RFC5251 日本語訳

5251 Layer 1 VPN Basic Mode. D. Fedyk, Ed., Y. Rekhter, Ed., D.Papadimitriou, R. Rabbat, L. Berger. July 2008. (Format: TXT=57599 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
RFC一覧
英語原文

Network Working Group                                      D. Fedyk, Ed.
Request for Comments: 5251                                        Nortel
Category: Standards Track                                Y. Rekhter, Ed.
                                                        Juniper Networks
                                                        D. Papadimitriou
                                                          Alcatel-Lucent
                                                               R. Rabbat
                                                                  Google
                                                               L. Berger
                                                                    LabN
                                                               July 2008

Network Working Group D. Fedyk, Ed. Request for Comments: 5251 Nortel Category: Standards Track Y. Rekhter, Ed. Juniper Networks D. Papadimitriou Alcatel-Lucent R. Rabbat Google L. Berger LabN July 2008

                         Layer 1 VPN Basic Mode

Layer 1 VPN Basic Mode

Status of This Memo

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

Abstract

   This document describes the Basic Mode of Layer 1 VPNs (L1VPNs).
   L1VPN Basic Mode (L1VPN BM) is a port-based VPN.  In L1VPN Basic
   Mode, the basic unit of service is a Label Switched Path (LSP)
   between a pair of customer ports within a given VPN port topology.
   This document defines the operational model using either provisioning
   or a VPN auto-discovery mechanism, and the signaling extensions for
   the L1VPN BM.

This document describes the Basic Mode of Layer 1 VPNs (L1VPNs). L1VPN Basic Mode (L1VPN BM) is a port-based VPN. In L1VPN Basic Mode, the basic unit of service is a Label Switched Path (LSP) between a pair of customer ports within a given VPN port topology. This document defines the operational model using either provisioning or a VPN auto-discovery mechanism, and the signaling extensions for the L1VPN BM.

Fedyk, et al.               Standards Track                     [Page 1]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 1] RFC 5251 L1VPN Basic Mode July 2008

Table of Contents

Table of Contents

   1. Introduction ....................................................3
      1.1. Conventions Used in This Document ..........................4
   2. Layer 1 VPN Service .............................................4
   3. Addressing, Ports, Links, and Control Channels ..................7
      3.1. Service Provider Realm .....................................7
      3.2. Layer 1 Ports and Index ....................................7
      3.3. Port and Index Mapping .....................................8
   4. Port-Based L1VPN Basic Mode ....................................10
      4.1. L1VPN Port Information Tables .............................11
           4.1.1. Local Auto-Discovery Information ...................12
           4.1.2. PE Remote Auto-Discovery Information ...............12
      4.2. CE-to-CE LSP Establishment ................................14
      4.3. Signaling .................................................15
           4.3.1. Signaling Procedures ...............................15
                  4.3.1.1. Shuffling Sessions ........................16
                  4.3.1.2. Stitched or Nested Sessions ...............17
                  4.3.1.3. Other Signaling ...........................18
      4.4. Recovery Procedures .......................................19
   5. Security Considerations ........................................20
   6. References .....................................................21
      6.1. Normative References ......................................21
      6.2. Informative References ....................................22
   7. Acknowledgments ................................................23

1. Introduction ....................................................3 1.1. Conventions Used in This Document ..........................4 2. Layer 1 VPN Service .............................................4 3. Addressing, Ports, Links, and Control Channels ..................7 3.1. Service Provider Realm .....................................7 3.2. Layer 1 Ports and Index ....................................7 3.3. Port and Index Mapping .....................................8 4. Port-Based L1VPN Basic Mode ....................................10 4.1. L1VPN Port Information Tables .............................11 4.1.1. Local Auto-Discovery Information ...................12 4.1.2. PE Remote Auto-Discovery Information ...............12 4.2. CE-to-CE LSP Establishment ................................14 4.3. Signaling .................................................15 4.3.1. Signaling Procedures ...............................15 4.3.1.1. Shuffling Sessions ........................16 4.3.1.2. Stitched or Nested Sessions ...............17 4.3.1.3. Other Signaling ...........................18 4.4. Recovery Procedures .......................................19 5. Security Considerations ........................................20 6. References .....................................................21 6.1. Normative References ......................................21 6.2. Informative References ....................................22 7. Acknowledgments ................................................23

Fedyk, et al.               Standards Track                     [Page 2]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 2] RFC 5251 L1VPN Basic Mode July 2008

1.  Introduction

1. Introduction

   This document describes the Basic Mode of Layer 1 VPNs (L1VPN BM)
   that is outlined in [RFC4847].  The applicability of Layer 1 VPNS is
   covered in [RFC5253].  In this document, we consider a layer 1
   service provider network that consists of devices that support GMPLS
   (e.g., Lambda Switch Capable (LSC) devices, optical cross-connects,
   Synchronous Optical Network / Synchronous Digital Hierarchy
   (SONET/SDH) cross-connects, etc.).  We partition these devices into P
   (provider) and PE (provider edge) devices.  In the context of this
   document we will refer to the former devices as just "P", and to the
   latter devices as just "PE".  The Ps are connected only to the
   devices within the provider's network.  The PEs are connected to the
   other devices within the network (either Ps or PEs), as well as to
   the devices outside of the service provider network.  We'll refer to
   such other devices as Customer Edge (CE) devices.  An example of a CE
   would be a GMPLS-enabled device that is either a router, an SDH
   cross-connect, or an Ethernet switch.

This document describes the Basic Mode of Layer 1 VPNs (L1VPN BM) that is outlined in [RFC4847]. The applicability of Layer 1 VPNS is covered in [RFC5253]. In this document, we consider a layer 1 service provider network that consists of devices that support GMPLS (e.g., Lambda Switch Capable (LSC) devices, optical cross-connects, Synchronous Optical Network / Synchronous Digital Hierarchy (SONET/SDH) cross-connects, etc.). We partition these devices into P (provider) and PE (provider edge) devices. In the context of this document we will refer to the former devices as just "P", and to the latter devices as just "PE". The Ps are connected only to the devices within the provider's network. The PEs are connected to the other devices within the network (either Ps or PEs), as well as to the devices outside of the service provider network. We'll refer to such other devices as Customer Edge (CE) devices. An example of a CE would be a GMPLS-enabled device that is either a router, an SDH cross-connect, or an Ethernet switch.

   [RFC4208] defines signaling from the CE to the PE.  In [RFC4208], the
   term "Core Node (CN)" corresponds to P and PE nodes, and the term
   "Edge Node (EN)" corresponds to CE nodes.  We additionally define an
   "edge Core Node" corresponding to a PE.

[RFC4208] defines signaling from the CE to the PE. In [RFC4208], the term "Core Node (CN)" corresponds to P and PE nodes, and the term "Edge Node (EN)" corresponds to CE nodes. We additionally define an "edge Core Node" corresponding to a PE.

   Figure 1 illustrates the components in an L1VPN network.

Figure 1 illustrates the components in an L1VPN network.

                         +---+    +---+
                         | P |....| P |
                         +---+    +---+
                        /              \
                  +-----+               +-----+    +--+
          +--+    |  PE |               |     |----|  |
          |CE|----|     |               |     |    |CE|
          +--+\   +-----+               |     |----|  |
               \     |                  | PE  |    +--+
                \ +-----+               |     |
                 \| PE  |               |     |    +--+
                  |     |               |     |----|CE|
                  +-----+               +-----+    +--+
                         \              /
                         +---+    +---+
                         | P |....| P |
                         +---+    +---+

+---+ +---+ | P |....| P | +---+ +---+ / \ +-----+ +-----+ +--+ +--+ | PE | | |----| | |CE|----| | | | |CE| +--+\ +-----+ | |----| | \ | | PE | +--+ \ +-----+ | | \| PE | | | +--+ | | | |----|CE| +-----+ +-----+ +--+ \ / +---+ +---+ | P |....| P | +---+ +---+

            Figure 1: Generalized Layer 1 VPN Reference Model

Figure 1: Generalized Layer 1 VPN Reference Model

Fedyk, et al.               Standards Track                     [Page 3]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 3] RFC 5251 L1VPN Basic Mode July 2008

   This document specifies how the L1VPN Basic Mode service can be
   realized using off-line provisioning or VPN auto-discovery,
   Generalized Multi-Protocol Label Switching (GMPLS) Signaling
   [RFC3471], [RFC3473], Routing [RFC4202], and LMP [RFC4204]
   mechanisms.

This document specifies how the L1VPN Basic Mode service can be realized using off-line provisioning or VPN auto-discovery, Generalized Multi-Protocol Label Switching (GMPLS) Signaling [RFC3471], [RFC3473], Routing [RFC4202], and LMP [RFC4204] mechanisms.

   L1VPN auto-discovery has similar requirements [RFC4847] to L3VPN
   auto-discovery.  As with L3VPNs, there are protocol choices to be
   made with auto-discovery.  Section 4.1.1 deals with the information
   that needs to be discovered.

L1VPN auto-discovery has similar requirements [RFC4847] to L3VPN auto-discovery. As with L3VPNs, there are protocol choices to be made with auto-discovery. Section 4.1.1 deals with the information that needs to be discovered.

   GMPLS routing and signaling are used without extensions within the
   service provider network to establish and maintain LSC or SONET/SDH
   (Time Division Multiplexing (TDM)) connections between service
   provider nodes.  This follows the model in [RFC4208].

GMPLS routing and signaling are used without extensions within the service provider network to establish and maintain LSC or SONET/SDH (Time Division Multiplexing (TDM)) connections between service provider nodes. This follows the model in [RFC4208].

   In L1VPN Basic Mode, the use of LMP facilitates the population of the
   Port Information Tables of the service provider.  Indeed, LMP MAY be
   used as an option to automate local CE-to-PE link discovery.  LMP
   also MAY augment routing (in enhanced mode) as well as failure
   handling capabilities.

In L1VPN Basic Mode, the use of LMP facilitates the population of the Port Information Tables of the service provider. Indeed, LMP MAY be used as an option to automate local CE-to-PE link discovery. LMP also MAY augment routing (in enhanced mode) as well as failure handling capabilities.

   Consideration of inter-AS and inter-provider L1VPNs requires further
   analysis beyond the scope of this document.

Consideration of inter-AS and inter-provider L1VPNs requires further analysis beyond the scope of this document.

1.1.  Conventions Used in This Document

1.1. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

   This document expects that the reader is familiar with the
   terminology defined and used in [RFC3945], [RFC3471], [RFC3473],
   [RFC3477], [RFC4201], [RFC4202], [RFC4204], [RFC4208], and the
   documents referenced therein.

This document expects that the reader is familiar with the terminology defined and used in [RFC3945], [RFC3471], [RFC3473], [RFC3477], [RFC4201], [RFC4202], [RFC4204], [RFC4208], and the documents referenced therein.

2.  Layer 1 VPN Service

2. Layer 1 VPN Service

   Layer 1 VPN services on the interfaces of customer and service
   provider ports MAY be any of the Layer 1 interfaces supported by
   GMPLS.  Since the mechanisms specified in this document use GMPLS as
   the signaling mechanism, and since GMPLS applies to both SONET/SDH
   (TDM) and LSC interfaces, it follows that L1VPN services include (but
   are not restricted) to LSC- or TDM-based equipment.  Note that this
   document describes Basic Mode L1VPNs and as such requires that:

Layer 1 VPN services on the interfaces of customer and service provider ports MAY be any of the Layer 1 interfaces supported by GMPLS. Since the mechanisms specified in this document use GMPLS as the signaling mechanism, and since GMPLS applies to both SONET/SDH (TDM) and LSC interfaces, it follows that L1VPN services include (but are not restricted) to LSC- or TDM-based equipment. Note that this document describes Basic Mode L1VPNs and as such requires that:

Fedyk, et al.               Standards Track                     [Page 4]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 4] RFC 5251 L1VPN Basic Mode July 2008

   (1) GMPLS RSVP-TE is used for signaling both within the service
       provider (between PEs), as well as between the customer and the
       service provider (between CE and PE);

(1) GMPLS RSVP-TE is used for signaling both within the service provider (between PEs), as well as between the customer and the service provider (between CE and PE);

   (2) GMPLS Routing on the CE-to-PE link is outside the scope of the
       Basic Mode of operation of L1VPN; see [RFC4847].

(2) GMPLS Routing on the CE-to-PE link is outside the scope of the Basic Mode of operation of L1VPN; see [RFC4847].

   A CE is connected to a PE via one or more links.  In the context of
   this document, a link is a GMPLS Traffic Engineering (TE) link
   construct, as defined in [RFC4202].  In the context of this document,
   a TE link is a logical construct that is a member of a VPN, hence
   introducing the notion of membership to a set of CEs forming the VPN.
   Interfaces at the end of each link are limited to either TDM or LSC
   as supported by GMPLS.  More specifically, a <CE, PE> link MUST be of
   the type <X, LSC> or <Y, TDM> where X = PSC (Packet Switch Capable),
   L2SC (Layer 2 Switch Capable), or TDM and Y = PSC or L2SC.  In case
   the LSP is not terminated by the CE, X MAY also = LSC and Y = TDM.
   One of the applications of a L1VPN connection is to provide a
   "virtual private lambda" or similar.  In this case, the CE is truly
   the endpoint in GMPLS terms, and its switching capability on the TE
   link is not relevant (although its Generalized Protocol Identifier
   (GPID) MUST be signaled and identical at both CEs, i.e., head-end and
   tail-end CE).

A CE is connected to a PE via one or more links. In the context of this document, a link is a GMPLS Traffic Engineering (TE) link construct, as defined in [RFC4202]. In the context of this document, a TE link is a logical construct that is a member of a VPN, hence introducing the notion of membership to a set of CEs forming the VPN. Interfaces at the end of each link are limited to either TDM or LSC as supported by GMPLS. More specifically, a <CE, PE> link MUST be of the type <X, LSC> or <Y, TDM> where X = PSC (Packet Switch Capable), L2SC (Layer 2 Switch Capable), or TDM and Y = PSC or L2SC. In case the LSP is not terminated by the CE, X MAY also = LSC and Y = TDM. One of the applications of a L1VPN connection is to provide a "virtual private lambda" or similar. In this case, the CE is truly the endpoint in GMPLS terms, and its switching capability on the TE link is not relevant (although its Generalized Protocol Identifier (GPID) MUST be signaled and identical at both CEs, i.e., head-end and tail-end CE).

   Likewise, PEs could be any Layer 1 devices that are supported by
   GMPLS (e.g., optical cross-connects, SDH cross-connects), while CEs
   MAY be devices at layers 1, 2, and 3, such as an SDH cross-connect,
   an Ethernet switch, and a router, respectively).

Likewise, PEs could be any Layer 1 devices that are supported by GMPLS (e.g., optical cross-connects, SDH cross-connects), while CEs MAY be devices at layers 1, 2, and 3, such as an SDH cross-connect, an Ethernet switch, and a router, respectively).

   Each TE link MAY consist of one or more channels or sub-channels
   (e.g., wavelength or wavelength and timeslot, respectively).  For the
   purpose of this discussion, all the channels within a given link MUST
   have similar shared characteristics (e.g., switching capability,
   encoding, type, etc.), and MAY be selected independently from the
   CE's point of view.  Channels on different links of a CE need not
   have the same characteristics.

Each TE link MAY consist of one or more channels or sub-channels (e.g., wavelength or wavelength and timeslot, respectively). For the purpose of this discussion, all the channels within a given link MUST have similar shared characteristics (e.g., switching capability, encoding, type, etc.), and MAY be selected independently from the CE's point of view. Channels on different links of a CE need not have the same characteristics.

   There MAY be more than one TE link between a given CE-PE pair.  A CE
   MAY be connected to more than one PE (with at least one port per PE).
   And, conversely, a PE MAY have more than one CE from different VPNs
   connected to it.

There MAY be more than one TE link between a given CE-PE pair. A CE MAY be connected to more than one PE (with at least one port per PE). And, conversely, a PE MAY have more than one CE from different VPNs connected to it.

   If a CE is connected to a PE via multiple TE links and all the links
   belong to the same VPN, these links (referred to as component links)
   MAY be treated as a single TE link using the link bundling constructs
   [RFC4201].

If a CE is connected to a PE via multiple TE links and all the links belong to the same VPN, these links (referred to as component links) MAY be treated as a single TE link using the link bundling constructs [RFC4201].

Fedyk, et al.               Standards Track                     [Page 5]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 5] RFC 5251 L1VPN Basic Mode July 2008

   In order to satisfy the requirements of the L1VPN Basic Mode, it is
   REQUIRED that for a given CE-PE pair at least one of the links
   between them has at least one data bearing channel, and at least one
   control bearing channel, or that there is IP reachability between the
   CE and the PE that could be used to exchange control information.

In order to satisfy the requirements of the L1VPN Basic Mode, it is REQUIRED that for a given CE-PE pair at least one of the links between them has at least one data bearing channel, and at least one control bearing channel, or that there is IP reachability between the CE and the PE that could be used to exchange control information.

   A point-to-point link has two end-points: one on the CE and one on
   the PE.  This document refers to the former as "CE port", and to the
   latter as "PE port".  From the above, it follows that a CE is
   connected to a PE via one or more ports, where each port MAY consist
   of one or more channels or sub-channels (e.g., wavelength or
   wavelength and timeslot, respectively), and all the channels within a
   given port have shared similar characteristics and can be
   interchanged from the CE's point of view.  Similar to the definition
   of a TE link, in the context of this document, ports are logical
   constructs that are used to represent a grouping of physical
   resources that are used to connect a CE to a PE on a per-L1VPN basis.

A point-to-point link has two end-points: one on the CE and one on the PE. This document refers to the former as "CE port", and to the latter as "PE port". From the above, it follows that a CE is connected to a PE via one or more ports, where each port MAY consist of one or more channels or sub-channels (e.g., wavelength or wavelength and timeslot, respectively), and all the channels within a given port have shared similar characteristics and can be interchanged from the CE's point of view. Similar to the definition of a TE link, in the context of this document, ports are logical constructs that are used to represent a grouping of physical resources that are used to connect a CE to a PE on a per-L1VPN basis.

   At any point in time, a given port on a PE is associated with at most
   one L1VPN, or, to be more precise, with at most one Port Information
   Table maintained by the PE (although different ports on a given PE
   could be associated with different L1VPNs, or, to be more precise,
   with different Port Information Tables).  The association of a port
   with a VPN MAY be defined by provisioning the relationship on the
   service provider devices.  In other words, the context of a VPN
   membership in Basic Mode is enforced through service provider
   control.

At any point in time, a given port on a PE is associated with at most one L1VPN, or, to be more precise, with at most one Port Information Table maintained by the PE (although different ports on a given PE could be associated with different L1VPNs, or, to be more precise, with different Port Information Tables). The association of a port with a VPN MAY be defined by provisioning the relationship on the service provider devices. In other words, the context of a VPN membership in Basic Mode is enforced through service provider control.

   It is REQUIRED that the interface (that is between the CE and PE and
   that is used for the purpose of signaling) be capable of
   initiating/processing GMPLS protocol messages [RFC3473] and of
   following the procedures described in [RFC4208].

It is REQUIRED that the interface (that is between the CE and PE and that is used for the purpose of signaling) be capable of initiating/processing GMPLS protocol messages [RFC3473] and of following the procedures described in [RFC4208].

   An important goal of L1VPN service is the ability to support what is
   known as "single-ended provisioning", where the addition of a new
   port to a given L1VPN involves configuration changes only on the PE
   that has this port.  The extension of this model to the CE is outside
   the scope of the L1VPN BM.

An important goal of L1VPN service is the ability to support what is known as "single-ended provisioning", where the addition of a new port to a given L1VPN involves configuration changes only on the PE that has this port. The extension of this model to the CE is outside the scope of the L1VPN BM.

   Another important goal in the L1VPN service is the ability to
   establish/terminate an LSP between a pair of (existing) ports within
   an L1VPN from the CE devices without involving configuration changes
   in any of the service provider's devices.  In other words, the VPN
   topology is under the CE device control (assuming that the underlying
   PE-to-PE connectivity is provided and allowed by the network).

Another important goal in the L1VPN service is the ability to establish/terminate an LSP between a pair of (existing) ports within an L1VPN from the CE devices without involving configuration changes in any of the service provider's devices. In other words, the VPN topology is under the CE device control (assuming that the underlying PE-to-PE connectivity is provided and allowed by the network).

Fedyk, et al.               Standards Track                     [Page 6]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 6] RFC 5251 L1VPN Basic Mode July 2008

   The mechanisms outlined in this document aim to achieve the above
   goals.  Specifically, as part of the L1VPN service offering, these
   mechanisms (1) enable the service provider to restrict the set of
   ports to which a given port could be connected and (2) enable a CE to
   establish the actual LSP to a subset of ports.  Finally, the
   mechanisms allow arbitrary L1VPN topologies to be supported;
   including topologies ranging from hub-and-spoke to full mesh point-
   to-point connections.  Only point-to-point links are supported.

The mechanisms outlined in this document aim to achieve the above goals. Specifically, as part of the L1VPN service offering, these mechanisms (1) enable the service provider to restrict the set of ports to which a given port could be connected and (2) enable a CE to establish the actual LSP to a subset of ports. Finally, the mechanisms allow arbitrary L1VPN topologies to be supported; including topologies ranging from hub-and-spoke to full mesh point- to-point connections. Only point-to-point links are supported.

   The exchange of CE routing or topology information to the service
   provider is out of scope for L1VPN BM mode.

The exchange of CE routing or topology information to the service provider is out of scope for L1VPN BM mode.

3.  Addressing, Ports, Links, and Control Channels

3. Addressing, Ports, Links, and Control Channels

   GMPLS-established conventions for addressing and link numbering are
   discussed in [RFC3945].  This section builds on those definitions for
   the L1VPN case where we now have customer and service provider
   addresses in a Layer 1 context.

GMPLS-established conventions for addressing and link numbering are discussed in [RFC3945]. This section builds on those definitions for the L1VPN case where we now have customer and service provider addresses in a Layer 1 context.

3.1.  Service Provider Realm

3.1. Service Provider Realm

   It is REQUIRED that a service provider, or a group of service
   providers that collectively offer L1VPN service, have a single
   addressing realm that spans all PE devices involved in providing the
   L1VPN service.  This is necessary to enable GMPLS mechanisms for path
   establishment and maintenance.  We will refer to this realm as the
   service provider addressing realm.  It is further REQUIRED that each
   L1VPN customer have its own addressing realm with complete freedom to
   use private or public addresses.  We will refer to such realms as the
   customer addressing realms.  Customer addressing realms MAY overlap
   addresses (i.e., non-unique address) with each other, and MAY also
   overlap addresses with the service provider realm.

It is REQUIRED that a service provider, or a group of service providers that collectively offer L1VPN service, have a single addressing realm that spans all PE devices involved in providing the L1VPN service. This is necessary to enable GMPLS mechanisms for path establishment and maintenance. We will refer to this realm as the service provider addressing realm. It is further REQUIRED that each L1VPN customer have its own addressing realm with complete freedom to use private or public addresses. We will refer to such realms as the customer addressing realms. Customer addressing realms MAY overlap addresses (i.e., non-unique address) with each other, and MAY also overlap addresses with the service provider realm.

3.2.  Layer 1 Ports and Index

3.2. Layer 1 Ports and Index

   Within a given L1VPN, each port on a CE that connects the CE to a PE
   has an identifier that is unique within that L1VPN (but need not be
   unique across several L1VPNs).  One way to construct such an
   identifier is to assign each port an address that is unique within a
   given L1VPN, and use this address as a port identifier.  Another way
   to construct such an identifier is to assign each port on a CE an
   index that is unique within that CE, assign each CE an address that
   is unique within a given L1VPN, and then use a tuple <port index, CE
   address> as a port identifier.  Note that both the port and the CE
   address MAY be an address in several formats.  This includes, but is
   not limited to, IPv4 and IPv6.  This identifier is part of the

Within a given L1VPN, each port on a CE that connects the CE to a PE has an identifier that is unique within that L1VPN (but need not be unique across several L1VPNs). One way to construct such an identifier is to assign each port an address that is unique within a given L1VPN, and use this address as a port identifier. Another way to construct such an identifier is to assign each port on a CE an index that is unique within that CE, assign each CE an address that is unique within a given L1VPN, and then use a tuple <port index, CE address> as a port identifier. Note that both the port and the CE address MAY be an address in several formats. This includes, but is not limited to, IPv4 and IPv6. This identifier is part of the

Fedyk, et al.               Standards Track                     [Page 7]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 7] RFC 5251 L1VPN Basic Mode July 2008

   Customer addressing Realm and is used by the CE device to identify
   the CE port and the CE remote port for signaling.  CEs do not know or
   understand the service provider realm addresses.

Customer addressing Realm and is used by the CE device to identify the CE port and the CE remote port for signaling. CEs do not know or understand the service provider realm addresses.

   Within a service provider network, each port on a PE that connects
   that PE to a CE has an identifier that is unique within that network.
   One way to construct such an identifier is to assign each port on a
   PE an index that is unique within that PE, assign each PE an IP
   address that is unique within the service provider addressing realm,
   and then use a tuple <port index, PE IPv4 address> or <port index, PE
   IPv6 address> as a port identifier within the service provider
   network.  Another way to construct such an identifier is to assign an
   IPv4 or IPv6 address that is unique within the service provider
   addressing realm to each such port.  Either way, this IPv4 or IPv6
   address is internal to the service provider network and is used for
   GMPLS signaling within the service provider network.

Within a service provider network, each port on a PE that connects that PE to a CE has an identifier that is unique within that network. One way to construct such an identifier is to assign each port on a PE an index that is unique within that PE, assign each PE an IP address that is unique within the service provider addressing realm, and then use a tuple <port index, PE IPv4 address> or <port index, PE IPv6 address> as a port identifier within the service provider network. Another way to construct such an identifier is to assign an IPv4 or IPv6 address that is unique within the service provider addressing realm to each such port. Either way, this IPv4 or IPv6 address is internal to the service provider network and is used for GMPLS signaling within the service provider network.

   As a result, each link connecting the CE to the PE is associated with
   a CE port that has a unique identifier within a given L1VPN, and with
   a PE port that has a unique identifier within the service provider
   network.  We'll refer to the former as the Customer Port Identifier
   (CPI), and to the latter as the Provider Port Identifier (PPI).

As a result, each link connecting the CE to the PE is associated with a CE port that has a unique identifier within a given L1VPN, and with a PE port that has a unique identifier within the service provider network. We'll refer to the former as the Customer Port Identifier (CPI), and to the latter as the Provider Port Identifier (PPI).

3.3.  Port and Index Mapping

3.3. Port and Index Mapping

   This document requires that each PE port that has a PPI also has an
   identifier that is unique within the L1VPN customer addressing realm
   of the L1VPN associated with that port.  One way to construct such an
   identifier is to assign each port an address that is unique within a
   given L1VPN customer addressing realm, and use this address as a port
   identifier.  Another way to construct such an identifier is to assign
   each port an index that is unique within a given PE, assign each PE
   an IP address that is unique within a given L1VPN customer addressing
   realm (but need not be unique within the service provider network),
   and then use a tuple <port index, PE IP address> that acts as a port
   identifier.  We'll refer to such port identifier as the VPN-PPI.  See
   Figure 2.

This document requires that each PE port that has a PPI also has an identifier that is unique within the L1VPN customer addressing realm of the L1VPN associated with that port. One way to construct such an identifier is to assign each port an address that is unique within a given L1VPN customer addressing realm, and use this address as a port identifier. Another way to construct such an identifier is to assign each port an index that is unique within a given PE, assign each PE an IP address that is unique within a given L1VPN customer addressing realm (but need not be unique within the service provider network), and then use a tuple <port index, PE IP address> that acts as a port identifier. We'll refer to such port identifier as the VPN-PPI. See Figure 2.

   For L1VPNs, it is a requirement that service provider operations are
   independent of the VPN customer's addressing realm and the service
   provider addressing realm is hidden from the customer.  To achieve
   this, we define two identifiers at the PE, one customer facing and
   the other service provider facing.  The PE IP address used for the
   VPN-PPI is independent of the PE IP address used for the PPI (as the
   two are taken from different address realms, the former from the
   customer's addressing realm and the latter from a VPN service
   provider's addressing realm).  If for a given port on a PE, the PPI

For L1VPNs, it is a requirement that service provider operations are independent of the VPN customer's addressing realm and the service provider addressing realm is hidden from the customer. To achieve this, we define two identifiers at the PE, one customer facing and the other service provider facing. The PE IP address used for the VPN-PPI is independent of the PE IP address used for the PPI (as the two are taken from different address realms, the former from the customer's addressing realm and the latter from a VPN service provider's addressing realm). If for a given port on a PE, the PPI

Fedyk, et al.               Standards Track                     [Page 8]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 8] RFC 5251 L1VPN Basic Mode July 2008

   and the VPN-PPI port identifiers are unnumbered, then they both could
   use exactly the same port index.  This is a mere convenience since
   the PPI and VPN_PPI can be in any combination of valid formats.

and the VPN-PPI port identifiers are unnumbered, then they both could use exactly the same port index. This is a mere convenience since the PPI and VPN_PPI can be in any combination of valid formats.

                   (Customer realm)
               +----+                             +----+
               |    |<Port Index>    <Port Index> |    |
               |    |CPI              VPN-PPI     |    |
            ---| CE |-----------------------------| PE |---
               |    |                <Port Index> |    |
               |    |                 PPI         |    |
               +----+                             +----+
                                     (Provider realm)

(Customer realm) +----+ +----+ | |<Port Index> <Port Index> | | | |CPI VPN-PPI | | ---| CE |-----------------------------| PE |--- | | <Port Index> | | | | PPI | | +----+ +----+ (Provider realm)

            Figure 2: Customer/Provider Port/Index Mapping

Figure 2: Customer/Provider Port/Index Mapping

   Note, as stated earlier, that IP addresses used for the CPIs, PPIs,
   and VPN-PPIs could be either IPv4 or IPv6 format addresses.

Note, as stated earlier, that IP addresses used for the CPIs, PPIs, and VPN-PPIs could be either IPv4 or IPv6 format addresses.

   For a given link connecting a CE to a PE:

For a given link connecting a CE to a PE:

   - If the CPI is an IPv4 address, then the VPN-PPI MUST be an IPv4
     address as well since VPN-PPIs are created from the customer
     address space.  If the CPI is a <port index, CPI IPv4 address>
     tuple, then the VPN-PPI MUST be a <port index, PE IPv4 address>
     tuple for the same reason.

- If the CPI is an IPv4 address, then the VPN-PPI MUST be an IPv4 address as well since VPN-PPIs are created from the customer address space. If the CPI is a <port index, CPI IPv4 address> tuple, then the VPN-PPI MUST be a <port index, PE IPv4 address> tuple for the same reason.

   - If the CPI is an IPv6 address, then the VPN-PPI MUST be an IPv6
     address as well since VPN-PPIs are created from the customer
     address space.  If the CPI is a <port index, CPI IPv6 address>
     tuple, then the VPN-PPI MUST be a <port index, PE IPv6 address>
     tuple for the same reason.

- If the CPI is an IPv6 address, then the VPN-PPI MUST be an IPv6 address as well since VPN-PPIs are created from the customer address space. If the CPI is a <port index, CPI IPv6 address> tuple, then the VPN-PPI MUST be a <port index, PE IPv6 address> tuple for the same reason.

   Note: for a given port on the PE, whether the VPN-PPI of that port is
   an IP address or a <port index, PE IP address> is independent of the
   format of the PPI of that port.

Note: for a given port on the PE, whether the VPN-PPI of that port is an IP address or a <port index, PE IP address> is independent of the format of the PPI of that port.

   This document assumes that assignment of the PPIs is controlled
   solely by the service provider (without any coordination with the
   L1VPN customers), while assignment of addresses used by the CPIs and
   VPN-PPIs is controlled solely by the administrators of L1VPN.  This
   provides maximum flexibility.  The L1VPN administrator is the entity
   that controls the L1VPN service specifics for the L1VPN customers.
   This function may be owned by the service provider but may also be
   performed by a third party who has agreements with the service
   provider.  And, of course, each L1VPN customer could assign such
   addresses on its own, without any coordination with other L1VPNs.

This document assumes that assignment of the PPIs is controlled solely by the service provider (without any coordination with the L1VPN customers), while assignment of addresses used by the CPIs and VPN-PPIs is controlled solely by the administrators of L1VPN. This provides maximum flexibility. The L1VPN administrator is the entity that controls the L1VPN service specifics for the L1VPN customers. This function may be owned by the service provider but may also be performed by a third party who has agreements with the service provider. And, of course, each L1VPN customer could assign such addresses on its own, without any coordination with other L1VPNs.

Fedyk, et al.               Standards Track                     [Page 9]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk, et al. Standards Track [Page 9] RFC 5251 L1VPN Basic Mode July 2008

   This document also requires IP connectivity between the CE and the PE
   as specified earlier, which is used for the control channel between
   CE and PE.  This connectivity could be either a single IP hop, which
   could be realized by either a dedicated link or by an L2 VPN, or an
   IP private network, such as an L3VPN.  The only requirement on this
   connectivity is an unambiguous way to correlate a particular CE-to-PE
   control channel with a particular L1VPN.  When such a channel is
   realized by a dedicated link, such a link should be associated with a
   particular L1VPN.  When such channel is realized by an L2VPN, a
   distinct L2VPN should be associated with an L1VPN.  When such channel
   is realized by an L3VPN, a distinct L3VPN should be associated with
   an L1VPN.

This document also requires IP connectivity between the CE and the PE as specified earlier, which is used for the control channel between CE and PE. This connectivity could be either a single IP hop, which could be realized by either a dedicated link or by an L2 VPN, or an IP private network, such as an L3VPN. The only requirement on this connectivity is an unambiguous way to correlate a particular CE-to-PE control channel with a particular L1VPN. When such a channel is realized by a dedicated link, such a link should be associated with a particular L1VPN. When such channel is realized by an L2VPN, a distinct L2VPN should be associated with an L1VPN. When such channel is realized by an L3VPN, a distinct L3VPN should be associated with an L1VPN.

   We'll refer to the CE's address of this channel as the CE Control
   Channel Address (CE-CC-Addr), and to the PE's address of this channel
   as the PE Control Channel Address (PE-CC-Addr).  Both CE-CC-Addr and
   PE-CC-Addr are REQUIRED to be unique within the L1VPN they belong to,
   but are not REQUIRED to be unique across multiple L1VPNs.  Control
   channel addresses are not shared amongst multiple VPNs.  Assignment
   of CE-CC-Addr and PE-CC-Addr is controlled by the administrators of
   the L1VPN.

We'll refer to the CE's address of this channel as the CE Control Channel Address (CE-CC-Addr), and to the PE's address of this channel as the PE Control Channel Address (PE-CC-Addr). Both CE-CC-Addr and PE-CC-Addr are REQUIRED to be unique within the L1VPN they belong to, but are not REQUIRED to be unique across multiple L1VPNs. Control channel addresses are not shared amongst multiple VPNs. Assignment of CE-CC-Addr and PE-CC-Addr is controlled by the administrators of the L1VPN.

   Multiple ports on a CE could share the same control channel only as
   long as all these ports belong to the same L1VPN.  Likewise, multiple
   ports on a PE could share the same control channel only as long as
   all these ports belong to the same L1VPN.

Multiple ports on a CE could share the same control channel only as long as all these ports belong to the same L1VPN. Likewise, multiple ports on a PE could share the same control channel only as long as all these ports belong to the same L1VPN.

4.  Port-Based L1VPN Basic Mode

4. Port-Based L1VPN Basic Mode

   An L1VPN is a port-based VPN service where a pair of CEs could be
   connected through the service provider network via a GMPLS-based LSP
   within a given VPN port topology.  It is precisely this LSP that
   forms the basic unit of the L1VPN service that the service provider
   network offers.  If a port by which a CE is connected to a PE
   consists of multiple channels (e.g., multiple wavelengths), the CE
   could establish LSPs to multiple other CEs in the same VPN over this
   single port.

An L1VPN is a port-based VPN service where a pair of CEs could be connected through the service provider network via a GMPLS-based LSP within a given VPN port topology. It is precisely this LSP that forms the basic unit of the L1VPN service that the service provider network offers. If a port by which a CE is connected to a PE consists of multiple channels (e.g., multiple wavelengths), the CE could establish LSPs to multiple other CEs in the same VPN over this single port.

   In the L1VPN, the service provider does not initiate the creation of
   an LSP between a pair of CE ports.  The LSP establishment is
   initiated by the CE.  However, the SP, by using the
   mechanisms/toolkit outlined in this document, restricts the set of
   other CE ports, which may be the remote endpoints of LSPs that have
   the given port as the local endpoint.  Subject to these restrictions,
   the CE-to-CE connectivity is under the control of the CEs themselves.
   In other words, the SP allows a L1VPN to have a certain set of

L1VPNでは、サービスプロバイダーは1組のCEポートの間のLSPの創造を開始しません。 LSP設立はCEによって開始されます。 しかしながら、本書では概説されたメカニズム/ツールキットを使用することによって、SPは他のCEポートのセットを制限します。(ポートは地方の終点として与えられたポートを持っているLSPsの遠く離れた終点であるかもしれません)。 これらの制限を条件として、CEからCEへの接続性がCEs自身のコントロールの下にあります。 言い換えれば、SPはL1VPNにaを確かに設定していた状態でさせます。

Fedyk, et al.               Standards Track                    [Page 10]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[10ページ]RFC5251L1VPN

   topologies (expressed as a port-to-port connectivity matrix).
   CE-initiated signaling is used to choose a particular topology from
   that set.

topologies(移植するポート接続性マトリクスとして、言い表されます)。 CEによって開始されたシグナリングは、そのセットから特定のトポロジーを選ぶのに使用されます。

   For each L1VPN that has at least one port on a given PE, the PE
   maintains a Port Information Table (PIT) associated with that L1VPN.
   This table contains a list of <CPI, PPI> tuples for all the ports
   within its L1VPN.  In addition, for local PE ports of a given L1VPN,
   the tuples also include the VPN-PPIs of these ports.

与えられたPEに少なくとも1つのポートを持っている各L1VPNに関しては、PEはPort情報Table(PIT)をそのL1VPNに関連しているのに維持します。 このテーブルはL1VPNの中に<CPIのリスト、すべてのポートへのPPI>tuplesを含んでいます。 また、さらに、与えられたL1VPNの地方のPEポートに関して、tuplesはこれらのポートのVPN-PPIsを含んでいます。

                  PE                        PE
               +---------+             +--------------+
   +--------+  | +------+|             | +----------+ | +--------+
   |  VPN-A |  | |VPN-A ||             | |  VPN-A   | | |  VPN-A |
   |   CE1  |--| |PIT   ||    Route    | |  PIT     | |-|   CE2  |
   +--------+  | |      ||<----------->| |          | | +--------+
               | +------+|Dissemination| +----------+ |
               |         |             |              |
   +--------+  | +------+|             | +----------+ | +--------+
   | VPN-B  |  | |VPN-B ||  --------   | |   VPN-B  | | |  VPN-B |
   |  CE1   |--| |PIT   ||-(  GMPLS  )-| |   PIT    | |-|   CE2  |
   +--------+  | |      || (Backbone ) | |          | | +--------+
               | +------+|  ---------  | +----------+ |
               |         |             |              |
   +--------+  | +-----+ |             | +----------+ | +--------+
   | VPN-C  |  | |VPN-C| |             | |   VPN-C  | | |  VPN-C |
   |  CE1   |--| |PIT  | |             | |   PIT    | |-|   CE2  |
   +--------+  | |     | |             | |          | | +--------+
               | +-----+ |             | +----------+ |
               +---------+             +--------------+

PE PE+---------+ +--------------+ +--------+ | +------+| | +----------+ | +--------+ | VPN-A| | |VPN-A|| | | VPN-A| | | VPN-A| | CE1|--| |穴|| ルート| | 穴| |-| CE2| +--------+ | | | | <、-、-、-、-、-、-、-、-、-、--、>|、|、|、| +--------+ | +------+|普及| +----------+ | | | | | +--------+ | +------+| | +----------+ | +--------+ | VPN-B| | |VPN-B|| -------- | | VPN-B| | | VPN-B| | CE1|--| |穴||-(GMPLS)-| | 穴| |-| CE2| +--------+ | | || (背骨) | | | | +--------+ | +------+| --------- | +----------+ | | | | | +--------+ | +-----+ | | +----------+ | +--------+ | VPN-C| | |VPN-C| | | | VPN-C| | | VPN-C| | CE1|--| |穴| | | | 穴| |-| CE2| +--------+ | | | | | | | | +--------+ | +-----+ | | +----------+ | +---------+ +--------------+

                  Figure 3: Basic Mode L1VPN Service

図3: 基本的なモードL1VPNサービス

4.1.  L1VPN Port Information Tables

4.1. L1VPNポート情報テーブル

   Figure 3 illustrates three VPNs, VPN-A, VPN-B, and VPN-C, with their
   associated PITs.  A PIT consists of local information as well as
   remote information.  It follows that a PIT on a given PE is populated
   from two information sources:

図3は彼らの関連PITsと共に3VPNs、VPN-A、VPN-B、およびVPN-Cを例証します。 PITはリモート情報と同様にローカルの情報から成ります。 与えられたPEの上のPITが2つの情報源から居住されるということになります:

      1.  The information related to the CEs' ports that are attached to
          the ports local to that PE.

1. 情報はそのPEへの地方のポートに取り付けられるCEsのポートに関連しました。

      2.  The information about the CEs connected to the remote PEs.

2. CEsの情報はリモートPEsに接続しました。

Fedyk, et al.               Standards Track                    [Page 11]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[11ページ]RFC5251L1VPN

   A PIT MAY be populated via provisioning or by auto-discovery
   procedures.  When provisioning is used, the entire table MAY be
   populated by provisioning commands either at a console or by a
   management system that may have some automation capability.  As the
   network grows, some form of automation is desirable.

PIT MAY、食糧を供給することを通して自動発見手順で、居住されてください。 食糧を供給するのが使用されているとき、コンソールにおいて、または、何らかのオートメーション能力を持っているかもしれないマネージメントシステムでコマンドに食糧を供給することによって、全体のテーブルは居住されるかもしれません。 ネットワークが成長するので、何らかのフォームのオートメーションは望ましいです。

   For local information between a CE and a PE, a PE MAY leverage LMP to
   populate the <CPI, VPN-PPI> link information.  This local information
   also needs to be propagated to other PEs that share the same VPN.
   The mechanisms for this are out of scope for this document, but the
   information needed to be exchanged is described in Section 4.1.1.

CEとPE、PE MAYの間のローカルの情報に関しては、LMPに投機して、<CPI(VPN-PPI>リンク情報)に居住してください。 また、このローカルの情報は、同じVPNを共有する他のPEsに伝播される必要があります。 このドキュメントのための範囲の外にこれのためのメカニズムがありますが、交換するのに必要である情報はセクション4.1.1で説明されます。

   The PIT is by nature VPN-specific.  A PE is REQUIRED to maintain a
   PIT for each L1VPN for which it has member CEs locally attached.  A
   PE does not need to maintain PITs for other L1VPNs.  However, the
   full set of PITs with all L1VPN entries for multiple VPNs MAY also be
   available to all PEs.

自然で、PITはVPN特有です。 PEはそれが局所的にメンバーCEsを持っているそれぞれの添付のL1VPNのためにPITを維持するREQUIREDです。 PEは他のL1VPNsのためにPITsを維持する必要はありません。 しかしながら、また、複数のVPNsのためのすべてのL1VPNエントリーによるPITsのフルセットもすべてのPEsに利用可能であるかもしれません。

   The remote information in the context of a VPN identifier (i.e., the
   remote CEs of this VPN) MAY also be sent to the local CE belonging to
   the same VPN.  Exchange of this information is outside the scope of
   this document.

また、VPN識別子(すなわち、このVPNのリモートCEs)の文脈のリモート情報を同じVPNに属す地方のCEに送るかもしれません。 このドキュメントの範囲の外にこの情報の交換があります。

4.1.1.  Local Auto-Discovery Information

4.1.1. ローカルの自動発見情報

   The information that needs to be discovered on a PE local port is the
   local CPI and the VPN-PPI.

PEの地方のポートの上で発見される必要がある情報は、ローカルのCPIとVPN-PPIです。

   This information MAY be configured; or, if LMP is used between the CE
   and PE, LMP MAY be used to exchange this information.

この情報は構成されるかもしれません。 または、LMPが使用されているならCEとPE、LMP MAYの間では、使用されて、この情報を交換してください。

   Once a CPI has been discovered, the corresponding VPN-PPI maps in a
   local context to a VPN identifier and a corresponding PPI.  One way
   to enforce a provider-controlled VPN context is to pre-provision
   VPN-PPIs with a VPN identifier.  Other policy mechanisms to achieve
   this are outside the scope of this document.  In this manner, a
   relationship of a CPI to a VPN and PPI port can be established when
   the port is provisioned as belonging to the VPN.

かつて、CPIを発見してあって、対応するVPN-PPIはVPN識別子と対応するPPIへのローカルの関係の地図です。 VPN識別子があるプレ支給VPN-PPIsにはプロバイダーで制御されたVPN文脈を実施する1つの方法があります。 このドキュメントの範囲の外にこれを達成する他の方針メカニズムがあります。 ポートがVPNに属すとして食糧を供給されるとき、この様に、VPNとPPIポートへのCPIの関係を確立できます。

4.1.2.  PE Remote Auto-Discovery Information

4.1.2. PEのリモート自動発見情報

   This section provides the information that is carried by any auto-
   discovery mechanism, and is used to dynamically populate a PIT.  The
   information provides a single <CPI, PPI> mapping.  Each auto-
   discovery mechanism will define the method(s) by which multiple <CPI,
   PPI> mappings are communicated, as well as invalidated.

このセクションはどんな自動発見メカニズムによっても運ばれて、ダイナミックにPITに居住するのに使用される情報を提供します。 情報はただ一つの<CPI、PPI>マッピングを提供します。 それぞれの自動発見メカニズムがどの複数の<CPIで方法を定義するだろうか、そして、PPI>マッピングは、伝えられて、無効にされます。

Fedyk, et al.               Standards Track                    [Page 12]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[12ページ]RFC5251L1VPN

   This information should be consistent regardless of the mechanism
   used to distribute the information [RFC5195], [RFC5252].

[RFC5252]、この情報は情報を分配するのに使用されるメカニズム[RFC5195]にかかわらず一貫しているべきです。

   The format of encoding a single <PPI, CPI> tuple is:

独身の<PPIをコード化する形式であり、CPI>tupleは以下の通りです。

        +---------------------------------------+
        |     PPI Length (1 octet)              |
        +---------------------------------------+
        |     PPI (variable)                    |
        +---------------------------------------+
        |     CPI AFI (2 octets)                |
        +---------------------------------------+
        |     CPI (length)                      |
        +---------------------------------------+
        |     CPI (variable)                    |
        +---------------------------------------+

+---------------------------------------+ | PPI Length(1つの八重奏)| +---------------------------------------+ | PPI(可変)| +---------------------------------------+ | CPI AFI(2つの八重奏)| +---------------------------------------+ | CPI(長さ)| +---------------------------------------+ | CPI(変数)| +---------------------------------------+

          Figure 4: Auto-Discovery Information

図4: 自動発見情報

   The use and meaning of these fields are as follows:

これらの分野の使用と意味は以下の通りです:

   PPI Length:

PPIの長さ:

      A one-octet field whose value indicates the length of the PPI
      field.

値がPPI分野の長さを示す1八重奏の分野。

   PPI:

PPI:

      A variable-length field that contains the value of the PPI (either
      an address or <port index, address> tuple).  Note, PPI is always
      encoded consistently within a provider domain so the format of the
      PPI field is implicit within a given provider network.

PPI(アドレスか<ポートインデックス、アドレス>tupleのどちらか)の値を含む可変長の分野。 注意、PPIがプロバイダードメインの中でいつも一貫してコード化されるので、PPI分野の形式は与えられたプロバイダーネットワークの中で暗に示されています。

   CPI AFI:

CPI AFI:

      A two-octet field whose value indicates the address family of the
      CPI.  This value is taken from [RFC1700].

値がCPIのアドレス家族を示す2八重奏の分野。 [RFC1700]からこの値を取ります。

   CPI Length:

CPIの長さ:

      A one-octet field whose value indicates the length of the CPI
      field.

値がCPI分野の長さを示す1八重奏の分野。

   CPI:

CPI:

      A variable-length field that contains the CPI value (either an
      address or <port index, address> tuple).

CPI値(アドレスか<ポートインデックス、アドレス>tupleのどちらか)を含む可変長の分野。

Fedyk, et al.               Standards Track                    [Page 13]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[13ページ]RFC5251L1VPN

   <PPI, CPI> tuples MUST also be associated with one or more globally
   unique identifiers associated with a particular VPN.  A globally
   unique identifier can encode a VPN-ID, a route target, or any other
   globally unique identifier.  The globally unique identifiers are
   under control of network providers.  Uniqueness within a service
   provider administrative domain is sufficient for Basic Mode
   operation.  In the case of multiple provider networks (which is
   beyond the scope of this document), the globally unique identifier
   need only be unique and consistent between the those providers.  In
   this document, we specify a generic encoding format for the globally
   unique identifier common to all the auto-discovery mechanisms.
   However, each auto-discovery mechanism will define the specific
   method(s) by which the encoding is distributed and the association
   with a <PPI, CPI> tuple is made.  The encoding of the globally unique
   identifier associated with the VPN is:

<PPI、また、CPI>tuplesも特定のVPNに関連している1つ以上のグローバルにユニークな識別子に関連しているに違いありません。 グローバルにユニークな識別子はVPN-ID、ルート目標、またはいかなる他のグローバルにユニークな識別子もコード化できます。 グローバルにユニークな識別子はネットワーク内の提供者で制御されています。 サービスプロバイダーの管理ドメインの中のユニークさはBasic Mode操作に十分です。 グローバルにユニークな識別子が間に複数のプロバイダーネットワークの場合(このドキュメントの範囲にある)では、ユニークであって、一貫しているだけでよい、それらのプロバイダー。 本書では、私たちはすべての自動発見メカニズムに共通のグローバルにユニークな識別子のための一般的なコード化形式を指定します。しかしながら、それぞれの自動発見メカニズムはコード化が分配されている特定の方法と<PPIとの協会を定義して、CPI>tupleは作られています。 VPNに関連しているグローバルにユニークな識別子のコード化は以下の通りです。

            +------------------------------------------------+
            |  L1VPN globally unique identifier  (8 octets)  |
            +------------------------------------------------+

+------------------------------------------------+ | L1VPN、グローバルにユニークな識別子(8つの八重奏)| +------------------------------------------------+

        Figure 5: Auto-Discovery Globally Unique Identifier Format

図5: 自動発見しているグローバルにユニークな識別子形式

4.2.  CE-to-CE LSP Establishment

4.2. CeからCeへのLSP設立

   In order to establish an LSP, a CE needs to identify all other CEs in
   the CE's L1VPN that it wants to connect to.  A CE may already have
   obtained this information through provisioning or through some other
   schemes (such schemes are outside the scope of this document).

LSPを設立するために、CEは、それが接続したがっているCEのL1VPNの他のすべてのCEsを特定する必要があります。 CEは食糧を供給することを通して、または、ある他の計画を通して既にこの情報を得たかもしれません(このドキュメントの範囲の外にそのような計画があります)。

   Ports associated with a given CE-to-PE link MAY also have other
   information, in addition to their CPI and PPI, associated with them
   that describes characteristics and constraints of the channels within
   these ports, such as encoding supported by the channels, bandwidth of
   a channel, total unreserved bandwidth within the port, etc.  This
   information could be further augmented with the information about
   certain capabilities of the service provider network (e.g., support
   regeneration section overhead (RSOH), Data Communications Channel
   (DCC) transparency, arbitrary concatenation, etc.).  This information
   is used to ensure that ports at each end of an LSP have compatible
   characteristics, and that there are sufficient unallocated resources
   to establish an LSP between these ports.

また、CEからPEへの与えられたリンクに関連しているポートには、他の情報があるかもしれなくて、それらに関連づけられたそれらのCPIとPPIに加えてそれはこれらのポートの中でチャンネルの特性と規制について説明します、チャンネル、チャンネルの帯域幅、ポートの中の総無遠慮な帯域幅などによって支持されたコード化などのように この情報はサービスプロバイダーネットワークのある能力の情報でさらに増大できました(例えば、再生セクションオーバーヘッド(RSOH)、Data Communications Channel(DCC)透明、任意の連結などを支持してください)。 この情報は、LSPの各端のポートにはコンパチブル特性があって、これらのポートの間には、LSPを証明できるくらいの「非-割り当て」られたリソースがあるのを保証するのに使用されます。

   It may happen that for a given pair of ports within an L1VPN, each of
   the CEs connected to these ports would concurrently try to establish
   an LSP to the other CE.  If having a pair of LSPs between a pair of
   ports is viewed as undesirable, the way to resolve this is to require

L1VPNの中のポートの与えられた組のために、これらのポートに接続されたそれぞれのCEsが同時にもう片方のCEにLSPを設立しようとするのは、起こるかもしれません。 持っているなら、1組のポートの間の1組のLSPsは同じくらい望ましくない状態で見られます、必要とするこれがものである決心への道

Fedyk, et al.               Standards Track                    [Page 14]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[14ページ]RFC5251L1VPN

   the CE with the lower value of the CPI to terminate the LSP
   originated by the CE.  This option could be controlled by
   configuration on the CE devices.

LSPを終えるCPIの下側の値があるCEはCEで由来しました。 CE装置での構成からこのオプションを制御できました。

4.3.  Signaling

4.3. シグナリング

   In L1VPN BM, a CE needs to be configured with the CPIs of other
   ports.  Once a CE is configured with the CPIs of the other ports
   within the same L1VPN, which we'll refer to as "target ports", the CE
   uses a subset of GMPLS signaling to request the provider network to
   establish an LSP to a target port.

L1VPN BMでは、CEは、他のポートのCPIによって構成される必要があります。 CEが私たちが「目標ポート」を呼ぶつもりであるのと同じL1VPNの中で他のポートのCPIによっていったん構成されると、CEは目標ポートにLSPを設立するようプロバイダーネットワークに要求すると合図するGMPLSの部分集合を使用します。

   For inter-CE connectivity, the CE originates a request that contains
   the CPI of one of its ports that it wants to use for the LSP, and the
   CPI of the target port.  When the PE attached to the CE that
   originated the request receives the request, the PE identifies the
   appropriate PIT, and then uses the information in that PIT to find
   out the PPI associated with the CPI of the target port carried in the
   request.  The PPI should be sufficient for the PE to establish an
   LSP.  Ultimately, the request reaches the CE associated with the
   target CPI (note that the request still carries the CPI of the CE
   that originated the request).  If the CE associated with the target
   CPI accepts the request, the LSP is established.

相互CEの接続性に関しては、CEはそれがLSPに使用したがっているポートの1つのCPI、および目標ポートのCPIを含む要求を溯源します。 要求を溯源したCEに取り付けられたPEが要求を受け取ると、PEは、要求で運ばれる目標ポートのCPIに関連しているPPIを見つけるのに適切なPITを特定して、そのPITの情報を使用します。 PEがLSPを証明するように、PPIは十分であるべきです。 結局、要求は目標CPIに関連しているCEに達します(要求がまだ要求を溯源したCEのCPIを運んでいることに注意してください)。 目標CPIに関連しているCEが要請を受け入れるなら、LSPは設立されます。

   Note that a CE needs not establish an LSP to every target port that
   the CE knows about, i.e., it is a local CE policy matter to select a
   subset of target ports to which that CE will try to establish LSPs.

CEの必要性がCEが知っているあらゆる目標ポートにLSPを設立するというわけではなくて、すなわち、そのCEがLSPsを設立しようとする目標ポートの部分集合を選択するのが、ローカルのCE方針問題であることに注意してください。

   The procedures for establishing an individual connection between two
   corresponding CEs is the same as the procedure specified for GMPLS
   overlay [RFC4208].

2対応するCEsの間の個々の接続を確立するのが手順がGMPLSに指定したのと同じであるので、手順は[RFC4208]をかぶせました。

4.3.1.  Signaling Procedures

4.3.1. シグナリング手順

   When an ingress CE sends an RSVP Path message to an ingress PE, the
   source IP address in the IP packet that carries the message is set to
   the appropriate CE-CC-Addr, and the destination IP address in the
   packet is set to the appropriate PE-CC-Addr.  When the ingress PE
   sends back to the ingress CE the corresponding Resv message, the
   source IP address in the IP packet that carries the message is set to
   the PE-CC-Addr, and the destination IP address is set to the CE-CC-
   Addr.

イングレスであるときに、CEはRSVP PathメッセージをイングレスPEに送ります、そして、メッセージを伝えるIPパケットのソースIPアドレスは適切なCE CC Addrに設定されます、そして、パケットの送付先IPアドレスは適切なPE CC Addrに設定されます。 イングレスPEが対応するResvメッセージをイングレスCEに送り返すとき、メッセージを伝えるIPパケットのソースIPアドレスはPEがAddrをCCしているのに設定されます、そして、送付先IPアドレスはCE CC-Addrに設定されます。

   Likewise, when an egress PE sends an RSVP Path message to an egress
   CE, the source IP address in the IP packet that carries the message
   is set to the appropriate PE-CC-Addr, and the destination IP address
   in the packet is set to the appropriate CE-CC-Addr.  When the egress
   CE sends back to the egress PE the corresponding Resv message, the

出口であるときに、同様に、PEはRSVP Pathメッセージを出口CEに送ります、そして、メッセージを伝えるIPパケットのソースIPアドレスは適切なPE CC Addrに設定されます、そして、パケットの送付先IPアドレスは適切なCE CC Addrに設定されます。 出口CEが発信するときには、対応するResvメッセージを出口PEに支持してください。

Fedyk, et al.               Standards Track                    [Page 15]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[15ページ]RFC5251L1VPN

   source IP address in the IP packet that carries the message is set to
   the CE-CC-Addr, and the destination IP address is set to the PE-CC-
   Addr.

メッセージを伝えるIPパケットのソースIPアドレスはCEがAddrをCCしているのに設定されます、そして、送付先IPアドレスはPE CC-Addrに設定されます。

   In addition to being used for IP addresses in the IP packet that
   carries RSVP messages between CE and PE, CE-CC-Addr and PE-CC-Addr
   are also used in the Next/Previous Hop Address field of the IF_ID
   RSVP_Hop Object that is carried between CEs and PEs.

それがまた、間にCE、PE、CE CC Addr、およびPE CC AddrがNext/前のHop Address分野で使用されるというRSVPメッセージを伝えるIPパケットのIPアドレスに使用されることに加えて、_ID RSVP_Hop Objectであるなら、それはCEsとPEsの間まで運ばれます。

   In the case where a link between CE and PE is a numbered non-bundled
   link, the CPI and VPN-PPI of that link are used for the Type 1 or 2
   TLVs of the IF_ID RSVP_Hop Object that is carried between the CE and
   PE.  In the case where a link between CE and PE is an unnumbered non-
   bundled link, the CPI and VPN-PPI of that link are used for the IP
   Address field of the Type 3 TLV.  In the case where a link between CE
   and PE is a bundled link, the CPI and VPN-PPI of that link are used
   for the IP Address field of the Type 3 TLVs.

CEとPEとのリンクが番号付の非束ねられたリンクである場合に、そのリンクのCPIとVPN-PPIがType1か2TLVsに使用される、_ID RSVP_Hop Objectであるなら、それはCEとPEの間まで運ばれます。 CEとPEとのリンクが無数の非束ねられたリンクである場合では、そのリンクのCPIとVPN-PPIはType3TLVのIP Address分野に使用されます。 CEとPEとのリンクが束ねられたリンクである場合では、そのリンクのCPIとVPN-PPIはType3TLVsのIP Address分野に使用されます。

   Additional processing related to unnumbered links is described in
   Sections 3 ("Processing the IF_ID RSVP_HOP object") and 4.1
   ("Unnumbered Forwarding Adjacencies") of RFC 3477 [RFC3477].

無数のリンクに関連する追加処理がセクション3で説明される、(「処理、_ID RSVP_HOPが反対する、」、)、そして、4.1RFC3477(「無数の推進隣接番組」)[RFC3477]。

   When an ingress CE originates a Path message to establish an LSP from
   a particular port on that CE to a particular target port, the CE uses
   the CPI of its port in the Sender Template object.  If the CPI of the
   target port is an IP address, then the CE uses it in the Session
   object.  And if the CPI of the target port is a <port index, IP
   address> tuple, then the CE uses the IP address part of the tuple in
   the Session object, and the whole tuple as the Unnumbered Interface
   ID subobject in the Explicit Route Object (ERO).

イングレスであるときに、CEはそのCEの上の指定港から特定の目標ポートまでLSPを確立するPathメッセージを溯源して、CEはSender Template物のポートのCPIを使用します。 目標ポートのCPIがIPアドレスであるなら、CEはSession物でそれを使用します。 そして、目標ポートのCPIが<ポートインデックス、IPアドレス>tupleであるなら、CEはUnnumbered Interface ID「副-物」としてExplicit Route Object(ERO)でSession物、および全体のtupleでtupleのIPアドレス部を使用します。

   There are two options for RSVP-TE sessions.  One option is to have a
   single RSVP-TE session end to end where the addresses of the customer
   and the provider are swapped at the PE; this is termed shuffling.
   The other option is when stitching or hierarchy is used to create two
   LSP sessions, one between the provider PE(s) and another end-to-end
   session between the CEs.

2つのオプションがRSVP-TEセッションの間、あります。 1つのオプションは顧客とプロバイダーのアドレスがPEで交換されるところで終わらせるただ一つのRSVP-TEセッション端を持つことです。 これはシャッフルと呼ばれます。 別の選択肢はステッチか階層構造がプロバイダーPE(s)とCEsの間の終わりから終わりへの別のセッションの間で2つのLSPセッション、1を作成するのに使用される時です。

4.3.1.1.  Shuffling Sessions

4.3.1.1. シャッフルセッション

   Shuffling sessions are used when the desire is to have a single LSP
   originating at the CE and terminating at the far end CE.  The
   customer addresses are shuffled to provider addresses at the ingress
   PE, and back to customer addresses at the egress PE by using the
   mapping provided by the PIT.

願望が独身のLSPがCEで由来して、遠端CEで終わるのを持つことであるときに、シャッフルセッションは使用されています。 顧客の住所はイングレスPEにプロバイダーアドレスにシャッフルされます、出口PEのPITによって提供されたマッピングを使用するのによる顧客の住所に行き帰り。

Fedyk, et al.               Standards Track                    [Page 16]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[16ページ]RFC5251L1VPN

   When the Path message arrives at the ingress PE, the PE selects the
   PIT associated with the L1VPN, and then uses this PIT to map CPIs
   carried in the Session and the Sender Template objects to the
   appropriate PPIs.  Once the mapping is done, the ingress PE replaces
   CPIs with these PPIs.  As a result, the Session and the Sender
   Template objects that are carried in the GMPLS signaling within the
   service provider network carry PPIs, and not CPIs.

PathメッセージがイングレスPEに到着すると、PEは、L1VPNに関連しているPITを選択して、SessionとSender Template物で適切なPPIsまで運ばれたCPIを写像するのにこのPITを使用します。 マッピングがいったん完了していると、イングレスPEはCPIをこれらのPPIsに取り替えます。 その結果、サービスプロバイダーネットワークの中でGMPLSシグナリングで運ばれるSessionとSender Template物はCPIではなく、PPIsを運びます。

   At the egress PE, the reverse mapping operation is performed.  The PE
   extracts the ingress/egress PPI values carried in the Sender Template
   and Session objects (respectively).  The egress PE identifies the
   appropriate PIT to find the appropriate CPI associated with the PPI
   of the egress CE.  Once the mapping is retrieved, the egress PE
   replaces the ingress/egress PPI values with the corresponding CPI
   values.  As a result, the Session and the Sender Template objects
   (included in the GMPLS RSVP-TE Path message sent from the egress PE
   to the egress CE) carry CPIs, and not PPIs.

出口PEでは、操作を写像する逆は実行されます。 PEはSender TemplateとSession物(それぞれ)で運ばれたイングレス/出口PPI値を抽出します。 出口PEは、適切なCPIが出口CEのPPIに関連しているのがわかるために適切なPITを特定します。 マッピングがいったん検索されると、出口PEはイングレス/出口PPI値を対応するCPI値に取り替えます。 その結果、SessionとSender Template物(出口PEから出口CEに送られたGMPLS RSVP-TE Pathメッセージでは、含まれている)はPPIsではなく、CPIを運びます。

   Here also, for the GMPLS RSVP-TE Path messages sent from the egress
   PE to CE, the source IP address (of the IP packet carrying this
   message) is set to the appropriate PE-CC-Addr, and the destination IP
   address (of the IP packet carrying this message) is set to the
   appropriate CE-CC-Addr.

また、ここに、出口PEからCEに送られたGMPLS RSVP-TE Pathメッセージにおいて、ソースIPアドレス(このメッセージを伝えるIPパケットの)は適切なPE CC Addrに設定されます、そして、送付先IPアドレス(このメッセージを伝えるIPパケットの)は適切なCE CC Addrに設定されます。

   At this point, the CE's view is a single LSP that is point-to-point
   between the two CEs with a virtual link between the PE nodes:
   CE-PE(-)PE-CE.  The L1VPN PE nodes have a view of the PE-to-PE LSP
   segment in all its detail.  The PEs MAY filter the RSVP-TE signaling,
   i.e., remove information about the provider topology and replace it
   with a view of a virtual link.

ここに、CEの視点はPEノードの間には、仮想のリンクがある状態で2CEsの間で二地点間である独身のLSPです: Ce PE(-)PE Ce。 L1VPN PEノードには、PEからPE LSPへのセグメントの視点がすべての詳細にあります。 PEsはRSVP-TEシグナリングをフィルターにかけるかもしれません、そして、すなわち、プロバイダートポロジーの情報を取り除いてください、そして、それを仮想のリンクの視点に取り替えてください。

   This translation of addresses and session IDs is termed shuffling and
   is driven by the L1VPN Port Information Tables (see Section 4).  This
   MUST be performed for all RSVP-TE messages at the PE edges.  In this
   case, there is one CE-to-CE session.

アドレスとセッションIDに関するこの翻訳は、シャッフルと呼ばれて、L1VPN Port情報Tablesによって追い立てられます(セクション4を見てください)。 PE縁のすべてのRSVP-TEメッセージのためにこれを実行しなければなりません。 この場合、1つのCEからCEへのセッションがあります。

4.3.1.2.  Stitched or Nested Sessions

4.3.1.2. ステッチされたか入れ子にされたセッション

   Stitching or Nesting options are dependent on the LSP switching
   types.  If the CE-to-CE and PE-to-PE LSPs are identical in switching
   type and capacity, the LSP MAY be stitched together and the
   procedures in [RFC5150] apply.  If the CE-to-CE LSPs and the PE-to-PE
   LSPs are of not the same switching type, or are of different but
   compatible capacity, the LSPs MAY be Nested and the procedures for
   [RFC4206] apply.  As both Stitched and Nested LSP signaling
   procedures involve a PE-to-PE session establishment compatible with
   CE session parameters, they are described together.

ステッチかNestingオプションがLSP切り換えタイプに依存しています。 CEへのCEとPE LSPsへのPEが同じであるなら、タイプと容量、LSP MAYを切り換える際に、一緒にステッチされてください。そうすれば、[RFC5150]の手順は適用されます。 CE LSPsへのCEとPE LSPsへのPEがどんな同じ切り換えタイプにはもないか、または異なりましたが、コンパチブル容量のものであるなら、LSPsはNestedであるかもしれません、そして、[RFC4206]のための手順は適用されます。 手順に合図するStitchedとNested LSPの両方がPEからPEへのセッションCEセッションパラメタとのコンパチブル設立にかかわるとき、それらは一緒に説明されます。

Fedyk, et al.               Standards Track                    [Page 17]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[17ページ]RFC5251L1VPN

   When the Path Message arrives at the ingress PE, the PE selects the
   PIT associated with the L1VPN, and then uses this PIT to map CPIs
   carried in the Session and the Sender Template objects to the
   appropriate PPIs.  Once the mapping is done, a new PE-to-PE session
   is established with the parameters compatible with the CE session.
   Upon successful establishment of the PE-to-PE session, the CE
   signaling request is sent to the egress PE.

Path MessageがイングレスPEに到着すると、PEは、L1VPNに関連しているPITを選択して、SessionとSender Template物で適切なPPIsまで運ばれたCPIを写像するのにこのPITを使用します。 マッピングがいったん完了していると、パラメタは互換性があった状態で、PEからPEへの新しいセッションがCEセッションで確立されます。 PEからPEへのセッションのうまくいっている設立のときに、シグナリングが要求するCEを出口PEに送ります。

   At the ingress PE, when stitching and nesting are used, a PE-to-PE
   session is established.  This could be achieved by several means:

ステッチと巣篭もりが使用されているとき、イングレスPEでは、PEからPEへのセッションは確立されます。 いくつかの手段でこれを達成できるでしょう:

      - Associating an already established PE-to-PE LSP or Forwarding
        Adjacency LSP (FA-LSP) to the destination that meets the
        requested parameters.

- PE LSPへの既に確立したPEか要求されたパラメタを満たす目的地へのForwarding Adjacency LSP(FA-LSP)を関連づけます。

      - Establishing a compliant PE-to-PE LSP segment.

- PEからPE LSPへの対応するセグメントを確立します。

   At this point, the CE's view is a single LSP that is point-to-point
   between the two CEs with a virtual node between the PE nodes:
   CE-PE(-)PE-CE.  The L1VPN PE nodes have a view of the PE-to-PE LSP
   segment in all its detail.  The PEs do not have to filter the RSVP-TE
   signaling by removing information about the provider topology because
   the PE-to-PE signaling is not visible to the CE nodes.

ここに、CEの視点はPEノードの間には、仮想ノードがある状態で2CEsの間で二地点間である独身のLSPです: Ce PE(-)PE Ce。 L1VPN PEノードには、PEからPE LSPへのセグメントの視点がすべての詳細にあります。 PEsは、PEからPEへのシグナリングがCEノードに目に見えないのでプロバイダートポロジーの情報を取り除くことによって、RSVP-TEシグナリングをフィルターにかける必要はありません。

4.3.1.3 Other Signaling

4.3.1.3 他のシグナリング

   An ingress PE may receive and potentially reject a Path message that
   contains an Explicit Route Object and so cause the switched
   connection setup to fail.  However, the ingress PE may accept EROs,
   which include a sequence of {<ingress PE (strict), egress CE CPI
   (loose)>}.

イングレスPEは、受信して、潜在的にExplicit Route Objectを含むPathメッセージを拒絶するので、切り換えられた接続設定に失敗されるかもしれません。 しかしながら、イングレスPEはEROsを受け入れるかもしれません。(EROsは<イングレスPE(厳しい)、出口のCE CPIの(ゆるい)の>の系列を含んでいます)。

   - Path message without ERO: when an ingress PE receives a Path
     message from an ingress CE that contains no ERO, it MUST calculate
     a route to the destination for the PE-to-PE LSP and include that
     route in an ERO, before forwarding the Path message.  One exception
     would be if the egress core node were also adjacent to this core
     node.

- EROのない経路メッセージ: イングレスであるときに、PEがEROを全く含まないイングレスCEからPathメッセージを受け取って、PEからPE LSPのために目的地にルートを計算して、EROでそのルートを含めなければなりません、Pathメッセージを転送する前に。 出口コアノードがこのコアノードに隣接してもいるなら、1つの例外がそうでしょうに。

   - Path message with ERO: when an ingress PE receives a Path message
     from an ingress CE that contains an ERO (of the form detailed
     above), the former computes a path to reach the egress PE.  It then
     inserts this path as part of the ERO before forwarding the Path
     message.

- EROがある経路メッセージ: イングレスであるときに、PEはERO(上で詳細なフォームの)を含むイングレスCEからPathメッセージを受け取って、前者は、出口PEに達するように経路を計算します。 そして、Pathメッセージを転送する前に、それはEROの一部としてこの経路を挿入します。

   In the case of shuffling, the overlay rules for notification and RRO
   processing are identical to the User-Network Intercase (UNI) or
   Overlay Model [RFC4208], which state that Edge PE MAY remove/edit

シャッフルの場合では、通知とRRO処理のためのオーバレイ規則はUser-ネットワークIntercase(UNI)かOverlay Model[RFC4208]と同じです。そのEdge PEはその状態を取り除くか、または編集するかもしれません。

Fedyk, et al.               Standards Track                    [Page 18]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[18ページ]RFC5251L1VPN

   Provider Notification and RRO objects when passing the messages to
   the CEs.

メッセージをCEsに通過するとき、プロバイダーのNotificationとRROは反対します。

4.4.  Recovery Procedures

4.4. リカバリ手順

   Signaling:

シグナリング:

   A CE requests a network-protected LSP (i.e., an LSP that is protected
   from PE-to-PE) by using the technique described in [RFC4873].
   Dynamic identification of merge nodes is supported via the LSP
   Segment Recovery Flags carried in the Protection object (see Section
   6.2 of [RFC4873]).

CEは、[RFC4873]で説明されたテクニックを使用することによって、ネットワークによって保護されたLSP(すなわち、PEからPEから保護されるLSP)を要求します。 マージノードのダイナミックな識別はProtection物で運ばれたLSP Segment Recovery Flagsを通して支持されます([RFC4873]のセクション6.2を見てください)。

   Notification:

通知:

   A Notify Request object MAY be inserted in Path or Resv messages to
   indicate the address of a CE that should be notified of an LSP
   failure.  Notifications MAY be requested in both the upstream and
   downstream directions:

Notify Request物はPathかLSPの故障について通知されるべきであるCEのアドレスを示すResvメッセージに挿入されるかもしれません。 通知は両方の上流の、そして、川下の方向に要求されているかもしれません:

      - Upstream notification is indicated via the inclusion of a Notify
        Request object in the corresponding Path message.

- 上流の通知は対応するPathメッセージでのNotify Request物の包含で示されます。

      - Downstream notification is indicated via the inclusion of a
        Notify Request object in the corresponding Resv message.

- 川下の通知は対応するResvメッセージでのNotify Request物の包含で示されます。

   A PE receiving a message containing a Notify Request object SHOULD
   store the Notify Node Address in the corresponding RSVP state block.
   The PE SHOULD also include a Notify Request object in the outgoing
   Path or Resv message.  The outgoing Notify Node Address MAY be
   updated based on local policy.  This means that a PE, upon receipt of
   this object from the CE, MAY update the value of the Notify Node
   Address.

対応するRSVP状態のNotify Node Addressが妨げるNotify Request物のSHOULD店を含むメッセージを受け取るPE。 また、PE SHOULDは出発しているPathかResvメッセージにNotify Request物を含んでいます。 ローカルの方針に基づいて出発しているNotify Node Addressをアップデートするかもしれません。 これは、PEがCEからのこの物を受け取り次第Notify Node Addressの値をアップデートするかもしれないことを意味します。

   If the ingress CE includes a Notify Request object into the Path
   message, the ingress PE MAY replace the received 'Notify Node
   Address' by its own selected 'Notify Node Address', and in particular
   the local TE Router_ID.  The Notify Request object MAY be carried in
   Path or Resv messages (Section 7 of [RFC3473]).  The format of the
   Notify Request object is defined in [RFC3473].  Per Section 4.2.1 of
   [RFC3473], Notify Node Addresses SHALL be set to either IPv4 or IPv6.

イングレスCEがPathメッセージにNotify Request物を含めるなら、イングレスPE MAYは'Node Addressに通知してください'、おいて容認されるおよび特に地方のTE Router_IDを取り替えます。 Notify Request物はPathかResvメッセージ([RFC3473]のセクション7)で運ばれるかもしれません。 Notify Request物の書式は[RFC3473]で定義されます。 .1セクション4.2[RFC3473]、Notify Node Addresses SHALL、IPv4かIPv6のどちらかに設定されてください。

   Inclusion of a Notify Request object is used to request the
   generation of notifications upon failure occurrence but does not
   guarantee that a Notify message will be generated.

Notify Request物の包含は、失敗発生の通知の世代を要求するのに使用されますが、Notifyメッセージが発生するのを保証しません。

Fedyk, et al.               Standards Track                    [Page 19]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[19ページ]RFC5251L1VPN

5.  Security Considerations

5. セキュリティ問題

   Security for L1VPNs is covered in [RFC4847] and [RFC5253].  In this
   document, we discuss the security aspects with respect to the control
   plane.

L1VPNsのためのセキュリティは[RFC4847]と[RFC5253]でカバーされています。 本書では、私たちは制御飛行機に関してセキュリティ局面について議論します。

   The association of a particular port with a particular L1VPN (or to
   be more precise, with a particular PIT) is a configuration operation,
   generally done manually by the service provider as part of the
   service provisioning process.  Thus, it cannot be altered via
   signaling between CE and PE.  This means that the signaling cannot be
   used to deliver L1VPN traffic to the wrong customer.  The operator
   should apply appropriate security mechanisms to the management and
   configuration process, and should consider data plane verification
   techniques to protect against accidental misconfiguration.  The
   customer may also apply end-to-end (i.e., CE-to-CE) data plane
   connectivity tests over the L1VPN connection to detect misconnection.
   Data plane connectivity testing can be performed using the Link
   Management Protocol (LMP) [RFC4204].

特定のL1VPNがある指定港の協会は一般に、過程に食糧を供給するサービスの一部としてサービスプロバイダーによって手動で行われた構成操作(特定のPITと共に、より正確になるように)です。 したがって、CEとPEの間で合図することを通してそれを変更できません。 これは、間違った顧客への交通をL1VPNに渡すのにシグナリングを使用できないことを意味します。 オペレータは、適切なセキュリティー対策を管理とコンフィギュレーションプロセスに適用するべきであり、データ飛行機検証のテクニックが偶然のmisconfigurationから守ると考えるべきです。 また、顧客は、付け違いを検出するためにL1VPN接続の上の終わりから終わり(すなわち、CEからCE)へのデータ飛行機接続性テストを適用するかもしれません。 Link Managementプロトコル(LMP)[RFC4204]を使用することでデータ飛行機接続性テストを実行できます。

   Note that it is also possible to populate the local part of a PIT
   using auto-discovery through LMP.  LMP may be secured as described in
   [RFC4204].  Signaling between CE and PE is assumed to be over a
   private link (for example, in-band or in-fiber) or a private network.
   Use of a private link makes the CE-to-PE connection secure at the
   same level as the data link described in the previous paragraphs.
   The use of a private network assumes that entities outside the
   network cannot spoof or modify control plane communications between
   CE and PE.  Furthermore, all entities in the private network are
   assumed to be trusted.  Thus, no security mechanisms are required by
   the protocol exchanges described in this document.

また、LMPを通した自動発見を使用するPITの地方の部分に居住するのも可能であることに注意してください。 LMPは[RFC4204]で説明されるように固定されるかもしれません。 個人的なリンク(例えばバンドかファイバーで)か私設のネットワークの上にCEとPEの間で合図するのがあると思われます。 個人的なリンクの使用で、データ・リンクが前のパラグラフで説明したようにCEからPEとの同じくらいで安全な接続は平らになります。 私設のネットワークの使用は、ネットワークの外における実体がCEとPEとのコントロール飛行機コミュニケーションをだますことができませんし、変更できないと仮定します。 その上、私設のネットワークにおけるすべての実体が信じられると思われます。 したがって、セキュリティー対策は全く本書では説明されたプロトコル交換によって必要とされません。

   However, an operator that is concerned about the security of their
   private control plane network may use the authentication and
   integrity functions available in RSVP-TE [RFC3473] or utilize IPsec
   ([RFC4301], [RFC4302], [RFC4835], [RFC4306], and [RFC2411]) for the
   point-to-point signaling between PE and CE.  See [MPLS-SEC] for a
   full discussion of the security options available for the GMPLS
   control plane.

しかしながら、それらの私設の規制飛行機ネットワークのセキュリティに関して心配しているオペレータは、PEとCEの間で合図するポイントツーポイントに、RSVP-TE[RFC3473]で利用可能な認証と保全機能を使用するか、またはIPsec([RFC4301]、[RFC4302]、[RFC4835]、[RFC4306]、および[RFC2411])を利用するかもしれません。 GMPLS制御飛行機に利用可能なセキュリティオプションの十分な議論に関して[MPLS-SEC]を見てください。

   Note further that a private network (e.g., Layer 2 VPN or Layer 3
   VPN) might be used to provide control plane connectivity between a PE
   and more than one CE.  In this scenario, it is RECOMMENDED that each
   L1 VPN customer have its own such private network.  Then, the
   security mechanisms provided by the private network SHOULD be used to
   ensure security of the control plane communication between a customer
   and a service provider.

私設のネットワーク(例えば、Layer2VPNかLayer3VPN)がPEと1CEの間にコントロール飛行機の接続性を供給するのに使用されるかもしれないことにさらに注意してください。 このシナリオでは、それぞれのL1 VPN顧客にはそれ自身のそのようなもの私設のネットワークがあるのは、RECOMMENDEDです。 そして、コントロールのセキュリティを確実にするのに個人的なネットワークSHOULDによって使用されるなら、セキュリティー対策は顧客とサービスプロバイダーとのコミュニケーションを平らにします。

Fedyk, et al.               Standards Track                    [Page 20]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[20ページ]RFC5251L1VPN

6.  References

6. 参照

6.1.  Normative References

6.1. 引用規格

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Functional Description", RFC
              3471, January 2003.

[RFC3471] エドバーガー、L.、RFC3471、「一般化されたマルチプロトコルラベルスイッチング(GMPLS)は機能的な記述を示す」1月2003日

   [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Resource ReserVation
              Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC
              3473, January 2003.

[RFC3473] エドバーガー、L.、RFC3473、「一般化されたマルチプロトコルラベルスイッチング(GMPLS)は資源予約プロトコル交通工学(RSVP-Te)拡大を示す」1月2003日

   [RFC3477]  Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
              in Resource ReSerVation Protocol - Traffic Engineering
              (RSVP-TE)", RFC 3477, January 2003.

[RFC3477] Kompella、K.、およびY.Rekhter、「資源予約に基づく合図の無数のリンクは議定書を作ります--交通工学(RSVP-Te)」、RFC3477、2003年1月。

   [RFC4202]  Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
              Extensions in Support of Generalized Multi-Protocol Label
              Switching (GMPLS)", RFC 4202, October 2005.

[RFC4202]Kompella、K.(エド)、およびY.Rekhter(エド)、「一般化されたマルチプロトコルを支持したルート設定拡大は切り換え(GMPLS)をラベルします」、RFC4202、2005年10月。

   [RFC4204]  Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204,
              October 2005.

[RFC4204] ラング、J.、エド、「リンク管理プロトコル(LMP)」、RFC4204、10月2005日

   [RFC4206]  Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
              Hierarchy with Generalized Multi-Protocol Label Switching
              (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005.

[RFC4206]Kompella(K.とY.Rekhter)は「一般化されたマルチプロトコルラベルスイッチング(GMPLS)交通工学(Te)で切り換えられた経路(LSP)を階層構造とラベルします」、RFC4206、2005年10月。

   [RFC4208]  Swallow, G., Drake, J., Ishimatsu, H., and Y. Rekhter,
              "Generalized Multiprotocol Label Switching (GMPLS) User-
              Network Interface (UNI): Resource ReserVation Protocol-
              Traffic Engineering (RSVP-TE) Support for the Overlay
              Model", RFC 4208, October 2005.

[RFC4208] ツバメ、G.、ドレイク、J.、Ishimatsu、H.、およびY.Rekhter、「一般化されたMultiprotocolはユーザネットワーク・インターフェース(UNI)と切り換え(GMPLS)をラベルします」。 「オーバレイモデルの資源予約プロトコル交通工学(RSVP-Te)サポート」、RFC4208、2005年10月。

   [RFC4873]  Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
              "GMPLS Segment Recovery", RFC 4873, May 2007.

[RFC4873] バーガー、L.、Bryskin、I.、Papadimitriou、D.、およびA.ファレル、「GMPLSセグメント回復」、RFC4873は2007がそうするかもしれません。

   [RFC5150]  Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
              "Label Switched Path Stitching with Generalized
              Multiprotocol Label Switching Traffic Engineering (GMPLS
              TE)", RFC 5150, February 2008.

[RFC5150]Ayyangar(A.、Kompella、K.、Vasseur(JP)、およびA.ファレル)は「一般化されたMultiprotocolラベル切り換え交通工学(GMPLS Te)でステッチされる切り換えられた経路をラベルします」、RFC5150、2008年2月。

Fedyk, et al.               Standards Track                    [Page 21]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[21ページ]RFC5251L1VPN

6.2.  Informative References

6.2. 有益な参照

   [RFC1700]  Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700,
              October 1994.

[RFC1700] レイノルズとJ.とJ.ポステル、「規定番号」、RFC1700、1994年10月。

   [RFC3945]  Mannie, E., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945] エドマニー、E.、RFC3945、「一般化されたマルチプロトコルラベルは(GMPLS)構造を切り換えること」での10月2004日

   [RFC4201]  Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
              in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

[RFC4201]Kompella、K.、Rekhter、Y.、およびL.バーガー、「MPLS交通工学(Te)におけるリンクバンドリング」、RFC4201、2005年10月。

   [RFC4847]  Takeda, T., Ed., "Framework and Requirements for Layer 1
              Virtual Private Networks", RFC 4847, April 2007.

[RFC4847] 竹田、T.、エド、「仮想の兵士がネットワークでつなぐ層1のための枠組みと要件」、RFC4847、4月2007日

   [RFC2411]  Thayer, R., Doraswamy, N., and R. Glenn, "IP Security
              Document Roadmap", RFC 2411, November 1998.

[RFC2411] セイヤーとR.とDoraswamy、N.とR.グレン、「IPセキュリティドキュメント道路地図」、RFC2411、1998年11月。

   [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, December 2005.

[RFC4301] ケントとS.とK.Seo、「インターネットプロトコルのためのセキュリティー体系」、RFC4301、2005年12月。

   [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302, December
              2005.

[RFC4302] ケント、S.、「IP認証ヘッダー」、RFC4302、2005年12月。

   [RFC4306]  Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
              Protocol", RFC 4306, December 2005.

[RFC4306] コーフマン、C.、エド、「インターネット・キー・エクスチェンジ(IKEv2)プロトコル」、RFC4306、12月2005日

   [RFC4835]  Manral, V., "Cryptographic Algorithm Implementation
              Requirements for Encapsulating Security Payload (ESP) and
              Authentication Header (AH)", RFC 4835, April 2007.

[RFC4835]Manral、V.、「セキュリティ有効搭載量(超能力)と認証ヘッダー(ああ)をカプセルに入れるための暗号アルゴリズム実現要件」、RFC4835、2007年4月。

   [RFC5195]  Ould-Brahim, H., Fedyk, D., and Y. Rekhter, "BGP-Based
              Auto-Discovery for Layer-1 VPNs", RFC 5195, June 2008.

[RFC5195]オールド-Brahim、H.、Fedyk、D.、およびY.Rekhter、「層-1VPNsのためのBGPベースの自動発見」、RFC5195、2008年6月。

   [RFC5252]  Bryskin, I. and L. Berger, "OSPF-Based Layer 1 VPN Auto-
              Discovery", RFC 5252, July 2008.

[RFC5252] BryskinとI.とL.バーガー、「OSPFベースの層1のVPN自動発見」、RFC5252、2008年7月。

   [RFC5253]  Takeda, T., Ed., "Applicability Statement for Layer 1
              Virtual Private Network (L1VPN) Basic Mode", RFC 5253,
              July 2008.

[RFC5253] 竹田、T.、エド、「層1の仮想私設網(L1VPN)の基本のモードのための適用性証明」、RFC5253、7月2008日

   [MPLS-SEC] Fang, L., Ed., " Security Framework for MPLS and GMPLS
              Networks", Work in Progress, February 2008.

[MPLS-SEC] 牙、L.、エド、2月2008、「MPLSのためのセキュリティフレームワークとGMPLSネットワーク」は進行中で働いています。

Fedyk, et al.               Standards Track                    [Page 22]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[22ページ]RFC5251L1VPN

7.  Acknowledgments

7. 承認

   The authors would like to thank Adrian Farrel, Hamid Ould-Brahim, and
   Tomonori Takeda for their valuable comments.

作者は彼らの貴重なコメントについてエードリアン・ファレル、ハミドオールド-Brahim、およびTomonori竹田に感謝したがっています。

   Sandy Murphy, Charlie Kaufman, Pasi Eronen, Russ Housley, Tim Polk,
   and Ron Bonica provided input during the IESG review process.

砂地のマーフィー、チャーリー・カウフマン、パシEronen、ラスHousley、ティム・ポーク、およびロンBonicaはIESG吟味の過程の間、入力を提供しました。

Authors' Addresses

作者のアドレス

   Don Fedyk
   Nortel Networks
   600 Technology Park
   Billerica, MA 01821
   Phone: +1 (978) 288 3041
   EMail: dwfedyk@nortel.com

Parkビルリカ、Technology MA 01821が電話をするFedykノーテルネットワーク600を身につけてください: +1(978) 288 3041はメールされます: dwfedyk@nortel.com

   Yakov Rekhter
   Juniper Networks
   1194 N. Mathilda Avenue
   Sunnyvale, CA 94089
   EMail: yakov@juniper.net

Avenueサニーベル、カリフォルニア 94089がメールするヤコフRekhter杜松ネットワーク1194N.マチルダ: yakov@juniper.net

   Dimitri Papadimitriou
   Alcatel-Lucent
   Fr. Wellesplein 1,
   B-2018 Antwerpen, Belgium
   Phone: +32 3 240-8491
   EMail: Dimitri.Papadimitriou@alcatel-lucent.be

ディミトリPapadimitriouアルカテル透明なフラン。 Wellesplein1、B-2018アントウェルペン(ベルギー)は以下に電話をします。 +32 3 240-8491 メールしてください: Dimitri.Papadimitriou@alcatel-lucent.be

   Richard Rabbat
   Google Inc.
   1600 Amphitheatre Pky
   Mountain View, CA 95054
   EMail: rabbat@alum.mit.edu

リチャードRabbat Google Inc.1600円形劇場Pkyマウンテンビュー、カリフォルニア 95054はメールされます: rabbat@alum.mit.edu

   Lou Berger
   LabN Consulting, LLC
   Phone: +1 301-468-9228
   EMail: lberger@labn.net

ルウバーガーLabNが相談して、LLCは以下に電話をします。 +1 301-468-9228 メールしてください: lberger@labn.net

Fedyk, et al.               Standards Track                    [Page 23]

RFC 5251                    L1VPN Basic Mode                   July 2008

Fedyk、他 モード2008年7月に基本的な標準化過程[23ページ]RFC5251L1VPN

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The IETF Trust (2008).

IETFが信じる著作権(C)(2008)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

このドキュメントはBCP78に含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとここに含まれた情報はその人が代理をするか、または(もしあれば)後援される組織、インターネットの振興発展を目的とする組織、「そのままで」という基礎と貢献者の上で提供していて、IETFはそして、インターネット・エンジニアリング・タスク・フォースがすべての保証を放棄すると信じます、急行である、または暗示していて、他を含んでいて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるということであるかいずれが市場性か特定目的への適合性の黙示的な保証です。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実現に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するためのどんな独立している努力もしました。 BCP78とBCP79でRFCドキュメントの権利に関する手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

IETFはこの規格を実行するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf-ipr@ietf.org のIETFに情報を記述してください。

Fedyk, et al.               Standards Track                    [Page 24]

Fedyk、他 標準化過程[24ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

Remi 基本リポジトリで提供されていないパッケージのyumインストール

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る