 それはどんなAccess-要求でも使用されるかもしれません。 EAP-メッセージ属性を含んでいるどんなAccess-要求であって、Access受け入れているAccess-廃棄物やAccess-挑戦にもそれを使用しなければなりません。
A RADIUS server receiving an Access-Request with a Message-Authenticator attribute present MUST calculate the correct value of the Message-Authenticator and silently discard the packet if it does not match the value sent.
送られた値を合わせないなら、Message-固有識別文字属性が存在していた状態でAccess-要求を受け取るRADIUSサーバは、Message-固有識別文字の正しい値について計算して、静かにパケットを捨てなければなりません。
Aboba & Calhoun Informational [Page 16] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[16ページ]のRFC3579半径とEAP2003年9月
A RADIUS client receiving an Access-Accept, Access-Reject or Access-Challenge with a Message-Authenticator attribute present MUST calculate the correct value of the Message-Authenticator and silently discard the packet if it does not match the value sent.
送られた値を合わせないなら、Access受け入れているAccess-廃棄物かMessage-固有識別文字とのAccess-挑戦の属性プレゼントを受け取るRADIUSクライアントは、Message-固有識別文字の正しい値について計算して、静かにパケットを捨てなければなりません。
This attribute is not required in Access-Requests which include the User-Password attribute, but is useful for preventing attacks on other types of authentication. This attribute is intended to thwart attempts by an attacker to setup a "rogue" NAS, and perform online dictionary attacks against the RADIUS server. It does not afford protection against "offline" attacks where the attacker intercepts packets containing (for example) CHAP challenge and response, and performs a dictionary attack against those packets offline.
この属性は、User-パスワード属性を含んでいるAccess-要求で必要ではありませんが、他のタイプの認証に対する攻撃を防ぐことの役に立ちます。 この属性が「凶暴な」NASをセットアップして、RADIUSサーバに対してオンライン辞書攻撃を実行する攻撃者による試みを阻むことを意図します。それは、CHAP挑戦と応答を含んでいて(例えば)、攻撃者がパケットを妨害するところに「オフライン」の攻撃に対して保護しないで、それらのパケットに対して辞書攻撃をオフラインで実行します。
A summary of the Message-Authenticator attribute format is shown below. The fields are transmitted from left to right.
Message-固有識別文字属性形式の概要は以下に示されます。 野原は左から右まで伝えられます。
0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | String... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| 結びます。 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
タイプ
80 for Message-Authenticator
80 メッセージ固有識別文字のために
Length
長さ
18
18
String
ストリング
When present in an Access-Request packet, Message-Authenticator is an HMAC-MD5 [RFC2104] hash of the entire Access-Request packet, including Type, ID, Length and Authenticator, using the shared secret as the key, as follows.
Access-リクエスト・パケットに存在しているとき、Message-固有識別文字は全体のAccess-リクエスト・パケットのHMAC-MD5[RFC2104]ハッシュです、Type、ID、Length、およびAuthenticatorを含んでいて、キーとして共有秘密キーを使用して、以下の通りです。
Message-Authenticator = HMAC-MD5 (Type, Identifier, Length, Request Authenticator, Attributes)
メッセージ固有識別文字=HMAC-MD5(タイプ、識別子、長さ、要求固有識別文字、属性)
When the message integrity check is calculated the signature string should be considered to be sixteen octets of zero.
メッセージの保全チェックが計算されるとき、署名ストリングはゼロの16の八重奏であると考えられるべきです。
Aboba & Calhoun Informational [Page 17] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[17ページ]のRFC3579半径とEAP2003年9月
For Access-Challenge, Access-Accept, and Access-Reject packets, the Message-Authenticator is calculated as follows, using the Request-Authenticator from the Access-Request this packet is in reply to:
Access-挑戦において、パケットをAccess受け入れて、Access拒絶してください、そして、Message-固有識別文字は以下の通り計算されます、このパケットが以下に対してあるというAccess-要求からRequest-固有識別文字を使用して
Message-Authenticator = HMAC-MD5 (Type, Identifier, Length, Request Authenticator, Attributes)
メッセージ固有識別文字=HMAC-MD5(タイプ、識別子、長さ、要求固有識別文字、属性)
When the message integrity check is calculated the signature string should be considered to be sixteen octets of zero. The shared secret is used as the key for the HMAC-MD5 message integrity check. The Message-Authenticator is calculated and inserted in the packet before the Response Authenticator is calculated.
メッセージの保全チェックが計算されるとき、署名ストリングはゼロの16の八重奏であると考えられるべきです。 共有秘密キーはHMAC-MD5メッセージの保全チェックにキーとして使用されます。 Response Authenticatorが計算される前に、Message-固有識別文字は、パケットに計算されて、挿入されます。
3.3. Table of Attributes
3.3. 属性のテーブル
The following table provides a guide to which attributes may be found in packets including EAP-Message attribute(s), and in what quantity. The EAP-Message and Message-Authenticator attributes specified in this document MUST NOT be present in an Accounting-Request. If a table entry is omitted, the values found in [RFC2548], [RFC2865], [RFC2868], [RFC2869] and [RFC3162] should be assumed.
以下のテーブルは、EAP-メッセージ属性を含んでいて、属性がパケットで見つけられるかもしれないガイドを提供して、どんな量にそうするか。 本書では指定されたEAP-メッセージとMessage-固有識別文字属性はAccounting-要求に存在しているはずがありません。 テーブル項目が省略されるなら、[RFC2548]、[RFC2865]、[RFC2868]、[RFC2869]、および[RFC3162]で見つけられた値は想定されるべきです。
Request Accept Reject Challenge # Attribute 0-1 0-1 0 0 1 User-Name 0 0 0 0 2 User-Password [Note 1] 0 0 0 0 3 CHAP-Password [Note 1] 0 0 0 0 18 Reply-Message 0 0 0 0 60 CHAP-Challenge 0 0 0 0 70 ARAP-Password [Note 1] 0 0 0 0 75 Password-Retry 1+ 1+ 1+ 1+ 79 EAP-Message [Note 1] 1 1 1 1 80 Message-Authenticator [Note 1] 0-1 0 0 0 94 Originating-Line-Info [Note 3] 0 0 0-1 0-1 101 Error-Cause [Note 2] Request Accept Reject Challenge # Attribute
受け入れるよう要求してください、[注意2]が要求する廃棄物挑戦#属性0-1 0-1 0 0 1ユーザ名0 0 0 0 2ユーザパスワード[注意1]0 0 0 0 3やつパスワード[注意1]0 0 0 0 18応答メッセージ0 0 0 0 60やつ挑戦0 0 0 0 70アラップ-パスワード[注意1]0 0 0 0 75パスワード再試行1+1+1+1+79EAP-メッセージ[注意1]1 1 1 1 80メッセージ固有識別文字[注意1]0-1 0 0 0 94起因している線インフォメーション[注意3]0 0 0-1 0-1 101誤り原因は廃棄物挑戦#属性を受け入れます。
[Note 1] An Access-Request that contains either a User-Password or CHAP-Password or ARAP-Password or one or more EAP-Message attributes MUST NOT contain more than one type of those four attributes. If it does not contain any of those four attributes, it SHOULD contain a Message-Authenticator. If any packet type contains an EAP-Message attribute it MUST also contain a Message-Authenticator. A RADIUS server receiving an Access-Request not containing any of those four attributes and also not containing a Message-Authenticator attribute SHOULD silently discard it.
[注意1] User-パスワードかCHAP-パスワードかARAP-パスワードか1つ以上のEAP-メッセージ属性のどちらかを含むAccess-要求はそれらの4つの属性の1つ以上のタイプを含んではいけません。 それらの4つの属性のいずれも含んでいなくて、それはSHOULDです。Message-固有識別文字を含んでください。 また、何かパケットタイプがEAP-メッセージ属性を含んでいるなら、それはMessage-固有識別文字を含まなければなりません。 それらの4つの属性のいずれも含んでいなくて、またまた、静かにMessage-固有識別文字属性SHOULDを含んでいないとそれが捨てられるというAccess-要求を受け取るRADIUSサーバ。
Aboba & Calhoun Informational [Page 18] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[18ページ]のRFC3579半径とEAP2003年9月
[Note 2] The Error-Cause attribute is defined in [RFC3576].
[注意2] Error-原因属性は[RFC3576]で定義されます。
[Note 3] The Originating-Line-Info attribute is defined in [NASREQ].
[注意3] Originating線インフォメーション属性は[NASREQ]で定義されます。
The following table defines the meaning of the above table entries.
以下のテーブルは上のテーブル項目の意味を定義します。
0 This attribute MUST NOT be present. 0+ Zero or more instances of this attribute MAY be present. 0-1 Zero or one instance of this attribute MAY be present. 1 Exactly one instance of this attribute MUST be present. 1+ One or more of these attributes MUST be present.
0 この属性は存在しているはずがありません。 0+ゼロかこの属性の、より多くのインスタンスが存在しているかもしれません。 0-1 この属性のゼロか1つのインスタンスが存在しているかもしれません。 1 まさにこの属性の1つのインスタンスが存在していなければなりません。 これらの属性の1+1つ以上は存在していなければなりません。
4. Security Considerations
4. セキュリティ問題
4.1. Security Requirements
4.1. セキュリティ要件
RADIUS/EAP is used in order to provide authentication and authorization for network access. As a result, both the RADIUS and EAP portions of the conversation are potential targets of an attack. Threats are discussed in [RFC2607], [RFC2865], and [RFC3162]. Examples include:
RADIUS/EAPは、認証と承認をネットワークアクセサリーに提供するのに使用されています。 その結果、RADIUSと会話のEAP部分の両方が攻撃の仮想ターゲットです。 [RFC2607]、[RFC2865]、および[RFC3162]で脅威について議論します。 例は:
[1] An adversary may attempt to acquire confidential data and identities by snooping RADIUS packets.
[1] 敵は、RADIUSパケットについて詮索することによって秘密のデータとアイデンティティを取得するのを試みるかもしれません。
[2] An adversary may attempt to modify packets containing RADIUS messages.
[2] 敵は、RADIUSメッセージを含むパケットを変更するのを試みるかもしれません。
[3] An adversary may attempt to inject packets into a RADIUS conversation.
[3] 敵は、RADIUSの会話にパケットを注ぐのを試みるかもしれません。
[4] An adversary may launch a dictionary attack against the RADIUS shared secret.
[4] 敵はRADIUS共有秘密キーに対して辞書攻撃に着手するかもしれません。
[5] An adversary may launch a known plaintext attack, hoping to recover the key stream corresponding to a Request Authenticator.
[5] Request Authenticatorに対応する主要なストリームを回復することを望んでいて、敵は知られている平文攻撃に着手するかもしれません。
[6] An adversary may attempt to replay a RADIUS exchange.
[6] 敵は、RADIUS交換を再演するのを試みるかもしれません。
[7] An adversary may attempt to disrupt the EAP negotiation, in order to weaken the authentication, or gain access to peer passwords.
[7] 敵は、EAP交渉を中断するのを試みるかもしれません、認証を弱めるか、または同輩パスワードへのアクセスを得るために。
[8] An authenticated NAS may attempt to forge NAS or session identification attributes,
[8] 認証されたNASは、NASかセッション識別属性を鍛造するのを試みるかもしれません。
[9] A rogue (unauthenticated) NAS may attempt to impersonate a legitimate NAS.
[9] 凶暴な(非認証される)NASは、正統のNASをまねるのを試みるかもしれません。
Aboba & Calhoun Informational [Page 19] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[19ページ]のRFC3579半径とEAP2003年9月
[10] An attacker may attempt to act as a man-in-the-middle.
[10] 攻撃者は、中央の男性として機能するのを試みるかもしれません。
To address these threats, it is necessary to support confidentiality, data origin authentication, integrity, and replay protection on a per-packet basis. Bi-directional authentication between the RADIUS client and server also needs to be provided. There is no requirement that the identities of RADIUS clients and servers be kept confidential (e.g., from a passive eavesdropper).
これらの脅威を扱うために、1パケットあたり1個のベースで秘密性、データ発生源認証、保全、および反復操作による保護をサポートするのが必要です。 また、RADIUSクライアントとサーバの間の双方向の認証は、提供される必要があります。 RADIUSクライアントとサーバのアイデンティティが秘密にされるという(例えば、受け身の立ち聞きする者から)要件が全くありません。
4.2. Security Protocol
4.2. セキュリティプロトコル
To address the security vulnerabilities of RADIUS/EAP, implementations of this specification SHOULD support IPsec [RFC2401] along with IKE [RFC2409] for key management. IPsec ESP [RFC2406] with non-null transform SHOULD be supported, and IPsec ESP with a non-null encryption transform and authentication support SHOULD be used to provide per-packet confidentiality, authentication, integrity and replay protection. IKE SHOULD be used for key management.
セキュリティがRADIUS/EAPの脆弱性であると扱うために、この仕様SHOULDの実装はかぎ管理のために、IKE[RFC2409]に伴うIPsec[RFC2401]をサポートします。 非ヌル変換SHOULDがサポートされている超能力[RFC2406]、およびIPsecの超能力のaによる非ヌルの暗号化が変えて、認証がSHOULDであるとサポートするIPsecは1パケットあたりの秘密性、認証に保全を提供するのに使用されて、保護を再演します。 IKE SHOULD、かぎ管理には、使用されてください。
Within RADIUS [RFC2865], a shared secret is used for hiding of attributes such as User-Password, as well as in computation of the Response Authenticator. In RADIUS accounting [RFC2866], the shared secret is used in computation of both the Request Authenticator and the Response Authenticator.
RADIUS[RFC2865]の中では、共有秘密キーはUser-パスワードなどの属性の隠れること、およびResponse Authenticatorの計算に使用されます。 RADIUS会計[RFC2866]では、共有秘密キーはRequest AuthenticatorとResponse Authenticatorの両方の計算に使用されます。
Since in RADIUS a shared secret is used to provide confidentiality as well as integrity protection and authentication, only use of IPsec ESP with a non-null transform can provide security services sufficient to substitute for RADIUS application-layer security. Therefore, where IPSEC AH or ESP null is used, it will typically still be necessary to configure a RADIUS shared secret.
共有秘密キーが非ヌルと共に保全保護と認証、IPsecの使用だけと同様に超能力を秘密性に供給するのにRADIUSで使用されるので、変換はRADIUS応用層セキュリティに代入できるくらいのセキュリティー・サービスを提供できます。 したがって、IPSEC AHか超能力ヌルが使用されているところでは、RADIUS共有秘密キーを構成するのはまだ通常必要になっているでしょう。
Where RADIUS is run over IPsec ESP with a non-null transform, the secret shared between the NAS and the RADIUS server MAY NOT be configured. In this case, a shared secret of zero length MUST be assumed. However, a RADIUS server that cannot know whether incoming traffic is IPsec-protected MUST be configured with a non-null RADIUS shared secret.
Where RADIUS is run over IPsec ESP with a non-null transform, the secret shared between the NAS and the RADIUS server MAY NOT be configured. In this case, a shared secret of zero length MUST be assumed. However, a RADIUS server that cannot know whether incoming traffic is IPsec-protected MUST be configured with a non-null RADIUS shared secret.
When IPsec ESP is used with RADIUS, per-packet authentication, integrity and replay protection MUST be used. 3DES-CBC MUST be supported as an encryption transform and AES-CBC SHOULD be supported. AES-CBC SHOULD be offered as a preferred encryption transform if supported. HMAC-SHA1-96 MUST be supported as an authentication transform. DES-CBC SHOULD NOT be used as the encryption transform.
When IPsec ESP is used with RADIUS, per-packet authentication, integrity and replay protection MUST be used. 3DES-CBC MUST be supported as an encryption transform and AES-CBC SHOULD be supported. AES-CBC SHOULD be offered as a preferred encryption transform if supported. HMAC-SHA1-96 MUST be supported as an authentication transform. DES-CBC SHOULD NOT be used as the encryption transform.
Aboba & Calhoun Informational [Page 20] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 20] RFC 3579 RADIUS & EAP September 2003
A typical IPsec policy for an IPsec-capable RADIUS client is "Initiate IPsec, from me to any destination port UDP 1812". This causes an IPsec SA to be set up by the RADIUS client prior to sending RADIUS traffic. If some RADIUS servers contacted by the client do not support IPsec, then a more granular policy will be required: "Initiate IPsec, from me to IPsec-Capable-RADIUS-Server, destination port UDP 1812".
A typical IPsec policy for an IPsec-capable RADIUS client is "Initiate IPsec, from me to any destination port UDP 1812". This causes an IPsec SA to be set up by the RADIUS client prior to sending RADIUS traffic. If some RADIUS servers contacted by the client do not support IPsec, then a more granular policy will be required: "Initiate IPsec, from me to IPsec-Capable-RADIUS-Server, destination port UDP 1812".
For an IPsec-capable RADIUS server, a typical IPsec policy is "Accept IPsec, from any to me, destination port 1812". This causes the RADIUS server to accept (but not require) use of IPsec. It may not be appropriate to require IPsec for all RADIUS clients connecting to an IPsec-enabled RADIUS server, since some RADIUS clients may not support IPsec.
For an IPsec-capable RADIUS server, a typical IPsec policy is "Accept IPsec, from any to me, destination port 1812". This causes the RADIUS server to accept (but not require) use of IPsec. It may not be appropriate to require IPsec for all RADIUS clients connecting to an IPsec-enabled RADIUS server, since some RADIUS clients may not support IPsec.
Where IPsec is used for security, and no RADIUS shared secret is configured, it is important that the RADIUS client and server perform an authorization check. Before enabling a host to act as a RADIUS client, the RADIUS server SHOULD check whether the host is authorized to provide network access. Similarly, before enabling a host to act as a RADIUS server, the RADIUS client SHOULD check whether the host is authorized for that role.
Where IPsec is used for security, and no RADIUS shared secret is configured, it is important that the RADIUS client and server perform an authorization check. Before enabling a host to act as a RADIUS client, the RADIUS server SHOULD check whether the host is authorized to provide network access. Similarly, before enabling a host to act as a RADIUS server, the RADIUS client SHOULD check whether the host is authorized for that role.
RADIUS servers can be configured with the IP addresses (for IKE Aggressive Mode with pre-shared keys) or FQDNs (for certificate authentication) of RADIUS clients. Alternatively, if a separate Certification Authority (CA) exists for RADIUS clients, then the RADIUS server can configure this CA as a trust anchor [RFC3280] for use with IPsec.
RADIUS servers can be configured with the IP addresses (for IKE Aggressive Mode with pre-shared keys) or FQDNs (for certificate authentication) of RADIUS clients. Alternatively, if a separate Certification Authority (CA) exists for RADIUS clients, then the RADIUS server can configure this CA as a trust anchor [RFC3280] for use with IPsec.
Similarly, RADIUS clients can be configured with the IP addresses (for IKE Aggressive Mode with pre-shared keys) or FQDNs (for certificate authentication) of RADIUS servers. Alternatively, if a separate CA exists for RADIUS servers, then the RADIUS client can configure this CA as a trust anchor for use with IPsec.
Similarly, RADIUS clients can be configured with the IP addresses (for IKE Aggressive Mode with pre-shared keys) or FQDNs (for certificate authentication) of RADIUS servers. Alternatively, if a separate CA exists for RADIUS servers, then the RADIUS client can configure this CA as a trust anchor for use with IPsec.
Since unlike SSL/TLS, IKE does not permit certificate policies to be set on a per-port basis, certificate policies need to apply to all uses of IPsec on RADIUS clients and servers. In IPsec deployments supporting only certificate authentication, a management station initiating an IPsec-protected telnet session to the RADIUS server would need to obtain a certificate chaining to the RADIUS client CA. Issuing such a certificate might not be appropriate if the management station was not authorized as a RADIUS client.
Since unlike SSL/TLS, IKE does not permit certificate policies to be set on a per-port basis, certificate policies need to apply to all uses of IPsec on RADIUS clients and servers. In IPsec deployments supporting only certificate authentication, a management station initiating an IPsec-protected telnet session to the RADIUS server would need to obtain a certificate chaining to the RADIUS client CA. Issuing such a certificate might not be appropriate if the management station was not authorized as a RADIUS client.
Where RADIUS clients may obtain their IP address dynamically (such as an Access Point supporting DHCP), IKE Main Mode with pre-shared keys [RFC2409] SHOULD NOT be used, since this requires use of a group
Where RADIUS clients may obtain their IP address dynamically (such as an Access Point supporting DHCP), IKE Main Mode with pre-shared keys [RFC2409] SHOULD NOT be used, since this requires use of a group
Aboba & Calhoun Informational [Page 21] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 21] RFC 3579 RADIUS & EAP September 2003
pre-shared key; instead, Aggressive Mode SHOULD be used. IKEv2, a work in progress, may address this issue in the future. Where RADIUS client addresses are statically assigned, either Aggressive Mode or Main Mode MAY be used. With certificate authentication, Main Mode SHOULD be used.
pre-shared key; instead, Aggressive Mode SHOULD be used. IKEv2, a work in progress, may address this issue in the future. Where RADIUS client addresses are statically assigned, either Aggressive Mode or Main Mode MAY be used. With certificate authentication, Main Mode SHOULD be used.
Care needs to be taken with IKE Phase 1 Identity Payload selection in order to enable mapping of identities to pre-shared keys even with Aggressive Mode. Where the ID_IPV4_ADDR or ID_IPV6_ADDR Identity Payloads are used and addresses are dynamically assigned, mapping of identities to keys is not possible, so that group pre-shared keys are still a practical necessity. As a result, the ID_FQDN identity payload SHOULD be employed in situations where Aggressive mode is utilized along with pre-shared keys and IP addresses are dynamically assigned. This approach also has other advantages, since it allows the RADIUS server and client to configure themselves based on the fully qualified domain name of their peers.
Care needs to be taken with IKE Phase 1 Identity Payload selection in order to enable mapping of identities to pre-shared keys even with Aggressive Mode. Where the ID_IPV4_ADDR or ID_IPV6_ADDR Identity Payloads are used and addresses are dynamically assigned, mapping of identities to keys is not possible, so that group pre-shared keys are still a practical necessity. As a result, the ID_FQDN identity payload SHOULD be employed in situations where Aggressive mode is utilized along with pre-shared keys and IP addresses are dynamically assigned. This approach also has other advantages, since it allows the RADIUS server and client to configure themselves based on the fully qualified domain name of their peers.
Note that with IPsec, security services are negotiated at the granularity of an IPsec SA, so that RADIUS exchanges requiring a set of security services different from those negotiated with existing IPsec SAs will need to negotiate a new IPsec SA. Separate IPsec SAs are also advisable where quality of service considerations dictate different handling RADIUS conversations. Attempting to apply different quality of service to connections handled by the same IPsec SA can result in reordering, and falling outside the replay window. For a discussion of the issues, see [RFC2983].
Note that with IPsec, security services are negotiated at the granularity of an IPsec SA, so that RADIUS exchanges requiring a set of security services different from those negotiated with existing IPsec SAs will need to negotiate a new IPsec SA. Separate IPsec SAs are also advisable where quality of service considerations dictate different handling RADIUS conversations. Attempting to apply different quality of service to connections handled by the same IPsec SA can result in reordering, and falling outside the replay window. For a discussion of the issues, see [RFC2983].
4.3. Security Issues
4.3. Security Issues
This section provides more detail on the vulnerabilities identified in Section 4.1., and how they may be mitigated. Vulnerabilities include:
This section provides more detail on the vulnerabilities identified in Section 4.1., and how they may be mitigated. Vulnerabilities include:
Privacy issues Spoofing and hijacking Dictionary attacks Known plaintext attacks Replay attacks Negotiation attacks Impersonation Man in the middle attacks Separation of authenticator and authentication server Multiple databases
Privacy issues Spoofing and hijacking Dictionary attacks Known plaintext attacks Replay attacks Negotiation attacks Impersonation Man in the middle attacks Separation of authenticator and authentication server Multiple databases
Aboba & Calhoun Informational [Page 22] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 22] RFC 3579 RADIUS & EAP September 2003
4.3.1. Privacy Issues
4.3.1. Privacy Issues
Since RADIUS messages may contain the User-Name attribute as well as NAS-IP-Address or NAS-Identifier attributes, an attacker snooping on RADIUS traffic may be able to determine the geographic location of peers in real time. In wireless networks, it is often assumed that RADIUS traffic is physically secure, since it typically travels over the wired network and that this limits the release of location information.
Since RADIUS messages may contain the User-Name attribute as well as NAS-IP-Address or NAS-Identifier attributes, an attacker snooping on RADIUS traffic may be able to determine the geographic location of peers in real time. In wireless networks, it is often assumed that RADIUS traffic is physically secure, since it typically travels over the wired network and that this limits the release of location information.
However, it is possible for an authenticated attacker to spoof ARP packets [RFC826] so as to cause diversion of RADIUS traffic onto the wireless network. In this way an attacker may obtain RADIUS packets from which it can glean peer location information, or which it can subject to a known plaintext or offline dictionary attack. To address these vulnerabilities, implementations of this specification SHOULD use IPsec ESP with non-null transform and per-packet encryption, authentication, integrity and replay protection to protect both RADIUS authentication [RFC2865] and accounting [RFC2866] traffic, as described in Section 4.2.
However, it is possible for an authenticated attacker to spoof ARP packets [RFC826] so as to cause diversion of RADIUS traffic onto the wireless network. In this way an attacker may obtain RADIUS packets from which it can glean peer location information, or which it can subject to a known plaintext or offline dictionary attack. To address these vulnerabilities, implementations of this specification SHOULD use IPsec ESP with non-null transform and per-packet encryption, authentication, integrity and replay protection to protect both RADIUS authentication [RFC2865] and accounting [RFC2866] traffic, as described in Section 4.2.
4.3.2. Spoofing and Hijacking
4.3.2. Spoofing and Hijacking
Access-Request packets with a User-Password attribute establish the identity of both the user and the NAS sending the Access-Request, because of the way the shared secret between the NAS and RADIUS server is used. Access-Request packets with CHAP-Password or EAP-Message attributes do not have a User-Password attribute. As a result, the Message-Authenticator attribute SHOULD be used in Access-Request packets that do not have a User-Password attribute, in order to establish the identity of the NAS sending the request.
Access-Request packets with a User-Password attribute establish the identity of both the user and the NAS sending the Access-Request, because of the way the shared secret between the NAS and RADIUS server is used. Access-Request packets with CHAP-Password or EAP-Message attributes do not have a User-Password attribute. As a result, the Message-Authenticator attribute SHOULD be used in Access-Request packets that do not have a User-Password attribute, in order to establish the identity of the NAS sending the request.
An attacker may attempt to inject packets into the conversation between the NAS and the RADIUS server, or between the RADIUS server and the security server. RADIUS [RFC2865] does not support encryption other than attribute hiding. As described in [RFC2865], only Access-Reply and Access-Challenge packets are integrity protected. Moreover, the per-packet authentication and integrity protection mechanism described in [RFC2865] has known weaknesses [MD5Attack], making it a tempting target for attackers looking to subvert RADIUS/EAP.
An attacker may attempt to inject packets into the conversation between the NAS and the RADIUS server, or between the RADIUS server and the security server. RADIUS [RFC2865] does not support encryption other than attribute hiding. As described in [RFC2865], only Access-Reply and Access-Challenge packets are integrity protected. Moreover, the per-packet authentication and integrity protection mechanism described in [RFC2865] has known weaknesses [MD5Attack], making it a tempting target for attackers looking to subvert RADIUS/EAP.
To provide stronger security, the Message-Authenticator attribute MUST be used in all RADIUS packets containing an EAP-Message attribute. Implementations of this specification SHOULD use IPsec ESP with non-null transform and per-packet encryption, authentication, integrity and replay protection, as described in Section 4.2.
To provide stronger security, the Message-Authenticator attribute MUST be used in all RADIUS packets containing an EAP-Message attribute. Implementations of this specification SHOULD use IPsec ESP with non-null transform and per-packet encryption, authentication, integrity and replay protection, as described in Section 4.2.
Aboba & Calhoun Informational [Page 23] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 23] RFC 3579 RADIUS & EAP September 2003
4.3.3. Dictionary Attacks
4.3.3. Dictionary Attacks
The RADIUS shared secret is vulnerable to offline dictionary attack, based on capture of the Response Authenticator or Message-Authenticator attribute. In order to decrease the level of vulnerability, [RFC2865] recommends:
The RADIUS shared secret is vulnerable to offline dictionary attack, based on capture of the Response Authenticator or Message-Authenticator attribute. In order to decrease the level of vulnerability, [RFC2865] recommends:
The secret (password shared between the client and the RADIUS server) SHOULD be at least as large and unguessable as a well-chosen password. It is preferred that the secret be at least 16 octets.
The secret (password shared between the client and the RADIUS server) SHOULD be at least as large and unguessable as a well-chosen password. It is preferred that the secret be at least 16 octets.
The risk of an offline dictionary attack can be further reduced by employing IPsec ESP with non-null transform in order to encrypt the RADIUS conversation, as described in Section 4.2.
The risk of an offline dictionary attack can be further reduced by employing IPsec ESP with non-null transform in order to encrypt the RADIUS conversation, as described in Section 4.2.
4.3.4. Known Plaintext Attacks
4.3.4. Known Plaintext Attacks
Since EAP [RFC2284] does not support PAP, the RADIUS User-Password attribute is not used to carry hidden user passwords within RADIUS/EAP conversations. The User-Password hiding mechanism, defined in [RFC2865] utilizes MD5, defined in [RFC1321], in order to generate a key stream based on the RADIUS shared secret and the Request Authenticator. Where PAP is in use, it is possible to collect key streams corresponding to a given Request Authenticator value, by capturing RADIUS conversations corresponding to a PAP authentication attempt, using a known password. Since the User-Password is known, the key stream corresponding to a given Request Authenticator can be determined and stored.
Since EAP [RFC2284] does not support PAP, the RADIUS User-Password attribute is not used to carry hidden user passwords within RADIUS/EAP conversations. The User-Password hiding mechanism, defined in [RFC2865] utilizes MD5, defined in [RFC1321], in order to generate a key stream based on the RADIUS shared secret and the Request Authenticator. Where PAP is in use, it is possible to collect key streams corresponding to a given Request Authenticator value, by capturing RADIUS conversations corresponding to a PAP authentication attempt, using a known password. Since the User-Password is known, the key stream corresponding to a given Request Authenticator can be determined and stored.
Since the key stream may have been determined previously from a known plaintext attack, if the Request Authenticator repeats, attributes encrypted using the RADIUS attribute hiding mechanism should be considered compromised. In addition to the User-Password attribute, which is not used with EAP, this includes attributes such as Tunnel-Password [RFC2868, section 3.5] and MS-MPPE-Send-Key and MS-MPPE-Recv-Key attributes [RFC2548, section 2.4], which include a Salt field as part of the hiding algorithm.
Since the key stream may have been determined previously from a known plaintext attack, if the Request Authenticator repeats, attributes encrypted using the RADIUS attribute hiding mechanism should be considered compromised. In addition to the User-Password attribute, which is not used with EAP, this includes attributes such as Tunnel-Password [RFC2868, section 3.5] and MS-MPPE-Send-Key and MS-MPPE-Recv-Key attributes [RFC2548, section 2.4], which include a Salt field as part of the hiding algorithm.
To avoid this, [RFC2865], Section 3 advises:
To avoid this, [RFC2865], Section 3 advises:
Since it is expected that the same secret MAY be used to authenticate with servers in disparate geographic regions, the Request Authenticator field SHOULD exhibit global and temporal uniqueness.
Since it is expected that the same secret MAY be used to authenticate with servers in disparate geographic regions, the Request Authenticator field SHOULD exhibit global and temporal uniqueness.
Aboba & Calhoun Informational [Page 24] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 24] RFC 3579 RADIUS & EAP September 2003
Where the Request Authenticator repeats, the Salt field defined in [RFC2548], Section 2.4 does not provide protection against compromise. This is because MD5 [RFC1321], rather than HMAC-MD5 [RFC2104], is used to generate the key stream, which is calculated from the 128-bit RADIUS shared secret (S), the 128-bit Request Authenticator (R), and the Salt field (A), using the formula b(1) = MD5(S + R + A). Since the Salt field is placed at the end, if the Request Authenticator were to repeat on a network where PAP is in use, then the salted keystream could be calculated from the User-Password keystream by continuing the MD5 calculation based on the Salt field (A), which is sent in the clear.
Where the Request Authenticator repeats, the Salt field defined in [RFC2548], Section 2.4 does not provide protection against compromise. This is because MD5 [RFC1321], rather than HMAC-MD5 [RFC2104], is used to generate the key stream, which is calculated from the 128-bit RADIUS shared secret (S), the 128-bit Request Authenticator (R), and the Salt field (A), using the formula b(1) = MD5(S + R + A). Since the Salt field is placed at the end, if the Request Authenticator were to repeat on a network where PAP is in use, then the salted keystream could be calculated from the User-Password keystream by continuing the MD5 calculation based on the Salt field (A), which is sent in the clear.
Even though EAP does not support PAP authentication, a security vulnerability can still exist where the same RADIUS shared secret is used for hiding User-Password as well as other attributes. This can occur, for example, if the same RADIUS proxy handles authentication requests for both EAP and PAP.
Even though EAP does not support PAP authentication, a security vulnerability can still exist where the same RADIUS shared secret is used for hiding User-Password as well as other attributes. This can occur, for example, if the same RADIUS proxy handles authentication requests for both EAP and PAP.
The threat can be mitigated by protecting RADIUS with IPsec ESP with non-null transform, as described in Section 4.2. Where RADIUS shared secrets are configured, the RADIUS shared secret used by a NAS supporting EAP MUST NOT be reused by a NAS utilizing the User-Password attribute, since improper shared secret hygiene could lead to compromise of hidden attributes.
The threat can be mitigated by protecting RADIUS with IPsec ESP with non-null transform, as described in Section 4.2. Where RADIUS shared secrets are configured, the RADIUS shared secret used by a NAS supporting EAP MUST NOT be reused by a NAS utilizing the User-Password attribute, since improper shared secret hygiene could lead to compromise of hidden attributes.
4.3.5. Replay Attacks
4.3.5. Replay Attacks
The RADIUS protocol provides only limited support for replay protection. RADIUS Access-Requests include liveness via the 128-bit Request Authenticator. However, the Request Authenticator is not a replay counter. Since RADIUS servers may not maintain a cache of previous Request Authenticators, the Request Authenticator does not provide replay protection.
The RADIUS protocol provides only limited support for replay protection. RADIUS Access-Requests include liveness via the 128-bit Request Authenticator. However, the Request Authenticator is not a replay counter. Since RADIUS servers may not maintain a cache of previous Request Authenticators, the Request Authenticator does not provide replay protection.
RADIUS accounting [RFC2866] does not support replay protection at the protocol level. Due to the need to support failover between RADIUS accounting servers, protocol-based replay protection is not sufficient to prevent duplicate accounting records. However, once accepted by the accounting server, duplicate accounting records can be detected by use of the the Acct-Session-Id [RFC2866, section 5.5] and Event-Timestamp [RFC2869, section 5.3] attributes.
RADIUS accounting [RFC2866] does not support replay protection at the protocol level. Due to the need to support failover between RADIUS accounting servers, protocol-based replay protection is not sufficient to prevent duplicate accounting records. However, once accepted by the accounting server, duplicate accounting records can be detected by use of the the Acct-Session-Id [RFC2866, section 5.5] and Event-Timestamp [RFC2869, section 5.3] attributes.
Unlike RADIUS authentication, RADIUS accounting does not use the Request Authenticator as a nonce. Instead, the Request Authenticator contains an MD5 hash calculated over the Code, Identifier, Length, and request attributes of the Accounting Request packet, plus the shared secret. The Response Authenticator also contains an MD5 hash calculated over the Code, Identifier and Length, the Request
Unlike RADIUS authentication, RADIUS accounting does not use the Request Authenticator as a nonce. Instead, the Request Authenticator contains an MD5 hash calculated over the Code, Identifier, Length, and request attributes of the Accounting Request packet, plus the shared secret. The Response Authenticator also contains an MD5 hash calculated over the Code, Identifier and Length, the Request
Aboba & Calhoun Informational [Page 25] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 25] RFC 3579 RADIUS & EAP September 2003
Authenticator field from the Accounting-Request packet being replied to, the response attributes and the shared secret.
Authenticator field from the Accounting-Request packet being replied to, the response attributes and the shared secret.
Since the Accounting Response Authenticator depends in part on the Accounting Request Authenticator, it is not possible to replay an Accounting-Response unless the Request Authenticator repeats. While it is possible to utilize EAP methods such as EAP TLS [RFC2716] which include liveness checks on both sides, not all EAP messages will include liveness so that this provides incomplete protection.
Since the Accounting Response Authenticator depends in part on the Accounting Request Authenticator, it is not possible to replay an Accounting-Response unless the Request Authenticator repeats. While it is possible to utilize EAP methods such as EAP TLS [RFC2716] which include liveness checks on both sides, not all EAP messages will include liveness so that this provides incomplete protection.
Strong replay protection for RADIUS authentication and accounting can be provided by enabling IPsec replay protection with RADIUS, as described in Section 4.2.
Strong replay protection for RADIUS authentication and accounting can be provided by enabling IPsec replay protection with RADIUS, as described in Section 4.2.
4.3.6. Negotiation Attacks
4.3.6. Negotiation Attacks
In a negotiation attack a rogue NAS, tunnel server, RADIUS proxy or RADIUS server attempts to cause the authenticating peer to choose a less secure authentication method. For example, a session that would normally be authenticated with EAP would instead be authenticated via CHAP or PAP; alternatively, a connection that would normally be authenticated via a more secure EAP method such as EAP-TLS [RFC2716] might be made to occur via a less secure EAP method, such as MD5-Challenge. The threat posed by rogue devices, once thought to be remote, has gained currency given compromises of telephone company switching systems, such as those described in [Masters].
In a negotiation attack a rogue NAS, tunnel server, RADIUS proxy or RADIUS server attempts to cause the authenticating peer to choose a less secure authentication method. For example, a session that would normally be authenticated with EAP would instead be authenticated via CHAP or PAP; alternatively, a connection that would normally be authenticated via a more secure EAP method such as EAP-TLS [RFC2716] might be made to occur via a less secure EAP method, such as MD5-Challenge. The threat posed by rogue devices, once thought to be remote, has gained currency given compromises of telephone company switching systems, such as those described in [Masters].
Protection against negotiation attacks requires the elimination of downward negotiations. The RADIUS exchange may be further protected by use of IPsec, as described in Section 4.2. Alternatively, where IPsec is not used, the vulnerability can be mitigated via implementation of per-connection policy on the part of the authenticating peer, and per-peer policy on the part of the RADIUS server. For the authenticating peer, authentication policy should be set on a per-connection basis. Per-connection policy allows an authenticating peer to negotiate a strong EAP method when connecting to one service, while negotiating a weaker EAP method for another service.
Protection against negotiation attacks requires the elimination of downward negotiations. The RADIUS exchange may be further protected by use of IPsec, as described in Section 4.2. Alternatively, where IPsec is not used, the vulnerability can be mitigated via implementation of per-connection policy on the part of the authenticating peer, and per-peer policy on the part of the RADIUS server. For the authenticating peer, authentication policy should be set on a per-connection basis. Per-connection policy allows an authenticating peer to negotiate a strong EAP method when connecting to one service, while negotiating a weaker EAP method for another service.
With per-connection policy, an authenticating peer will only attempt to negotiate EAP for a session in which EAP support is expected. As a result, there is a presumption that an authenticating peer selecting EAP requires that level of security. If it cannot be provided, it is likely that there is some kind of misconfiguration, or even that the authenticating peer is contacting the wrong server. Should the NAS not be able to negotiate EAP, or should the EAP-Request sent by the NAS be of a different EAP type than what is expected, the authenticating peer MUST disconnect. An authenticating
With per-connection policy, an authenticating peer will only attempt to negotiate EAP for a session in which EAP support is expected. As a result, there is a presumption that an authenticating peer selecting EAP requires that level of security. If it cannot be provided, it is likely that there is some kind of misconfiguration, or even that the authenticating peer is contacting the wrong server. Should the NAS not be able to negotiate EAP, or should the EAP-Request sent by the NAS be of a different EAP type than what is expected, the authenticating peer MUST disconnect. An authenticating
Aboba & Calhoun Informational [Page 26] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 26] RFC 3579 RADIUS & EAP September 2003
peer expecting EAP to be negotiated for a session MUST NOT negotiate a weaker method, such as CHAP or PAP. In wireless networks, the service advertisement itself may be spoof-able, so that an attacker could fool the peer into negotiating an authentication method suitable for a less secure network.
peer expecting EAP to be negotiated for a session MUST NOT negotiate a weaker method, such as CHAP or PAP. In wireless networks, the service advertisement itself may be spoof-able, so that an attacker could fool the peer into negotiating an authentication method suitable for a less secure network.
For a NAS, it may not be possible to determine whether a peer is required to authenticate with EAP until the peer's identity is known. For example, for shared-uses NASes it is possible for one reseller to implement EAP while another does not. Alternatively, some peer might be authenticated locally by the NAS while other peers are authenticated via RADIUS. In such cases, if any peers of the NAS MUST do EAP, then the NAS MUST attempt to negotiate EAP for every session. This avoids forcing a peer to support more than one authentication type, which could weaken security.
For a NAS, it may not be possible to determine whether a peer is required to authenticate with EAP until the peer's identity is known. For example, for shared-uses NASes it is possible for one reseller to implement EAP while another does not. Alternatively, some peer might be authenticated locally by the NAS while other peers are authenticated via RADIUS. In such cases, if any peers of the NAS MUST do EAP, then the NAS MUST attempt to negotiate EAP for every session. This avoids forcing a peer to support more than one authentication type, which could weaken security.
If CHAP is negotiated, the NAS will pass the User-Name and CHAP-Password attributes to the RADIUS server in an Access-Request packet. If the peer is not required to use EAP, then the RADIUS server will respond with an Access-Accept or Access-Reject packet as appropriate. However, if CHAP has been negotiated but EAP is required, the RADIUS server MUST respond with an Access-Reject, rather than an Access-Challenge/EAP-Message/EAP-Request packet. The authenticating peer MUST refuse to renegotiate authentication, even if the renegotiation is from CHAP to EAP.
If CHAP is negotiated, the NAS will pass the User-Name and CHAP-Password attributes to the RADIUS server in an Access-Request packet. If the peer is not required to use EAP, then the RADIUS server will respond with an Access-Accept or Access-Reject packet as appropriate. However, if CHAP has been negotiated but EAP is required, the RADIUS server MUST respond with an Access-Reject, rather than an Access-Challenge/EAP-Message/EAP-Request packet. The authenticating peer MUST refuse to renegotiate authentication, even if the renegotiation is from CHAP to EAP.
If EAP is negotiated but is not supported by the RADIUS proxy or server, then the server or proxy MUST respond with an Access-Reject. In these cases, a PPP NAS MUST send an LCP-Terminate and disconnect the peer. This is the correct behavior since the authenticating peer is expecting EAP to be negotiated, and that expectation cannot be fulfilled. An EAP-capable authenticating peer MUST refuse to renegotiate the authentication protocol if EAP had initially been negotiated. Note that problems with a non-EAP capable RADIUS proxy could prove difficult to diagnose, since a peer connecting from one location (with an EAP-capable proxy) might be able to successfully authenticate via EAP, while the same peer connecting at another location (and encountering an EAP-incapable proxy) might be consistently disconnected.
If EAP is negotiated but is not supported by the RADIUS proxy or server, then the server or proxy MUST respond with an Access-Reject. In these cases, a PPP NAS MUST send an LCP-Terminate and disconnect the peer. This is the correct behavior since the authenticating peer is expecting EAP to be negotiated, and that expectation cannot be fulfilled. An EAP-capable authenticating peer MUST refuse to renegotiate the authentication protocol if EAP had initially been negotiated. Note that problems with a non-EAP capable RADIUS proxy could prove difficult to diagnose, since a peer connecting from one location (with an EAP-capable proxy) might be able to successfully authenticate via EAP, while the same peer connecting at another location (and encountering an EAP-incapable proxy) might be consistently disconnected.
4.3.7. Impersonation
4.3.7. Impersonation
[RFC2865] Section 3 states:
[RFC2865] Section 3 states:
A RADIUS server MUST use the source IP address of the RADIUS UDP packet to decide which shared secret to use, so that RADIUS requests can be proxied.
A RADIUS server MUST use the source IP address of the RADIUS UDP packet to decide which shared secret to use, so that RADIUS requests can be proxied.
Aboba & Calhoun Informational [Page 27] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 27] RFC 3579 RADIUS & EAP September 2003
When RADIUS requests are forwarded by a proxy, the NAS-IP-Address or NAS-IPv6-Address attributes may not match the source address. Since the NAS-Identifier attribute need not contain an FQDN, this attribute also may not correspond to the source address, even indirectly, with or without a proxy present.
When RADIUS requests are forwarded by a proxy, the NAS-IP-Address or NAS-IPv6-Address attributes may not match the source address. Since the NAS-Identifier attribute need not contain an FQDN, this attribute also may not correspond to the source address, even indirectly, with or without a proxy present.
As a result, the authenticity check performed by a RADIUS server or proxy does not verify the correctness of NAS identification attributes. This makes it possible for a rogue NAS to forge NAS-IP-Address, NAS-IPv6-Address or NAS-Identifier attributes within a RADIUS Access-Request in order to impersonate another NAS. It is also possible for a rogue NAS to forge session identification attributes such as Called-Station-Id, Calling-Station-Id, and Originating-Line-Info.
As a result, the authenticity check performed by a RADIUS server or proxy does not verify the correctness of NAS identification attributes. This makes it possible for a rogue NAS to forge NAS-IP-Address, NAS-IPv6-Address or NAS-Identifier attributes within a RADIUS Access-Request in order to impersonate another NAS. It is also possible for a rogue NAS to forge session identification attributes such as Called-Station-Id, Calling-Station-Id, and Originating-Line-Info.
This could fool the RADIUS server into subsequently sending Disconnect or CoA-Request messages [RFC3576] containing forged session identification attributes to a NAS targeted by an attacker.
This could fool the RADIUS server into subsequently sending Disconnect or CoA-Request messages [RFC3576] containing forged session identification attributes to a NAS targeted by an attacker.
To address these vulnerabilities RADIUS proxies SHOULD check whether NAS identification attributes (NAS-IP-Address, NAS-IPv6-Address, NAS-Identifier) match the source address of packets originating from the NAS. Where a match is not found, an Access-Reject SHOULD be sent, and an error SHOULD be logged.
To address these vulnerabilities RADIUS proxies SHOULD check whether NAS identification attributes (NAS-IP-Address, NAS-IPv6-Address, NAS-Identifier) match the source address of packets originating from the NAS. Where a match is not found, an Access-Reject SHOULD be sent, and an error SHOULD be logged.
However, such a check may not always be possible. Since the NAS-Identifier attribute need not correspond to an FQDN, it may not be resolvable to an IP address to be matched against the source address. Also, where a NAT exists between the RADIUS client and proxy, checking the NAS-IP-Address or NAS-IPv6-Address attributes may not be feasible.
However, such a check may not always be possible. Since the NAS-Identifier attribute need not correspond to an FQDN, it may not be resolvable to an IP address to be matched against the source address. Also, where a NAT exists between the RADIUS client and proxy, checking the NAS-IP-Address or NAS-IPv6-Address attributes may not be feasible.
To allow verification of NAS and session identification parameters, EAP methods can support the secure exchange of these parameters between the EAP peer and EAP server. NAS identification attributes include NAS-IP-Address, NAS-IPv6-Address and Called-Station-Id; session identification attributes include User-Name and Calling-Station-Id. The secure exchange of these parameters between the EAP peer and server enables the RADIUS server to check whether the attributes provided by the NAS match those provided by the peer; similarly, the peer can check the parameters provided by the NAS against those provided by the EAP server. This enables detection of a rogue NAS.
To allow verification of NAS and session identification parameters, EAP methods can support the secure exchange of these parameters between the EAP peer and EAP server. NAS identification attributes include NAS-IP-Address, NAS-IPv6-Address and Called-Station-Id; session identification attributes include User-Name and Calling-Station-Id. The secure exchange of these parameters between the EAP peer and server enables the RADIUS server to check whether the attributes provided by the NAS match those provided by the peer; similarly, the peer can check the parameters provided by the NAS against those provided by the EAP server. This enables detection of a rogue NAS.
Aboba & Calhoun Informational [Page 28] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 28] RFC 3579 RADIUS & EAP September 2003
4.3.8. Man in the Middle Attacks
4.3.8. Man in the Middle Attacks
RADIUS only provides security on a hop-by-hop basis, even where IPsec is used. As a result, an attacker gaining control of a RADIUS proxy could attempt to modify EAP packets in transit. To protect against this, EAP methods SHOULD incorporate their own per-packet integrity protection and authentication mechanisms.
RADIUS only provides security on a hop-by-hop basis, even where IPsec is used. As a result, an attacker gaining control of a RADIUS proxy could attempt to modify EAP packets in transit. To protect against this, EAP methods SHOULD incorporate their own per-packet integrity protection and authentication mechanisms.
4.3.9. Separation of Authenticator and Authentication Server
4.3.9. Separation of Authenticator and Authentication Server
As noted in [RFC2716], it is possible for the EAP peer and authenticator to mutually authenticate, and derive a Master Session Key (MSK) for a ciphersuite used to protect subsequent data traffic. This does not present an issue on the peer, since the peer and EAP client reside on the same machine; all that is required is for the EAP client module to derive and pass a Transient Session Key (TSK) to the ciphersuite module.
As noted in [RFC2716], it is possible for the EAP peer and authenticator to mutually authenticate, and derive a Master Session Key (MSK) for a ciphersuite used to protect subsequent data traffic. This does not present an issue on the peer, since the peer and EAP client reside on the same machine; all that is required is for the EAP client module to derive and pass a Transient Session Key (TSK) to the ciphersuite module.
The situation is more complex when EAP is used with RADIUS, since the authenticator and authentication server may not reside on the same host.
The situation is more complex when EAP is used with RADIUS, since the authenticator and authentication server may not reside on the same host.
In the case where the authenticator and authentication server reside on different machines, there are several implications for security. First, mutual authentication will occur between the peer and the authentication server, not between the peer and the authenticator. This means that it is not possible for the peer to validate the identity of the NAS or tunnel server that it is speaking to, using EAP alone.
In the case where the authenticator and authentication server reside on different machines, there are several implications for security. First, mutual authentication will occur between the peer and the authentication server, not between the peer and the authenticator. This means that it is not possible for the peer to validate the identity of the NAS or tunnel server that it is speaking to, using EAP alone.
As described in Section 4.2, when RADIUS/EAP is used to encapsulate EAP packets, IPsec SHOULD be used to provide per-packet authentication, integrity, replay protection and confidentiality. The Message-Authenticator attribute is also required in RADIUS Access-Requests containing an EAP-Message attribute sent from the NAS or tunnel server to the RADIUS server. Since the Message-Authenticator attribute involves an HMAC-MD5 message integrity check, it is possible for the RADIUS server to verify the integrity of the Access-Request as well as the NAS or tunnel server's identity, even where IPsec is not used. Similarly, Access-Challenge packets containing an EAP-Message attribute sent from the RADIUS server to the NAS are also authenticated and integrity protected using an HMAC-MD5 message integrity check, enabling the NAS or tunnel server to determine the integrity of the packet and verify the identity of the RADIUS server, even where IPsec is not used. Moreover, EAP packets sent using methods that contain their own integrity protection cannot be successfully modified by a rogue NAS or tunnel server.
As described in Section 4.2, when RADIUS/EAP is used to encapsulate EAP packets, IPsec SHOULD be used to provide per-packet authentication, integrity, replay protection and confidentiality. The Message-Authenticator attribute is also required in RADIUS Access-Requests containing an EAP-Message attribute sent from the NAS or tunnel server to the RADIUS server. Since the Message-Authenticator attribute involves an HMAC-MD5 message integrity check, it is possible for the RADIUS server to verify the integrity of the Access-Request as well as the NAS or tunnel server's identity, even where IPsec is not used. Similarly, Access-Challenge packets containing an EAP-Message attribute sent from the RADIUS server to the NAS are also authenticated and integrity protected using an HMAC-MD5 message integrity check, enabling the NAS or tunnel server to determine the integrity of the packet and verify the identity of the RADIUS server, even where IPsec is not used. Moreover, EAP packets sent using methods that contain their own integrity protection cannot be successfully modified by a rogue NAS or tunnel server.
Aboba & Calhoun Informational [Page 29] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 29] RFC 3579 RADIUS & EAP September 2003
The second issue that arises where the authenticator and authentication server reside on separate hosts is that the EAP Master Session Key (MSK) negotiated between the peer and authentication server will need to be transmitted to the authenticator. Therefore a mechanism needs to be provided to transmit the MSK from the authentication server to the NAS or tunnel server that needs it. The specification of the key transport and wrapping mechanism is outside the scope of this document. However, it is expected that the wrapping mechanism will provide confidentiality, integrity and replay protection, and data origin authentication.
The second issue that arises where the authenticator and authentication server reside on separate hosts is that the EAP Master Session Key (MSK) negotiated between the peer and authentication server will need to be transmitted to the authenticator. Therefore a mechanism needs to be provided to transmit the MSK from the authentication server to the NAS or tunnel server that needs it. The specification of the key transport and wrapping mechanism is outside the scope of this document. However, it is expected that the wrapping mechanism will provide confidentiality, integrity and replay protection, and data origin authentication.
4.3.10. Multiple Databases
4.3.10. Multiple Databases
In many cases a security server will be deployed along with a RADIUS server in order to provide EAP services. Unless the security server also functions as a RADIUS server, two separate user databases will exist, each containing information about the security requirements for the user. This represents a weakness, since security may be compromised by a successful attack on either of the servers, or their databases. With multiple user databases, adding a new user may require multiple operations, increasing the chances for error. The problems are further magnified in the case where user information is also being kept in an LDAP server. In this case, three stores of user information may exist.
In many cases a security server will be deployed along with a RADIUS server in order to provide EAP services. Unless the security server also functions as a RADIUS server, two separate user databases will exist, each containing information about the security requirements for the user. This represents a weakness, since security may be compromised by a successful attack on either of the servers, or their databases. With multiple user databases, adding a new user may require multiple operations, increasing the chances for error. The problems are further magnified in the case where user information is also being kept in an LDAP server. In this case, three stores of user information may exist.
In order to address these threats, consolidation of databases is recommended. This can be achieved by having both the RADIUS server and security server store information in the same database; by having the security server provide a full RADIUS implementation; or by consolidating both the security server and the RADIUS server onto the same machine.
In order to address these threats, consolidation of databases is recommended. This can be achieved by having both the RADIUS server and security server store information in the same database; by having the security server provide a full RADIUS implementation; or by consolidating both the security server and the RADIUS server onto the same machine.
5. IANA Considerations
5. IANA Considerations
This specification does not create any new registries, or define any new RADIUS attributes or values.
This specification does not create any new registries, or define any new RADIUS attributes or values.
6. References
6. References
6.1. Normative References
6.1. Normative References
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
[RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.
[RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.
Aboba & Calhoun Informational [Page 30] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 30] RFC 3579 RADIUS & EAP September 2003
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998.
[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998.
[RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication Protocol (EAP)", RFC 2284, March 1998.
[RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication Protocol (EAP)", RFC 2284, March 1998.
[RFC2401] Atkinson, R. and S. Kent, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[RFC2401] Atkinson, R. and S. Kent, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
[RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
[RFC2486] Aboba, B. and M. Beadles, "The Network Access Identifier", RFC 2486, January 1999.
[RFC2486] Aboba, B. and M. Beadles, "The Network Access Identifier", RFC 2486, January 1999.
[RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.
[RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.
[RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission Timer", RFC 2988, November 2000.
[RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission Timer", RFC 2988, November 2000.
[RFC3162] Aboba, B., Zorn, G. and D. Mitton, "RADIUS and IP6", RFC 3162, August 2001.
[RFC3162] Aboba, B., Zorn, G. and D. Mitton, "RADIUS and IP6", RFC 3162, August 2001.
[RFC3280] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002.
[RFC3280] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002.
[RFC3576] Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B. Aboba, "Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)", RFC 3576, July 2003.
[RFC3576] Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B. Aboba, "Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)", RFC 3576, July 2003.
Aboba & Calhoun Informational [Page 31] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 31] RFC 3579 RADIUS & EAP September 2003
6.2. Informative References
6.2. Informative References
[RFC826] Plummer, D., "An Ethernet Address Resolution Protocol", STD 37, RFC 826, November 1982.
[RFC826] Plummer, D., "An Ethernet Address Resolution Protocol", STD 37, RFC 826, November 1982.
[RFC1510] Kohl, J. and C. Neuman, "The Kerberos Network Authentication Service (V5)", RFC 1510, September 1993.
[RFC1510] Kohl, J. and C. Neuman, "The Kerberos Network Authentication Service (V5)", RFC 1510, September 1993.
[RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994.
[RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994.
[RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC 2548, March 1999.
[RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC 2548, March 1999.
[RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy Implementation in Roaming", RFC 2607, June 1999.
[RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy Implementation in Roaming", RFC 2607, June 1999.
[RFC2716] Aboba, B. and D. Simon,"PPP EAP TLS Authentication Protocol", RFC 2716, October 1999.
[RFC2716] Aboba, B. and D. Simon,"PPP EAP TLS Authentication Protocol", RFC 2716, October 1999.
[RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.
[RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.
[RFC2867] Zorn, G., Aboba, B. and D. Mitton, "RADIUS Accounting Modifications for Tunnel Protocol Support", RFC 2867, June 2000.
[RFC2867] Zorn, G., Aboba, B. and D. Mitton, "RADIUS Accounting Modifications for Tunnel Protocol Support", RFC 2867, June 2000.
[RFC2868] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege, M. and I. Goyret, "RADIUS Attributes for Tunnel Protocol Support", RFC 2868, June 2000.
[RFC2868] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege, M. and I. Goyret, "RADIUS Attributes for Tunnel Protocol Support", RFC 2868, June 2000.
[RFC2869] Rigney, C., Willats, W. and P. Calhoun, "RADIUS Extensions", RFC 2869, June 2000.
[RFC2869] Rigney, C., Willats, W. and P. Calhoun, "RADIUS Extensions", RFC 2869, June 2000.
[RFC2983] Black, D. "Differentiated Services and Tunnels", RFC 2983, October 2000.
[RFC2983] Black, D. "Differentiated Services and Tunnels", RFC 2983, October 2000.
[RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J. Roese, "IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines", RFC 3580, September 2003.
[RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J. Roese, "IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines", RFC 3580, September 2003.
[IEEE802] IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture, ANSI/IEEE Std 802, 1990.
[IEEE802] IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture, ANSI/IEEE Std 802, 1990.
Aboba & Calhoun Informational [Page 32] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 32] RFC 3579 RADIUS & EAP September 2003
[IEEE8021X] IEEE Standards for Local and Metropolitan Area Networks: Port based Network Access Control, IEEE Std 802.1X-2001, June 2001.
[IEEE8021X] IEEE Standards for Local and Metropolitan Area Networks: Port based Network Access Control, IEEE Std 802.1X-2001, June 2001.
[MD5Attack] Dobbertin, H., "The Status of MD5 After a Recent Attack", CryptoBytes Vol.2 No.2, Summer 1996.
[MD5Attack] Dobbertin, H., "The Status of MD5 After a Recent Attack", CryptoBytes Vol.2 No.2, Summer 1996.
[Masters] Slatalla, M. and J. Quittner, "Masters of Deception." HarperCollins, New York, 1995.
[Masters] Slatalla, M. and J. Quittner, "Masters of Deception." HarperCollins, New York, 1995.
[NASREQ] Calhoun, P., et al., "Diameter Network Access Server Application", Work in Progress.
[NASREQ] Calhoun, P., et al., "Diameter Network Access Server Application", Work in Progress.
Aboba & Calhoun Informational [Page 33] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 33] RFC 3579 RADIUS & EAP September 2003
Appendix A - Examples
Appendix A - Examples
The examples below illustrate conversations between an authenticating peer, NAS, and RADIUS server. The OTP and EAP-TLS protocols are used only for illustrative purposes; other authentication protocols could also have been used, although they might show somewhat different behavior.
The examples below illustrate conversations between an authenticating peer, NAS, and RADIUS server. The OTP and EAP-TLS protocols are used only for illustrative purposes; other authentication protocols could also have been used, although they might show somewhat different behavior.
Where the NAS sends an EAP-Request/Identity as the initial packet, the exchange appears as follows:
Where the NAS sends an EAP-Request/Identity as the initial packet, the exchange appears as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Aboba & Calhoun Informational [Page 34] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 34] RFC 3579 RADIUS & EAP September 2003
In the case where the NAS initiates with an EAP-Request for EAP TLS [RFC2716], and the identity is determined based on the contents of the client certificate, the exchange will appear as follows:
In the case where the NAS initiates with an EAP-Request for EAP TLS [RFC2716], and the identity is determined based on the contents of the client certificate, the exchange will appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=EAP-TLS (TLS Start, S bit set) EAP-Response/ EAP-Type=EAP-TLS (TLS client_hello)-> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Challenge/ EAP-Message/ EAP-Request/ EAP-Type=EAP-TLS <- EAP-Request/ EAP-Type=EAP-TLS (TLS server_hello, TLS certificate, [TLS server_key_exchange,] [TLS certificate_request,] TLS server_hello_done) EAP-Response/ EAP-Type=EAP-TLS (TLS certificate, TLS client_key_exchange, [TLS certificate_verify,] TLS change_cipher_spec, TLS finished)-> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Challenge/ EAP-Message/ EAP-Request/ EAP-Type=EAP-TLS <- EAP-Request/ EAP-Type=EAP-TLS (TLS change_cipher_spec, TLS finished)
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=EAP-TLS (TLS Start, S bit set) EAP-Response/ EAP-Type=EAP-TLS (TLS client_hello)-> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Challenge/ EAP-Message/ EAP-Request/ EAP-Type=EAP-TLS <- EAP-Request/ EAP-Type=EAP-TLS (TLS server_hello, TLS certificate, [TLS server_key_exchange,] [TLS certificate_request,] TLS server_hello_done) EAP-Response/ EAP-Type=EAP-TLS (TLS certificate, TLS client_key_exchange, [TLS certificate_verify,] TLS change_cipher_spec, TLS finished)-> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Challenge/ EAP-Message/ EAP-Request/ EAP-Type=EAP-TLS <- EAP-Request/ EAP-Type=EAP-TLS (TLS change_cipher_spec, TLS finished)
Aboba & Calhoun Informational [Page 35] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 35] RFC 3579 RADIUS & EAP September 2003
EAP-Response/ EAP-Type=EAP-TLS -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
EAP-Response/ EAP-Type=EAP-TLS -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=EAP-TLS-> <-RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
In the case where the NAS first sends an EAP-Start packet to the RADIUS server, the conversation would appear as follows:
In the case where the NAS first sends an EAP-Start packet to the RADIUS server, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ Identity (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ Identity (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Aboba & Calhoun Informational [Page 36] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 36] RFC 3579 RADIUS & EAP September 2003
In the case where the NAS initiates with an EAP-Request for EAP TLS [RFC2716], but the peer responds with a Nak, indicating that it would prefer another method not implemented locally on the NAS, the exchange will appear as follows:
In the case where the NAS initiates with an EAP-Request for EAP TLS [RFC2716], but the peer responds with a Nak, indicating that it would prefer another method not implemented locally on the NAS, the exchange will appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=EAP-TLS (TLS Start, S bit set) EAP-Response/ EAP-Type=Nak (Alternative(s))-> RADIUS Access-Request/ EAP-Message/EAP-Response/ Nak -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=EAP-TLS (TLS Start, S bit set) EAP-Response/ EAP-Type=Nak (Alternative(s))-> RADIUS Access-Request/ EAP-Message/EAP-Response/ Nak -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Accept/ EAP-Message/EAP-Success (other attributes) <- EAP-Success
Aboba & Calhoun Informational [Page 37] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 37] RFC 3579 RADIUS & EAP September 2003
In the case where the authenticating peer attempts to authenticate the NAS, the conversation would appear as follows:
In the case where the authenticating peer attempts to authenticate the NAS, the conversation would appear as follows:
Authenticating peer NAS RADIUS Server ------------------- --- ------------- EAP-Request/ Challenge, MD5 -> RADIUS Access-Request/ EAP-Message/EAP-Request/ Challenge, MD5 -> <- RADIUS Access-Reject/ EAP-Message/ EAP-Response/ Nak (no alternative)
Authenticating peer NAS RADIUS Server ------------------- --- ------------- EAP-Request/ Challenge, MD5 -> RADIUS Access-Request/ EAP-Message/EAP-Request/ Challenge, MD5 -> <- RADIUS Access-Reject/ EAP-Message/ EAP-Response/ Nak (no alternative)
<- EAP-Response/Nak (no alternative) EAP-Failure ->
<- EAP-Response/Nak (no alternative) EAP-Failure ->
Aboba & Calhoun Informational [Page 38] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 38] RFC 3579 RADIUS & EAP September 2003
In the case where an invalid EAP Response is inserted by an attacker, the conversation would appear as follows:
In the case where an invalid EAP Response is inserted by an attacker, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=Foo EAP-Response/ EAP-Type=Foo -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Foo -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ EAP-Type=Foo <- EAP-Request/ EAP-Type=Foo Attacker spoof: EAP-Response/ EAP-Type=Bar ->
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- EAP-Request/ EAP-Type=Foo EAP-Response/ EAP-Type=Foo -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Foo -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ EAP-Type=Foo <- EAP-Request/ EAP-Type=Foo Attacker spoof: EAP-Response/ EAP-Type=Bar ->
Good guy: EAP-Response/ EAP-Type=Foo -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Bar ->
Good guy: EAP-Response/ EAP-Type=Foo -> RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Bar ->
<- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ EAP-Type=Foo, Error-Cause="Invalid EAP Packet (Ignored)" RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Foo -> <- Access-Accept/ EAP-Message/Success <- EAP Success
<- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ EAP-Type=Foo, Error-Cause="Invalid EAP Packet (Ignored)" RADIUS Access-Request/ EAP-Message/EAP-Response/ EAP-Type=Foo -> <- Access-Accept/ EAP-Message/Success <- EAP Success
Aboba & Calhoun Informational [Page 39] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 39] RFC 3579 RADIUS & EAP September 2003
In the case where the client fails EAP authentication, and an error message is sent prior to disconnection, the conversation would appear as follows:
In the case where the client fails EAP authentication, and an error message is sent prior to disconnection, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Response/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Notification <- EAP-Request/ Notification
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Response/ Identity <- EAP-Request/ Identity EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request OTP/OTP Challenge <- EAP-Request/ OTP/OTP Challenge EAP-Response/ OTP, OTPpw -> RADIUS Access-Request/ EAP-Message/EAP-Response/ OTP, OTPpw -> <- RADIUS Access-Challenge/ EAP-Message/EAP-Request/ Notification <- EAP-Request/ Notification
EAP-Response/ Notification -> RADIUS Access-Request/ EAP-Message/EAP-Response/ Notification -> <- RADIUS Access-Reject/ EAP-Message/EAP-Failure <- EAP-Failure (client disconnected)
EAP-Response/ Notification -> RADIUS Access-Request/ EAP-Message/EAP-Response/ Notification -> <- RADIUS Access-Reject/ EAP-Message/EAP-Failure <- EAP-Failure (client disconnected)
Aboba & Calhoun Informational [Page 40] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 40] RFC 3579 RADIUS & EAP September 2003
In the case that the RADIUS server or proxy does not support EAP- Message, but no error message is sent, the conversation would appear as follows:
In the case that the RADIUS server or proxy does not support EAP- Message, but no error message is sent, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Reject (User Disconnected)
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Reject (User Disconnected)
In the case where the local RADIUS server does support EAP-Message, but the remote RADIUS server does not, the conversation would appear as follows:
In the case where the local RADIUS server does support EAP-Message, but the remote RADIUS server does not, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/ EAP-Response/ Identity <- EAP-Request/ Identity
Authenticating peer NAS RADIUS server ------------------- --- ------------- RADIUS Access-Request/ EAP-Message/Start -> <- RADIUS Access-Challenge/ EAP-Message/ EAP-Response/ Identity <- EAP-Request/ Identity
EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Reject (proxied from remote RADIUS server) (User Disconnected)
EAP-Response/ Identity (MyID) -> RADIUS Access-Request/ EAP-Message/EAP-Response/ (MyID) -> <- RADIUS Access-Reject (proxied from remote RADIUS server) (User Disconnected)
Aboba & Calhoun Informational [Page 41] RFC 3579 RADIUS & EAP September 2003
Aboba & Calhoun Informational [Page 41] RFC 3579 RADIUS & EAP September 2003
In the case where PPP is the link and the authenticating peer does not support EAP, but where EAP is required for that user, the conversation would appear as follows:
In the case where PPP is the link and the authenticating peer does not support EAP, but where EAP is required for that user, the conversation would appear as follows:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- PPP LCP Request-EAP auth PPP LCP NAK-EAP auth -> <- PPP LCP Request-CHAP auth PPP LCP ACK-CHAP auth -> <- PPP CHAP Challenge PPP CHAP Response -> RADIUS Access-Request/ User-Name, CHAP-Password -> <- RADIUS Access-Reject <- PPP LCP Terminate (User Disconnected)
同輩NAS RADIUSサーバを認証します。------------------- --- ------------- <。 PPP LCP Request-EAP auth PPP LCP NAK-EAP auth-><PPP LCP Request-CHAP auth PPP LCP ACK-CHAP auth-><CHAP-パスワード-><RADIUS Access-廃棄物<ユーザPPP CHAP Challenge PPP CHAP Response->RADIUS Access-要求/名、PPP LCP Terminate(切断されたユーザ)
In the case where PPP is the link, the NAS does not support EAP, but where EAP is required for that user, the conversation would appear as follows:
PPPがリンクである場合では、NASはEAPをサポートしませんが、EAPがそのユーザに必要であるところでは、会話は以下の通りに見えるでしょう:
Authenticating peer NAS RADIUS server ------------------- --- ------------- <- PPP LCP Request-CHAP auth
同輩NAS RADIUSサーバを認証します。------------------- --- ------------- <。 PPP LCP Request-CHAP auth
PP LCP ACK-CHAP auth -> <- PPP CHAP Challenge PPP CHAP Response -> RADIUS Access-Request/ User-Name, CHAP-Password ->
PP LCP ACK-CHAP auth->ユーザ<PPP CHAP Challenge PPP CHAP Response->RADIUS Access-要求/名、CHAP-パスワード->。
<- RADIUS Access-Reject <- PPP LCP Terminate (User Disconnected)
<半径アクセス廃棄物<ppp LCPは終わります。(切断されたユーザ)
Aboba & Calhoun Informational [Page 42] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[42ページ]のRFC3579半径とEAP2003年9月
Appendix B - Change Log
付録B--チェンジログ
The following changes have been made from RFC 2869:
以下の変更はRFC2869から行われました:
A NAS may simultaneously support both local authentication and pass-through; once the NAS enters pass-through mode within a session, it cannot revert back to local authentication. Also EAP is explicitly described as a 'lock step' protocol. (Section 2).
NASは同時に、両方が地方の認証であるとサポートして、通り抜けるかもしれません。 NASがセッション以内にいったん通じて通りモードを入れると、それは地方の認証に戻って戻ることができません。 また、EAPは明らかに'ロックステップ'プロトコルとして記述されています。 (セクション2。)
The NAS may initiate with an EAP-Request for an authentication Type. If the Request is NAK'd, the NAS should send an initial Access-Request with an EAP-Message attribute containing an EAP-Response/Nak.
NASは認証のためにEAP-要求でTypeを開始するかもしれません。 NAKがRequestがそうなら送るだろう、NASはEAP-メッセージ属性がEAP-応答/Nakを含んでいる初期のAccess-要求を送るはずです。
The RADIUS server may treat an invalid EAP Response as a non-fatal error (Section 2.2)
RADIUSサーバは非致命的な誤りとして無効のEAP Responseを扱うかもしれません。(セクション2.2)
For use with RADIUS/EAP, the Password-Retry (Section 2.3) and Reply-Message (2.6.5) attributes are deprecated.
RADIUS/EAPとの使用、Password-再試行(セクション2.3)、およびReply-メッセージ、(2.6、.5、)、属性は推奨しないです。
Each EAP session has a unique Identifier space (Section 2.6.1).
それぞれのEAPセッションには、ユニークなIdentifierスペース(セクション2.6.1)があります。
Role reversal is not supported (Section 2.6.2).
役割交替は(セクション2.6.2)であるとサポートされません。
Message combinations (e.g. Access-Accept/EAP-Failure) that conflict are discouraged (Section 2.6.3).
闘争するメッセージ組み合わせ(例えば、/EAP-失敗をAccess受け入れる)はお勧めできないです(セクション2.6.3)。
Only a single EAP packet may be encapsulated within a RADIUS message (Section 3.1).
RADIUSメッセージ(セクション3.1)の中で単一のEAPパケットだけをカプセルに入れってもよいです。
An Access-Request lacking explicit authentication as well as a Message- Authenticator attribute SHOULD be silently discarded (Section 3.3).
捨てられて、固有識別文字属性SHOULDがよくMessageとして静かにこと(セクション3.3)であるように明白な認証を欠いているAccess-要求。
The Originating-Line-Info attribute is supported (Section 3.3).
Originating線インフォメーション属性は(セクション3.3)であるとサポートされます。
IPsec ESP with non-null transform SHOULD be used and the usage model is described in detail (Section 4.2).
非ヌル変換SHOULDが使用されている超能力と用法がモデル化するIPsecは詳細(セクション4.2)に説明されます。
Additional discussion of security vulnerabilities (Section 4.1) and potential fixes (Section 4.3).
セキュリティの脆弱性(セクション4.1)と可能性の追加議論は(セクション4.3)を修理します。
Separated normative (Section 6.1) and informative (Section 6.2) references.
切り離された規範的(セクション6.1)で有益な(セクション6.2)参照。
Aboba & Calhoun Informational [Page 43] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[43ページ]のRFC3579半径とEAP2003年9月
Added additional examples (Appendix A): a NAS initiating with an EAP-Request for an authentication Type; attempted role reversal.
追加例(付録A)を加えます: 認証のためにEAP-要求でTypeを開始するNAS。 試みられた役割交替。
Intellectual Property Statement
知的所有権声明
The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.
IETFはどんな知的所有権の正当性か範囲、実装に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 どちらも、それはそれを表しません。どんなそのような権利も特定するためにいずれも取り組みにしました。 BCP-11で標準化過程の権利と規格関連のドキュメンテーションに関するIETFの手順に関する情報を見つけることができます。 権利のクレームのコピーで利用可能に作られるべきライセンスの保証、または一般的なライセンスか許可が作成者によるそのような所有権の使用に得させられた試みの結果が公表といずれにも利用可能になったか、またはIETF事務局からこの仕様のユーザを得ることができます。
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.
IETFはこの規格を練習するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 IETF専務に情報を扱ってください。
Acknowledgments
承認
Thanks to Dave Dawson and Karl Fox of Ascend, Glen Zorn of Cisco Systems, Jari Arkko of Ericsson and Ashwin Palekar, Tim Moore and Narendra Gidwani of Microsoft for useful discussions of this problem space. The authors would also like to acknowledge Tony Jeffree, Chair of IEEE 802.1 for his assistance in resolving RADIUS/EAP issues in IEEE 802.1X-2001.
この問題スペースの役に立つ議論をマイクロソフトのAscendのデーヴ・ドーソンとカールフォックス、シスコシステムズのGlenゾルン、エリクソンとAshwin PalekarのヤリArkko、ティム・ムーア、およびNarendra Gidwaniをありがとうございます。 また、作者はトニーJeffree(IEEE 802.1X-2001のRADIUS/EAP問題を解決することにおける彼の支援のためのIEEE802.1の議長)を承認したがっています。
Aboba & Calhoun Informational [Page 44] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[44ページ]のRFC3579半径とEAP2003年9月
Authors' Addresses
作者のアドレス
Bernard Aboba Microsoft Corporation One Microsoft Way Redmond, WA 98052
バーナードAbobaマイクロソフト社1マイクロソフト道、レッドモンド、ワシントン 98052
Phone: +1 425 706 6605 Fax: +1 425 936 7329 EMail: bernarda@microsoft.com
以下に電話をしてください。 +1 425 706、6605Fax: +1 7329年の425 936メール: bernarda@microsoft.com
Pat R. Calhoun Airespace 110 Nortech Parkway San Jose, California, 95134 USA
Parkwayサンノゼ、パットR.カルフーンAirespace110Nortechカリフォルニア95134米国
Phone: +1 408 635 2023 Fax: +1 408 635 2020 EMail: pcalhoun@airespace.com
以下に電話をしてください。 +1 408 635、2023Fax: +1 2020年の408 635メール: pcalhoun@airespace.com
Aboba & Calhoun Informational [Page 45] RFC 3579 RADIUS & EAP September 2003
Abobaとカルフーンの情報[45ページ]のRFC3579半径とEAP2003年9月
Full Copyright Statement
完全な著作権宣言文
Copyright (C) The Internet Society (2003). All Rights Reserved.
Copyright(C)インターネット協会(2003)。 All rights reserved。
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.
それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部分配された実装を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsプロセスで定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。
The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.
上に承諾された限られた許容は、永久であり、そのインターネット協会、後継者または指定代理人によって取り消されないでしょう。
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。
Acknowledgement
承認
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC Editor機能のための基金は現在、インターネット協会によって提供されます。
Aboba & Calhoun Informational [Page 46]
Abobaとカルフーン情報です。[46ページ]
一覧
スポンサーリンク