RFC5316 日本語訳

5316 ISIS Extensions in Support of Inter-Autonomous System (AS) MPLSand GMPLS Traffic Engineering. M. Chen, R. Zhang, X. Duan. December 2008. (Format: TXT=45408 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
RFC一覧
英語原文

Network Working Group                                            M. Chen
Request for Comments: 5316                                      R. Zhang
Category: Standards Track                   Huawei Technologies Co., Ltd
                                                                 X. Duan
                                                            China Mobile
                                                           December 2008

コメントを求めるワーキンググループM.チェン要求をネットワークでつないでください: 5316年のR.チャンカテゴリ: 標準化過程Huawei技術社、2008年12月のモバイルのLtd X.Duan中国

      ISIS Extensions in Support of Inter-Autonomous System (AS)
                   MPLS and GMPLS Traffic Engineering

相互自律システム(AS) MPLSとGMPLS交通工学を支持したイシスExtensions

Status of This Memo

このメモの状態

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。

Copyright Notice

版権情報

   Copyright (c) 2008 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Copyright(c)2008IETF Trustと人々はドキュメントとして作者を特定しました。 All rights reserved。

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (http://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

事実上、このドキュメントはこのドキュメントの公表の日付にIETF Documents( http://trustee.ietf.org/ ライセンスインフォメーション)へのBCP78とIETF TrustのLegal Provisions Relatingを受けることがあります。 このドキュメントに関して権利と制限について説明するとき、慎重にこれらのドキュメントを再検討してください。

Abstract

要約

   This document describes extensions to the ISIS (ISIS) protocol to
   support Multiprotocol Label Switching (MPLS) and Generalized MPLS
   (GMPLS) Traffic Engineering (TE) for multiple Autonomous Systems
   (ASes).  It defines ISIS-TE extensions for the flooding of TE
   information about inter-AS links, which can be used to perform inter-
   AS TE path computation.

このドキュメントは、複数のAutonomous Systems(ASes)のために、Multiprotocol Label Switching(MPLS)とGeneralized MPLS(GMPLS)交通Engineering(TE)を支持するためにイシス(イシス)プロトコルに拡大について説明します。 それは相互ASリンクのTE情報の氾濫のためのイシス-TE拡張子を定義します。相互AS TE経路計算を実行するのにリンクを使用できます。

   No support for flooding information from within one AS to another AS
   is proposed or defined in this document.

1ASから別のASまでの氾濫情報のサポートは、全く本書では提案もされませんし、定義もされません。

Chen, et al.                Standards Track                     [Page 1]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[1ページ]相互、Te2008年12月

Table of Contents

目次

   1. Introduction ....................................................2
      1.1. Conventions Used in This Document ..........................3
   2. Problem Statement ...............................................3
      2.1. A Note on Non-Objectives ...................................4
      2.2. Per-Domain Path Determination ..............................4
      2.3. Backward Recursive Path Computation ........................6
   3. Extensions to ISIS-TE ...........................................7
      3.1. Inter-AS Reachability TLV ..................................7
      3.2. TE Router ID ...............................................9
      3.3. Sub-TLV Detail .............................................9
           3.3.1. Remote AS Number Sub-TLV ............................9
           3.3.2. IPv4 Remote ASBR ID Sub-TLV ........................10
           3.3.3. IPv6 Remote ASBR ID Sub-TLV ........................11
           3.3.4. IPv4 TE Router ID sub-TLV ..........................11
           3.3.5. IPv6 TE Router ID sub-TLV ..........................12
   4. Procedure for Inter-AS TE Links ................................12
      4.1. Origin of Proxied TE Information ..........................14
   5. Security Considerations ........................................14
   6. IANA Considerations ............................................15
      6.1. Inter-AS Reachability TLV .................................15
      6.2. Sub-TLVs for the Inter-AS Reachability TLV ................15
      6.3. Sub-TLVs for the IS-IS Router Capability TLV ..............17
   7. Acknowledgments ................................................17
   8. References .....................................................17
      8.1. Normative References ......................................17
      8.2. Informative References ....................................17

1. 序論…2 1.1. このドキュメントで中古のコンベンション…3 2. 問題声明…3 2.1. 非目的に関する注…4 2.2. 1ドメインあたりの経路決断…4 2.3. 後方の再帰的な経路計算…6 3. イシス-Teへの拡大…7 3.1. 相互、可到達性TLV…7 3.2. TeルータID…9 3.3. サブTLVの詳細…9 3.3.1. 数のサブTLVとしてリモート…9 3.3.2. IPv4のリモートASBR IDサブTLV…10 3.3.3. IPv6のリモートASBR IDサブTLV…11 3.3.4. IPv4TeルータIDサブTLV…11 3.3.5. IPv6TeルータIDサブTLV…12 4. 手順、相互、Teはリンクされます…12 4.1. Proxied Te情報の起源…14 5. セキュリティ問題…14 6. IANA問題…15 6.1. 相互、可到達性TLV…15 6.2. サブTLVs、相互、可到達性TLV…15 6.3. サブTLVs、-、ルータ能力TLV…17 7. 承認…17 8. 参照…17 8.1. 標準の参照…17 8.2. 有益な参照…17

1.  Introduction

1. 序論

   [ISIS-TE] defines extensions to the ISIS protocol [ISIS] to support
   intra-area Traffic Engineering (TE).  The extensions provide a way of
   encoding the TE information for TE-enabled links within the network
   (TE links) and flooding this information within an area.  The
   extended IS reachability TLV and traffic engineering router ID TLV,
   which are defined in [ISIS-TE], are used to carry such TE
   information.  The extended IS reachability TLV has several nested
   sub-TLVs that describe the TE attributes for a TE link.

[イシス-TE]は、イントラ領域Traffic Engineering(TE)を支持するためにイシスプロトコル[イシス]と拡大を定義します。 拡大は領域の中でネットワーク(TEリンク)と氾濫の中のTEによって可能にされたリンクのためのTE情報をコード化する方法にこの情報を提供します。 広げるのは可到達性TLVです、そして、交通工学ルータID TLV([イシス-TE]で定義される)は、そのようなTE情報を運ぶのに使用されます。 広げるのによる可到達性TLVにはTE属性についてTEリンクに説明する数個の入れ子にされたサブTLVsがあるということです。

   [ISIS-TE-V3] and [GMPLS-TE] define similar extensions to ISIS [ISIS]
   in support of IPv6 and GMPLS traffic engineering, respectively.

[イシス-TE-V3]と[GMPLS-TE]は、それぞれ設計しながら、IPv6とGMPLS交通を支持してイシス[イシス]と同様の拡大を定義します。

   Requirements for establishing Multiprotocol Label Switching (MPLS) TE
   Label Switched Paths (LSPs) that cross multiple Autonomous Systems
   (ASes) are described in [INTER-AS-TE-REQ].  As described in [INTER-
   AS-TE-REQ], a method SHOULD provide the ability to compute a path
   spanning multiple ASes.  So a path computation entity that may be the

複数のAutonomous Systems(ASes)に交差するMultiprotocol Label Switching(MPLS)TE Label Switched Paths(LSPs)を設立するための要件は[INTER-AS-TE-REQ]で説明されます。 [INTER- AS-TE-REQ]で説明されるように、SHOULDが複数のASesにかかる経路を計算する能力を提供する方法です。 そのように、それが経路計算実体であるかもしれない。

Chen, et al.                Standards Track                     [Page 2]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[2ページ]相互、Te2008年12月

   head-end Label Switching Router (LSR), an AS Border Router (ASBR), or
   a Path Computation Element (PCE [PCE]) needs to know the TE
   information not only of the links within an AS, but also of the links
   that connect to other ASes.

ギヤエンドLabel Switching Router(LSR)、AS Border Router(ASBR)、またはPath Computation Element(PCE[PCE])が、ASの中のリンクだけではなく、他のASesに接続するリンクのTE情報を知る必要があります。

   In this document, a new TLV, which is referred to as the inter-AS
   reachability TLV, is defined to advertise inter-AS TE information,
   and three new sub-TLVs are defined for inclusion in the inter-AS
   reachability TLV to carry the information about the remote AS number
   and remote ASBR ID.  The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3],
   and other documents for inclusion in the extended IS reachability TLV
   for describing the TE properties of a TE link are applicable to be
   included in the inter-AS reachability TLV for describing the TE
   properties of an inter-AS TE link as well.  Also, two more new sub-
   TLVs are defined for inclusion in the IS-IS router capability TLV to
   carry the TE Router ID when the TE Router ID needs to reach all
   routers within an entire ISIS routing domain.  The extensions are
   equally applicable to IPv4 and IPv6 as identical extensions to
   [ISIS-TE] and [ISIS-TE-V3].  Detailed definitions and procedures are
   discussed in the following sections.

本書では、新しいTLV(相互ASの可到達性TLVと呼ばれる)は相互AS TE情報の広告を出すために定義されます、そして、相互ASの可到達性TLVでの包含がリモートAS番号の、そして、リモートなASBR IDの情報を運ぶように、3新しいサブTLVsが定義されます。 TEについて説明して、TEリンクの特性が含まれるのにおいて適切であるので、また、広げるところの包含が可到達性であるので[イシス-TE]、[イシス-TE-V3]、および他のドキュメントで定義されたサブTLVs TLVは相互AS TEのTEの特性について説明するための相互ASの可到達性TLVでリンクします。 また、2より新しいサブTLVsが包含のために中で定義される、-、TE Router IDであるときにTE Router IDを運ぶルータ能力TLVは、全体のイシス経路ドメインの中のすべてのルータに達する必要があります。 拡大は[イシス-TE]と[イシス-TE-V3]への同じ拡大として等しくIPv4とIPv6に適切です。 以下のセクションで詳細な定義と手順について議論します。

   This document does not propose or define any mechanisms to advertise
   any other extra-AS TE information within ISIS.  See Section 2.1 for a
   full list of non-objectives for this work.

このドキュメントは、イシスの中にいかなる他の余分なAS TE情報も広告を出すためにどんなメカニズムも提案もしませんし、定義もしません。 非目的の完全リストに関してこの仕事に関してセクション2.1を見てください。

1.1.  Conventions Used in This Document

1.1. 本書では使用されるコンベンション

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

キーワード“MUST"、「必須NOT」が「必要です」、“SHALL"、「」、“SHOULD"、「「推薦され」て、「5月」の、そして、「任意」のNOTはRFC-2119[RFC2119]で説明されるように本書では解釈されることであるべきですか?

2.  Problem Statement

2. 問題声明

   As described in [INTER-AS-TE-REQ], in the case of establishing an
   inter-AS TE LSP that traverses multiple ASes, the Path message
   [RFC3209] may include the following elements in the Explicit Route
   Object (ERO) in order to describe the path of the LSP:

[INTER-AS-TE-REQ]、複数のASesを横断する相互AS TE LSPを設立する場合で説明されるように、Pathメッセージ[RFC3209]はLSPの経路について説明するためにExplicit Route Object(ERO)の以下の要素を含むかもしれません:

   -  a set of AS numbers as loose hops, and/or

- そして/または1セットのゆるいAS同じくらい番号が跳ぶ。

   -  a set of LSRs including ASBRs as loose hops.

- ゆるいホップとしてASBRsを含むLSRsの1セット。

   Two methods for determining inter-AS paths are currently being
   discussed.  The per-domain method [PD-PATH] determines the path one
   domain at a time.  The backward recursive method [BRPC] uses
   cooperation between PCEs to determine an optimum inter-domain path.
   The sections that follow examine how inter-AS TE link information
   could be useful in both cases.

相互AS経路を決定するための2つの方法は現在、議論することです。 1ドメインあたりの方法[PD-PATH]は一度に1つのドメインに経路を決定します。 後方の因果循環法[BRPC]は、最適な相互ドメイン経路を決定するのにPCEsの間の協力を使用します。 従うセクションは相互AS TEリンク情報がどちらの場合もどう役に立つかもしれないかを調べます。

Chen, et al.                Standards Track                     [Page 3]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[3ページ]相互、Te2008年12月

2.1.  A Note on Non-Objectives

2.1. 非目的に関する注

   It is important to note that this document does not make any change
   to the confidentiality and scaling assumptions surrounding the use of
   ASes in the Internet.  In particular, this document is conformant to
   the requirements set out in [INTER-AS-TE-REQ].

このドキュメントが秘密性と仮定をスケーリングすることへのインターネットでのASesの使用が囲まれるどんな変更も行わないことに注意するのは重要です。 このドキュメントは[INTER-AS-TE-REQ]を始められた要件への特に、conformantです。

   The following features are explicitly excluded:

以下の特徴は明らかに遮断されます:

   o  There is no attempt to distribute TE information from within one
      AS to another AS.

o 1ASから別のASまでTE情報を分配する試みが全くありません。

   o  There is no mechanism proposed to distribute any form of TE
      reachability information for destinations outside the AS.

o ASの外の目的地のためのどんなフォームのTE可到達性情報も分配するために提案されて、メカニズムが全くありません。

   o  There is no proposed change to the PCE architecture or usage.

o PCE構造か用法への変更案が全くありません。

   o  TE aggregation is not supported or recommended.

o TE集合は、支持もされませんし、推薦もされません。

   o  There is no exchange of private information between ASes.

o ASesの間には、個人情報の交換が全くありません。

   o  No ISIS adjacencies are formed on the inter-AS link.

o イシス隣接番組は全く相互ASリンクに形成されません。

2.2.  Per-Domain Path Determination

2.2. 1ドメインあたりの経路決断

   In the per-domain method of determining an inter-AS path for an
   MPLS-TE LSP, when an LSR that is an entry-point to an AS receives a
   Path message from an upstream AS with an ERO containing a next hop
   that is an AS number, it needs to find which LSRs (ASBRs) within the
   local AS are connected to the downstream AS.  That way, it can
   compute a TE LSP segment across the local AS to one of those LSRs and
   forward the Path message to that LSR and hence into the next AS.  See
   Figure 1 for an example.

ASへのエントリー・ポイントであるLSRがAS番号である次のホップを含むEROと共に上流からのPathメッセージを受け取るときMPLS-TE LSPのために相互AS経路を決定する1ドメインあたりの方法で、それは、地方のASの中のどのLSRs(ASBRs)が川下のASに接続されるかわかる必要があります。 そのように、それは、地方のASの向こう側にTE LSPセグメントをそれらのLSRsの1つまで計算して、そのLSRと、そして、したがって、次のASの中にPathメッセージを転送できます。 例に関して図1を見てください。

                R1------R3----R5-----R7------R9-----R11
                        |     | \    |      / |
                        |     |  \   |  ----  |
                        |     |   \  | /      |
                R2------R4----R6   --R8------R10----R12
                           :              :
                <-- AS1 -->:<---- AS2 --->:<--- AS3 --->

R1------R3----R5-----R7------R9-----R11| | \ | / | | | \ | ---- | | | \ | / | R2------R4----R6 --R8------R10----R12: : <-- AS1-->: <。---- AS2--->: <。--- AS3--->。

                    Figure 1: Inter-AS Reference Model

図1: 相互、規範モデル

   The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1
   through R12).  R3 and R4 are ASBRs in AS1.  R5, R6, R7, and R8 are
   ASBRs in AS2.  R9 and R10 are ASBRs in AS3.

図は3ASes(AS1、AS2、およびAS3)と12LSRs(R1からR12)を示しています。 R3とR4はAS1のASBRsです。 R5、R6、R7、およびR8はAS2のASBRsです。 R9とR10はAS3のASBRsです。

Chen, et al.                Standards Track                     [Page 4]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[4ページ]相互、Te2008年12月

   If an inter-AS TE LSP is planned to be established from R1 to R12,
   the AS sequence will be: AS1, AS2, AS3.

相互AS TE LSPがR1からR12まで証明されるために計画されていると、AS系列は以下の通りになるでしょう。 AS1、AS2、AS3。

   Suppose that the Path message enters AS2 from R3.  The next hop in
   the ERO shows AS3, and R5 must determine a path segment across AS2 to
   reach AS3.  It has a choice of three exit points from AS2 (R6, R7,
   and R8), and it needs to know which of these provide TE connectivity
   to AS3, and whether the TE connectivity (for example, available
   bandwidth) is adequate for the requested LSP.

PathメッセージがR3からAS2に入ると仮定してください。 EROの次のホップはAS3を示しています、そして、R5はAS2の向こう側の経路セグメントがAS3に達することを決定しなければなりません。 それには、AS2(R6、R7、およびR8)からの3つのエキジットポイントの選択があります、そして、これらのどれがTEの接続性をAS3に供給するか、そして、要求されたLSPに、TEの接続性(例えば、利用可能な帯域幅)が適切であるかどうかを知るのが必要です。

   Alternatively, if the next hop in the ERO is the entry ASBR for AS3
   (say R9), R5 needs to know which of its exit ASBRs has a TE link that
   connects to R9.  Since there may be multiple ASBRs that are connected
   to R9 (both R7 and R8 in this example), R5 also needs to know the TE
   properties of the inter-AS TE links so that it can select the correct
   exit ASBR.

あるいはまた、EROの次のホップがAS3のためのエントリーASBR(R9を言う)であるなら、R5は、出口ASBRsのどれがR9に接続するTEリンクを持っているかを知る必要があります。 R9(この例のR7とR8の両方)に接続される複数のASBRsがあるかもしれないので、また、R5は、正しい出口ASBRを選択できるように相互AS TEリンクのTEの特性を知る必要があります。

   Once the Path message reaches the exit ASBR, any choice of inter-AS
   TE link can be made by the ASBR if not already made by the entry ASBR
   that computed the segment.

Pathメッセージがいったん出口ASBRに達すると、相互AS TEリンクのどんな選択もASBRが作るか、またはセグメントを計算したエントリーASBRは既にすることができます。

   More details can be found in Section 4 of [PD-PATH], which clearly
   points out why advertising of inter-AS links is desired.

[PD-PATH]のセクション4でその他の詳細を見つけることができます。(明確に、]は、相互ASリンクの広告がなぜ望まれているかを指摘します)。

   To enable R5 to make the correct choice of exit ASBR, the following
   information is needed:

R5が出口ASBRの正しい選択をするのを可能にするために、以下の情報が必要です:

   o  List of all inter-AS TE links for the local AS.

o すべての相互AS TEのリストは地方のASのためにリンクされます。

   o  TE properties of each inter-AS TE link.

o それぞれの相互AS TEのTEの特性はリンクされます。

   o  AS number of the neighboring AS connected to by each inter-AS TE
      link.

o 隣接しているASのAS番号は、それぞれの相互AS TEでリンクするために接続しました。

   o  Identity (TE Router ID) of the neighboring ASBR connected to by
      each inter-AS TE link.

o 隣接しているASBRのアイデンティティ(TE Router ID)は、それぞれの相互AS TEでリンクするために接続しました。

   In GMPLS networks, further information may also be required to select
   the correct TE links as defined in [GMPLS-TE].

また、GMPLSネットワークでは、詳細が、[GMPLS-TE]で定義されるように正しいTEリンクを選択するのに必要であるかもしれません。

   The example above shows how this information is needed at the entry-
   point ASBRs for each AS (or the PCEs that provide computation
   services for the ASBRs).  However, this information is also needed
   throughout the local AS if path computation functionality is fully
   distributed among LSRs in the local AS, for example to support LSPs
   that have start points (ingress nodes) within the AS.

上記の例はこの情報がエントリーポイントASBRsでどう各AS(または、計算サービスをASBRsに供給するPCEs)に必要であるかを示しています。 しかしながら、また、経路計算の機能性が例えばASの中にスタートポイント(イングレスノード)を持っているLSPsを支持するために地方のASのLSRsの中で完全に分配されるなら、この情報が地方のAS中で必要です。

Chen, et al.                Standards Track                     [Page 5]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[5ページ]相互、Te2008年12月

2.3.  Backward Recursive Path Computation

2.3. 後方の再帰的な経路計算

   Another scenario using PCE techniques has the same problem.  [BRPC]
   defines a PCE-based TE LSP computation method (called Backward
   Recursive Path Computation) to compute optimal inter-domain
   constrained MPLS-TE or GMPLS LSPs.  In this path computation method,
   a specific set of traversed domains (ASes) are assumed to be selected
   before computation starts.  Each downstream PCE in domain(i) returns
   to its upstream neighbor PCE in domain(i-1) a multipoint-to-point
   tree of potential paths.  Each tree consists of the set of paths from
   all boundary nodes located in domain(i) to the destination where each
   path satisfies the set of required constraints for the TE LSP
   (bandwidth, affinities, etc.).

PCEのテクニックを使用する別のシナリオが同じ問題を持っています。 [BRPC]は最適の相互ドメイン強制的なMPLS-TEかGMPLS LSPsを計算するPCEベースのTE LSP計算方法(Backward Recursive Path Computationと呼ばれる)を定義します。 この経路計算方法で、計算が始まる前に特定のセットの横断されたドメイン(ASes)が選択されると思われます。 ドメイン(i)のそれぞれの川下のPCEは潜在的経路のドメイン(i-1)示す多点木の上流の隣人PCEに戻ります。 各木はドメイン(i)に位置するすべての境界ノードから各経路がTE LSP(帯域幅、親近感など)の必要な規制のセットを満たす目的地までの経路のセットから成ります。

   So a PCE needs to select boundary nodes (that is, ASBRs) that provide
   connectivity from the upstream AS.  In order for the tree of paths
   provided by one PCE to its neighbor to be correlated, the identities
   of the ASBRs for each path need to be referenced.  Thus, the PCE must
   know the identities of the ASBRs in the remote AS that are reached by
   any inter-AS TE link, and, in order to provide only suitable paths in
   the tree, the PCE must know the TE properties of the inter-AS TE
   links.  See the following figure as an example.

それで、PCEは、上流のASから接続性を備える境界ノード(すなわち、ASBRs)を選択する必要があります。 関連するように1PCEによって隣人に提供された経路の木において整然とします、各経路へのASBRsのアイデンティティは参照をつけられる必要があります。 したがって、PCEはどんな相互AS TEリンクでも達しているリモートASのASBRsのアイデンティティを知らなければなりません、そして、適当な経路だけを木に提供するために、PCEは相互AS TEリンクのTEの特性を知らなければなりません。 以下が例として現れるのを見てください。

                   PCE1<------>PCE2<-------->PCE3
                   /       :             :
                  /        :             :
                R1------R3----R5-----R7------R9-----R11
                        |     | \    |      / |
                        |     |  \   |  ----  |
                        |     |   \  | /      |
                R2------R4----R6   --R8------R10----R12
                           :              :
                <-- AS1 -->:<---- AS2 --->:<--- AS3 --->

PCE1<。------>PCE2<。-------->PCE3/: : / : : R1------R3----R5-----R7------R9-----R11| | \ | / | | | \ | ---- | | | \ | / | R2------R4----R6 --R8------R10----R12: : <-- AS1-->: <。---- AS2--->: <。--- AS3--->。

               Figure 2: BRPC for Inter-AS Reference Model

図2: BRPC、相互、規範モデル

   The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1,
   PCE2, and PCE3), and twelve LSRs (R1 through R12).  R3 and R4 are
   ASBRs in AS1.  R5, R6, R7, and R8 are ASBRs in AS2.  R9 and R10 are
   ASBRs in AS3.  PCE1, PCE2, and PCE3 cooperate to perform inter-AS
   path computation and are responsible for path segment computation
   within their own domain(s).

図は3ASes(AS1、AS2、およびAS3)、3PCEs(PCE1、PCE2、およびPCE3)、および12LSRs(R1からR12)を示しています。 R3とR4はAS1のASBRsです。 R5、R6、R7、およびR8はAS2のASBRsです。 R9とR10はAS3のASBRsです。 PCE1、PCE2、およびPCE3は協力して、相互AS経路計算を実行して、それら自身のドメインの中の経路セグメント計算に責任があります。

   If an inter-AS TE LSP is planned to be established from R1 to R12,
   the traversed domains are assumed to be selected: AS1->AS2->AS3, and
   the PCE chain is: PCE1->PCE2->PCE3.  First, the path computation
   request originated from the PCC (R1) is relayed by PCE1 and PCE2
   along the PCE chain to PCE3.  Then, PCE3 begins to compute the path

相互AS TE LSPがR1からR12まで証明されるために計画されているなら、横断されたドメインが選択されると思われます: AS1->、AS2、->AS3、およびPCEチェーンは以下の通りです。 PCE1、-、>PCE2->、PCE3。 まず最初に、PCC(R1)から溯源された経路計算要求はPCEチェーンに沿ってPCE1とPCE2によってPCE3にリレーされます。 そして、PCE3は経路を計算し始めます。

Chen, et al.                Standards Track                     [Page 6]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[6ページ]相互、Te2008年12月

   segments from the entry boundary nodes that provide connection from
   AS2 to the destination (R12).  But, to provide suitable path
   segments, PCE3 must determine which entry boundary nodes provide
   connectivity to its upstream neighbor AS (identified by its AS
   number), and must know the TE properties of the inter-AS TE links.
   In the same way, PCE2 also needs to determine the entry boundary
   nodes according to its upstream neighbor AS and the inter-AS TE link
   capabilities.

AS2から接続を備えるエントリー境界ノードから目的地(R12)までのセグメント。 しかし、PCE3は、適当な経路セグメントを提供するために、どのエントリー境界ノードが上流の隣人AS(AS番号で、特定される)に接続性を供給するかを決定しなければならなくて、相互AS TEリンクのTEの特性を知らなければなりません。 同様に、また、PCE2は、上流の隣人ASと相互AS TEリンク能力に従ってエントリー境界ノードを決定する必要があります。

   Thus, to support Backward Recursive Path Computation, the same
   information listed in Section 2.2 is required.  The AS number of the
   neighboring AS connected to by each inter-AS TE link is particularly
   important.

したがって、Backward Recursive Path Computationを支持するために、セクション2.2にリストアップされた同じ情報が必要です。 それぞれの相互AS TEでリンクするために接続された隣接しているASのAS番号は特に重要です。

3.  Extensions to ISIS-TE

3. イシス-Teへの拡大

   Note that this document does not define mechanisms for distribution
   of TE information from one AS to another, does not distribute any
   form of TE reachability information for destinations outside the AS,
   does not change the PCE architecture or usage, does not suggest or
   recommend any form of TE aggregation, and does not feed private
   information between ASes.  See Section 2.1.

このドキュメントがTE情報の1ASから別のASまでの分配のためにメカニズムを定義しないで、またASの外の目的地のためのどんなフォームのTE可到達性情報も分配しないで、またPCE構造か用法を変えないで、またどんなフォームのTE集合も示しもしませんし、推薦もしないで、ASesの間の個人情報を与えないことに注意してください。 セクション2.1を見てください。

   In this document, for the advertisement of inter-AS TE links, a new
   TLV, which is referred to as the inter-AS reachability TLV, is
   defined.  Three new sub-TLVs are also defined for inclusion in the
   inter-AS reachability TLV to carry the information about the
   neighboring AS number and the remote ASBR ID of an inter-AS link.
   The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3], and other documents
   for inclusion in the extended IS reachability TLV are applicable to
   be included in the inter-AS reachability TLV for inter-AS TE links
   advertisement.  Also, two other new sub-TLVs are defined for
   inclusion in the IS-IS router capability TLV to carry the TE Router
   ID when the TE Router ID is needed to reach all routers within an
   entire ISIS routing domain.

本書では、相互AS TEリンクの広告において、新しいTLV(相互ASの可到達性TLVと呼ばれる)は定義されます。 また、相互ASの可到達性TLVでの包含が相互ASリンクの隣接しているAS番号とリモートASBR IDの情報を運ぶように、3新しいサブTLVsが定義されます。 広げるところの包含が可到達性TLVが含まれるのにおいて適切であるということであるので、[イシス-TE]、[イシス-TE-V3]、および他のドキュメントで定義されたサブTLVsは相互AS TEのための相互ASの可到達性TLVで広告をリンクします。 また、他の2新しいサブTLVsが包含のために中で定義される、-、TE Router IDが全体のイシス経路ドメインの中のすべてのルータに達するのに必要であるときにTE Router IDを運ぶルータ能力TLV。

   While some of the TE information of an inter-AS TE link may be
   available within the AS from other protocols, in order to avoid any
   dependency on where such protocols are processed, this mechanism
   carries all the information needed for the required TE operations.

相互AS TEリンクのTE情報のいくつかがそのようなプロトコルが処理されるところにおけるどんな依存も避けるためにASの中で他のプロトコルから利用可能であるかもしれない間、このメカニズムは必要なTE操作に必要であるすべての情報を乗せます。

3.1.  Inter-AS Reachability TLV

3.1. 相互、可到達性TLV

   The inter-AS reachability TLV has type 141 (see Section 6.1) and
   contains a data structure consisting of:

相互ASの可到達性TLVはタイプ141(セクション6.1を見ます)があって、以下から成るデータ構造を含んでいます。

Chen, et al.                Standards Track                     [Page 7]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[7ページ]相互、Te2008年12月

      o  4 octets of Router ID
      o  3 octets of default metric
      o  1 octet of control information, consisting of:
         -  1 bit of flooding-scope information (S bit)
         -  1 bit of up/down information (D bit)
         -  6 bits reserved
      o  1 octet of length of sub-TLVs
      o  0-246 octets of sub-TLVs, where each sub-TLV consists of a
         sequence of:
         -  1 octet of sub-type
         -  1 octet of length of the value field of the sub-TLV
         -  0-244 octets of value

o 制御情報のデフォルトのメートル法のo1八重奏のRouter ID o3八重奏の4つの八重奏、以下の成ること - 1ビットの氾濫範囲情報(Sに噛み付いた)--1 /に噛み付かれて、情報より倒してください(Dに噛み付きました)--6ビットは○ それぞれのサブTLVが系列から成るサブTLVsのサブTLVs o0-246八重奏の長さの1つの八重奏を控えました: - サブタイプの1つの八重奏--サブTLVの値の分野の長さの1つの八重奏--0-244 価値の八重奏

   Compared to the extended reachability TLV, which is defined in
   [ISIS-TE], the inter-AS reachability TLV replaces the "7 octets of
   System ID and Pseudonode Number" field with a "4 octets of Router ID"
   field and introduces an extra "control information" field, which
   consists of a flooding-scope bit (S bit), an up/down bit (D bit), and
   6 reserved bits.

拡張可到達性TLV([イシス-TE]で定義される)と比べて、相互ASの可到達性TLVは「System IDとPseudonode Numberの7つの八重奏」野原を「Router IDの4つの八重奏」分野に取り替えて、余分な「制御情報」野原を挿入します。(それは、氾濫範囲ビット(Sに噛み付いた)、(Dビット)、および予約された6ビット噛み付かれた上/下であるのから成ります)。

   The Router ID field of the inter-AS reachability TLV is 4 octets in
   length, which contains the Router ID of the router who generates the
   inter-AS reachability TLV.  The Router ID MUST be unique within the
   ISIS area.  If the router generates inter-AS reachability TLV with
   entire ISIS routing domain flooding scope, then the Router ID MUST
   also be unique within the entire ISIS routing domain.  The Router ID
   could be used to indicate the source of the inter-AS reachability
   TLV.

相互ASの可到達性TLVのRouter ID分野は長さが4つの八重奏です。(それは、相互ASの可到達性TLVを発生させるルータのRouter IDを含みます)。 Router IDはイシス領域の中でユニークであるに違いありません。 また、ルータが全体のイシス経路ドメインの氾濫範囲がある相互ASの可到達性TLVを発生させるなら、Router IDも全体のイシス経路ドメインの中でユニークであるに違いありません。 相互ASの可到達性TLVの源を示すのにRouter IDを使用できました。

   The flooding procedures for inter-AS reachability TLV are identical
   to the flooding procedures for the GENINFO TLV, which are defined in
   Section 4 of [GENINFO].  These procedures have been previously
   discussed in [ISIS-CAP].  The flooding-scope bit (S bit) SHOULD be
   set to 0 if the flooding scope is to be limited to within the single
   IGP area to which the ASBR belongs.  It MAY be set to 1 if the
   information is intended to reach all routers (including area border
   routers, ASBRs, and PCEs) in the entire ISIS routing domain.  The
   choice between the use of 0 or 1 is an AS-wide policy choice, and
   configuration control SHOULD be provided in ASBR implementations that
   support the advertisement of inter-AS TE links.

GENINFO TLVに、相互ASの可到達性TLVのための氾濫手順は氾濫手順と同じです。(GENINFO TLVは[GENINFO]のセクション4で定義されます)。 以前に、[イシス-CAP]でこれらの手順について議論しました。 氾濫範囲は(Sビット)SHOULDに噛み付きました。氾濫範囲がASBRが属するただ一つのIGP領域に制限されるつもりであるなら、0に用意ができてください。 情報がすべてのルータに達することを意図するなら(境界ルータ、ASBRs、およびPCEsを含んでいて)、それは全体のイシス経路ドメインに1に設定されるかもしれません。 0か1の使用の選択はAS全体の政治的選択です、そして、ASBR実現におけるそのサポートであるなら、構成管理SHOULDはそのような政治的選択です。相互AS TEリンクの広告。

   The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3], and other documents
   for describing the TE properties of a TE link are also applicable to
   the inter-AS reachability TLV for describing the TE properties of an
   inter-AS TE link.  Apart from these sub-TLVs, three new sub-TLVs are
   defined for inclusion in the inter-AS reachability TLV defined in
   this document:

また、相互AS TEリンクのTEの特性について説明するのに、TEリンクの[イシス-TE]、[イシス-TE-V3]、およびTEについて説明するための他のドキュメントで定義されたサブTLVs特性も相互ASの可到達性TLVに適切です。 これらのサブTLVsは別として、3新しいサブTLVsが本書では定義された相互ASの可到達性TLVでの包含のために定義されます:

Chen, et al.                Standards Track                     [Page 8]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[8ページ]相互、Te2008年12月

   Sub-TLV type    Length  Name
   ------------    ------  ---------------------------
             24        4   remote AS number
             25        4   IPv4 remote ASBR identifier
             26       16   IPv6 remote ASBR identifier

サブTLVはLength Nameをタイプします。------------ ------ --------------------------- 24 4のリモートAS No.25 4のIPv4のリモートASBR識別子26 16のIPv6のリモートASBR識別子

   The detailed definitions of the three new sub-TLVs are described in
   Section 3.3.

3新しいサブTLVsの詳細な定義はセクション3.3で説明されます。

3.2.  TE Router ID

3.2. TeルータID

   The IPv4 TE Router ID TLV and IPv6 TE Router ID TLV, which are
   defined in [ISIS-TE] and [ISIS-TE-V3] respectively, only have area
   flooding-scope.  When performing inter-AS TE, the TE Router ID MAY be
   needed to reach all routers within an entire ISIS routing domain and
   it MUST have the same flooding scope as the inter-AS reachability TLV
   does.

IPv4 TE Router ID TLVとIPv6 TE Router ID TLV([イシス-TE]と[イシス-TE-V3]でそれぞれ定義される)には、領域の氾濫範囲があるだけです。 相互AS TEを実行するとき、TE Router IDが全体のイシス経路ドメインの中のすべてのルータに達するのに必要であるかもしれません、そして、それはTLVがする相互ASの可到達性と同じ氾濫範囲を持たなければなりません。

   [ISIS-CAP] defines a generic advertisement mechanism for ISIS, which
   allows a router to advertise its capabilities within an ISIS area or
   an entire ISIS routing domain.  [ISIS-CAP] also points out that the
   TE Router ID is a candidate to be carried in the IS-IS router
   capability TLV when performing inter-area TE.

[イシス-CAP]はイシスのために一般的な広告メカニズムを定義します。(彼女は、イシス領域か全体のイシス経路ドメインの中に能力の広告を出すためにルータを許します)。 また、[イシス-CAP]が、TE Router IDが運ばれる候補であると指摘する、-、ルータ能力TLV、相互領域TEを実行するとき。

   This document uses such mechanism for TE Router ID advertisement when
   the TE Router ID is needed to reach all routers within an entire ISIS
   Routing domain.  Two new sub-TLVs are defined for inclusion in the
   IS-IS router capability TLV to carry the IPv4 and IPv6 TE Router IDs,
   respectively:

TE Router IDが全体のイシスルート設定ドメインの中のすべてのルータに達するのに必要であるときに、このドキュメントはTE Router ID広告にそのようなメカニズムを使用します。 2新しいサブTLVsが包含のために中で定義される、-、それぞれIPv4とIPv6 TE Router IDを運ぶルータ能力TLV:

   Sub-TLV type   Length  Name
   ------------    ------  -----------------
             11        4   IPv4 TE Router ID
             12       16   IPv6 TE Router ID

サブTLVはLength Nameをタイプします。------------ ------ ----------------- 11 4IPv4Te Router ID12 16IPv6Te Router ID

   Detailed definitions of the two new sub-TLVs are described in Section
   3.3.

2新しいサブTLVsの詳細な定義はセクション3.3で説明されます。

3.3.  Sub-TLV Detail

3.3. サブTLVの詳細

3.3.1.  Remote AS Number Sub-TLV

3.3.1. 数のサブTLVとして、リモートです。

   A new sub-TLV, the remote AS number sub-TLV, is defined for inclusion
   in the inter-AS reachability TLV when advertising inter-AS links.
   The remote AS number sub-TLV specifies the AS number of the
   neighboring AS to which the advertised link connects.

相互ASリンクの広告を出すとき、新しいサブTLV(リモートAS番号サブTLV)は相互ASの可到達性TLVでの包含のために定義されます。 リモートAS番号サブTLVは広告を出しているリンクが接続する隣接しているASのAS番号を指定します。

Chen, et al.                Standards Track                     [Page 9]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

チェン、他 規格がRFC5316イシスExtensionsを追跡する、[9ページ]相互、Te2008年12月

   The remote AS number sub-TLV is TLV type 24 (see Section 6.2) and is
   4 octets in length.  The format is as follows:

リモートAS番号サブTLVはTLVタイプ24であり(セクション6.2を見ます)、長さが4つの八重奏です。 形式は以下の通りです:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote AS Number                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 数として、リモートです。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Remote AS number field has 4 octets.  When only 2 octets are used
   for the AS number, as in current deployments, the left (high-order) 2
   octets MUST be set to 0.  The remote AS number sub-TLV MUST be
   included when a router advertises an inter-AS TE link.

Remote ASナンバーフィールドには、4つの八重奏があります。 2つの八重奏だけがAS番号に現在の展開のように使用されるとき、(高位)左の2つの八重奏を0に設定しなければなりません。 ルータが相互AS TEリンクの広告を出すとき、含まれていて、リモートASはサブTLV MUSTに付番します。

3.3.2.  IPv4 Remote ASBR ID Sub-TLV

3.3.2. IPv4のリモートASBR IDサブTLV

   A new sub-TLV, which is referred to as the IPv4 remote ASBR ID sub-
   TLV, is defined for inclusion in the inter-AS reachability TLV when
   advertising inter-AS links.  The IPv4 remote ASBR ID sub-TLV
   specifies the IPv4 identifier of the remote ASBR to which the
   advertised inter-AS link connects.  This could be any stable and
   routable IPv4 address of the remote ASBR.  Use of the TE Router ID as
   specified in the Traffic Engineering router ID TLV [ISIS-TE] is
   RECOMMENDED.

相互ASリンクの広告を出すとき、新しいサブTLV(IPv4のリモートASBR IDサブTLVと呼ばれる)は相互ASの可到達性TLVでの包含のために定義されます。 IPv4のリモートASBR IDサブTLVは広告を出している相互ASリンクが接続するリモートASBRに関するIPv4識別子を指定します。 これは、リモートASBRのどんなうまやとroutable IPv4アドレスであるかもしれません。 Traffic EngineeringルータID TLV[イシス-TE]の指定されるとしてのTE Router IDの使用はRECOMMENDEDです。

   The IPv4 remote ASBR ID sub-TLV is TLV type 25 (see Section 6.2) and
   is 4 octets in length.  The format of the IPv4 remote ASBR ID sub-TLV
   is as follows:

IPv4のリモートASBR IDサブTLVはTLVタイプ25であり(セクション6.2を見ます)、長さが4つの八重奏です。 IPv4のリモートASBR IDサブTLVの形式は以下の通りです:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote ASBR ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 遠く離れたASBR ID| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The IPv4 remote ASBR ID sub-TLV MUST be included if the neighboring
   ASBR has an IPv4 address.  If the neighboring ASBR does not have an
   IPv4 address (not even an IPv4 TE Router ID), the IPv6 remote ASBR ID
   sub-TLV MUST be included instead.  An IPv4 remote ASBR ID sub-TLV and
   IPv6 remote ASBR ID sub-TLV MAY both be present in an extended IS
   reachability TLV.

IPv4のリモートASBR IDサブTLV MUST、隣接しているASBRにIPv4アドレスがあるなら、含められてください。 IPv4アドレス(IPv4 TE Router IDでないさえ)、IPv6のリモートASBR IDサブTLV MUSTが隣接しているASBRが代わりに含ませていないなら。 IPv4のリモートASBR IDサブTLVとTLV MAYのIPv6のリモートASBR IDサブ両方、存在している、広げられているのは、可到達性TLVです。

Chen, et al.                Standards Track                    [Page 10]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 10] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

3.3.3.  IPv6 Remote ASBR ID Sub-TLV

3.3.3. IPv6 Remote ASBR ID Sub-TLV

   A new sub-TLV, which is referred to as the IPv6 remote ASBR ID sub-
   TLV, is defined for inclusion in the inter-AS reachability TLV when
   advertising inter-AS links.  The IPv6 remote ASBR ID sub-TLV
   specifies the IPv6 identifier of the remote ASBR to which the
   advertised inter-AS link connects.  This could be any stable and
   routable IPv6 address of the remote ASBR.  Use of the TE Router ID as
   specified in the IPv6 Traffic Engineering router ID TLV [ISIS-TE-V3]
   is RECOMMENDED.

A new sub-TLV, which is referred to as the IPv6 remote ASBR ID sub- TLV, is defined for inclusion in the inter-AS reachability TLV when advertising inter-AS links. The IPv6 remote ASBR ID sub-TLV specifies the IPv6 identifier of the remote ASBR to which the advertised inter-AS link connects. This could be any stable and routable IPv6 address of the remote ASBR. Use of the TE Router ID as specified in the IPv6 Traffic Engineering router ID TLV [ISIS-TE-V3] is RECOMMENDED.

   The IPv6 remote ASBR ID sub-TLV is TLV type 26 (see Section 6.2) and
   is 16 octets in length.  The format of the IPv6 remote ASBR ID sub-
   TLV is as follows:

The IPv6 remote ASBR ID sub-TLV is TLV type 26 (see Section 6.2) and is 16 octets in length. The format of the IPv6 remote ASBR ID sub- TLV is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote ASBR ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote ASBR ID (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote ASBR ID (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Remote ASBR ID (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote ASBR ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote ASBR ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote ASBR ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote ASBR ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The IPv6 remote ASBR ID sub-TLV MUST be included if the neighboring
   ASBR has an IPv6 address.  If the neighboring ASBR does not have an
   IPv6 address, the IPv4 remote ASBR ID sub-TLV MUST be included
   instead.  An IPv4 remote ASBR ID sub-TLV and IPv6 remote ASBR ID
   sub-TLV MAY both be present in an extended IS reachability TLV.

The IPv6 remote ASBR ID sub-TLV MUST be included if the neighboring ASBR has an IPv6 address. If the neighboring ASBR does not have an IPv6 address, the IPv4 remote ASBR ID sub-TLV MUST be included instead. An IPv4 remote ASBR ID sub-TLV and IPv6 remote ASBR ID sub-TLV MAY both be present in an extended IS reachability TLV.

3.3.4.  IPv4 TE Router ID sub-TLV

3.3.4. IPv4 TE Router ID sub-TLV

   The IPv4 TE Router ID sub-TLV is TLV type 11 (see Section 6.3) and is
   4 octets in length.  The format of the IPv4 TE Router ID sub-TLV is
   as follows:

The IPv4 TE Router ID sub-TLV is TLV type 11 (see Section 6.3) and is 4 octets in length. The format of the IPv4 TE Router ID sub-TLV is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TE Router ID                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Chen, et al.                Standards Track                    [Page 11]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 11] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

   When the TE Router ID is needed to reach all routers within an entire
   ISIS routing domain, the IS-IS Router capability TLV MUST be included
   in its LSP.  If an ASBR supports Traffic Engineering for IPv4 and if
   the ASBR has an IPv4 TE Router ID, the IPv4 TE Router ID sub-TLV MUST
   be included.  If the ASBR does not have an IPv4 TE Router ID, the
   IPv6 TE Router sub-TLV MUST be included instead.  An IPv4 TE Router
   ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an
   IS-IS router capability TLV.

When the TE Router ID is needed to reach all routers within an entire ISIS routing domain, the IS-IS Router capability TLV MUST be included in its LSP. If an ASBR supports Traffic Engineering for IPv4 and if the ASBR has an IPv4 TE Router ID, the IPv4 TE Router ID sub-TLV MUST be included. If the ASBR does not have an IPv4 TE Router ID, the IPv6 TE Router sub-TLV MUST be included instead. An IPv4 TE Router ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an IS-IS router capability TLV.

3.3.5.  IPv6 TE Router ID sub-TLV

3.3.5. IPv6 TE Router ID sub-TLV

   The IPv6 TE Router ID sub-TLV is TLV type 12 (see Section 6.3) and is
   4 octets in length.  The format of the IPv6 TE Router ID sub-TLV is
   as follows:

The IPv6 TE Router ID sub-TLV is TLV type 12 (see Section 6.3) and is 4 octets in length. The format of the IPv6 TE Router ID sub-TLV is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TE Router ID                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TE Router ID   (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TE Router ID   (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TE Router ID   (continued)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Router ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Router ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE Router ID (continued) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   When the TE Router ID is needed to reach all routers within an entire
   ISIS routing domain, the IS-IS router capability TLV MUST be included
   in its LSP.  If an ASBR supports Traffic Engineering for IPv6 and if
   the ASBR has an IPv6 TE Router ID, the IPv6 TE Router ID sub-TLV MUST
   be included.  If the ASBR does not have an IPv6 TE Router ID, the
   IPv4 TE Router sub-TLV MUST be included instead.  An IPv4 TE Router
   ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an
   IS-IS router capability TLV.

When the TE Router ID is needed to reach all routers within an entire ISIS routing domain, the IS-IS router capability TLV MUST be included in its LSP. If an ASBR supports Traffic Engineering for IPv6 and if the ASBR has an IPv6 TE Router ID, the IPv6 TE Router ID sub-TLV MUST be included. If the ASBR does not have an IPv6 TE Router ID, the IPv4 TE Router sub-TLV MUST be included instead. An IPv4 TE Router ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an IS-IS router capability TLV.

4.  Procedure for Inter-AS TE Links

4. Procedure for Inter-AS TE Links

   When TE is enabled on an inter-AS link and the link is up, the ASBR
   SHOULD advertise this link using the normal procedures for ISIS-TE
   [ISIS-TE].  When either the link is down or TE is disabled on the
   link, the ASBR SHOULD withdraw the advertisement.  When there are
   changes to the TE parameters for the link (for example, when the
   available bandwidth changes), the ASBR SHOULD re-advertise the link
   but MUST take precautions against excessive re-advertisements.

When TE is enabled on an inter-AS link and the link is up, the ASBR SHOULD advertise this link using the normal procedures for ISIS-TE [ISIS-TE]. When either the link is down or TE is disabled on the link, the ASBR SHOULD withdraw the advertisement. When there are changes to the TE parameters for the link (for example, when the available bandwidth changes), the ASBR SHOULD re-advertise the link but MUST take precautions against excessive re-advertisements.

Chen, et al.                Standards Track                    [Page 12]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 12] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

   Hellos MUST NOT be exchanged over the inter-AS link, and
   consequently, an ISIS adjacency MUST NOT be formed.

Hellos MUST NOT be exchanged over the inter-AS link, and consequently, an ISIS adjacency MUST NOT be formed.

   The information advertised comes from the ASBR's knowledge of the TE
   capabilities of the link, the ASBR's knowledge of the current status
   and usage of the link, and configuration at the ASBR of the remote AS
   number and remote ASBR TE Router ID.

The information advertised comes from the ASBR's knowledge of the TE capabilities of the link, the ASBR's knowledge of the current status and usage of the link, and configuration at the ASBR of the remote AS number and remote ASBR TE Router ID.

   Legacy routers receiving an advertisement for an inter-AS TE link are
   able to ignore it because they do not know the new TLV and sub-TLVs
   that are defined in Section 3 of this document.  They will continue
   to flood the LSP, but will not attempt to use the information
   received.

Legacy routers receiving an advertisement for an inter-AS TE link are able to ignore it because they do not know the new TLV and sub-TLVs that are defined in Section 3 of this document. They will continue to flood the LSP, but will not attempt to use the information received.

   In the current operation of ISIS TE, the LSRs at each end of a TE
   link emit LSAs describing the link.  The databases in the LSRs then
   have two entries (one locally generated, the other from the peer)
   that describe the different 'directions' of the link.  This enables
   Constrained Shortest Path First (CSPF) to do a two-way check on the
   link when performing path computation and eliminate it from
   consideration unless both directions of the link satisfy the required
   constraints.

In the current operation of ISIS TE, the LSRs at each end of a TE link emit LSAs describing the link. The databases in the LSRs then have two entries (one locally generated, the other from the peer) that describe the different 'directions' of the link. This enables Constrained Shortest Path First (CSPF) to do a two-way check on the link when performing path computation and eliminate it from consideration unless both directions of the link satisfy the required constraints.

   In the case we are considering here (i.e., of a TE link to another
   AS), there is, by definition, no IGP peering and hence no
   bidirectional TE link information.  In order for the CSPF route
   computation entity to include the link as a candidate path, we have
   to find a way to get LSAs describing its (bidirectional) TE
   properties into the TE database.

In the case we are considering here (i.e., of a TE link to another AS), there is, by definition, no IGP peering and hence no bidirectional TE link information. In order for the CSPF route computation entity to include the link as a candidate path, we have to find a way to get LSAs describing its (bidirectional) TE properties into the TE database.

   This is achieved by the ASBR advertising, internally to its AS,
   information about both directions of the TE link to the next AS.  The
   ASBR will normally generate an LSA describing its own side of a link;
   here we have it 'proxy' for the ASBR at the edge of the other AS and
   generate an additional LSA that describes that device's 'view' of the
   link.

This is achieved by the ASBR advertising, internally to its AS, information about both directions of the TE link to the next AS. The ASBR will normally generate an LSA describing its own side of a link; here we have it 'proxy' for the ASBR at the edge of the other AS and generate an additional LSA that describes that device's 'view' of the link.

   Only some essential TE information for the link needs to be
   advertised; i.e., the Interface Address, the remote AS number, and
   the remote ASBR ID of an inter-AS TE link.

Only some essential TE information for the link needs to be advertised; i.e., the Interface Address, the remote AS number, and the remote ASBR ID of an inter-AS TE link.

   Routers or PCEs that are capable of processing advertisements of
   inter-AS TE links SHOULD NOT use such links to compute paths that
   exit an AS to a remote ASBR and then immediately re-enter the AS
   through another TE link.  Such paths would constitute extremely rare
   occurrences and SHOULD NOT be allowed except as the result of
   specific policy configurations at the router or PCE computing the
   path.

Routers or PCEs that are capable of processing advertisements of inter-AS TE links SHOULD NOT use such links to compute paths that exit an AS to a remote ASBR and then immediately re-enter the AS through another TE link. Such paths would constitute extremely rare occurrences and SHOULD NOT be allowed except as the result of specific policy configurations at the router or PCE computing the path.

Chen, et al.                Standards Track                    [Page 13]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 13] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

4.1.  Origin of Proxied TE Information

4.1. Origin of Proxied TE Information

   Section 4 describes how an ASBR advertises TE link information as a
   proxy for its neighbor ASBR, but does not describe where this
   information comes from.

Section 4 describes how an ASBR advertises TE link information as a proxy for its neighbor ASBR, but does not describe where this information comes from.

   Although the source of this information is outside the scope of this
   document, it is possible that it will be a configuration requirement
   at the ASBR, as are other local properties of the TE link.  Further,
   where BGP is used to exchange IP routing information between the
   ASBRs, a certain amount of additional local configuration about the
   link and the remote ASBR is likely to be available.

Although the source of this information is outside the scope of this document, it is possible that it will be a configuration requirement at the ASBR, as are other local properties of the TE link. Further, where BGP is used to exchange IP routing information between the ASBRs, a certain amount of additional local configuration about the link and the remote ASBR is likely to be available.

   We note further that it is possible, and may be operationally
   advantageous, to obtain some of the required configuration
   information from BGP.  Whether and how to utilize these possibilities
   is an implementation matter.

We note further that it is possible, and may be operationally advantageous, to obtain some of the required configuration information from BGP. Whether and how to utilize these possibilities is an implementation matter.

5.  Security Considerations

5. Security Considerations

   The protocol extensions defined in this document are relatively minor
   and can be secured within the AS in which they are used by the
   existing ISIS security mechanisms (e.g., using the cleartext
   passwords or Hashed Message Authentication Codes - Message Digest 5
   (HMAC-MD5) algorithm, which are defined in [ISIS] and [RFC5304],
   respectively).

The protocol extensions defined in this document are relatively minor and can be secured within the AS in which they are used by the existing ISIS security mechanisms (e.g., using the cleartext passwords or Hashed Message Authentication Codes - Message Digest 5 (HMAC-MD5) algorithm, which are defined in [ISIS] and [RFC5304], respectively).

   There is no exchange of information between ASes, and no change to
   the ISIS security relationship between the ASes.  In particular,
   since no ISIS adjacency is formed on the inter-AS links, there is no
   requirement for ISIS security between the ASes.

There is no exchange of information between ASes, and no change to the ISIS security relationship between the ASes. In particular, since no ISIS adjacency is formed on the inter-AS links, there is no requirement for ISIS security between the ASes.

   Some of the information included in these new advertisements (e.g.,
   the remote AS number and the remote ASBR ID) is obtained manually
   from a neighboring administration as part of a commercial
   relationship.  The source and content of this information should be
   carefully checked before it is entered as configuration information
   at the ASBR responsible for advertising the inter-AS TE links.

Some of the information included in these new advertisements (e.g., the remote AS number and the remote ASBR ID) is obtained manually from a neighboring administration as part of a commercial relationship. The source and content of this information should be carefully checked before it is entered as configuration information at the ASBR responsible for advertising the inter-AS TE links.

   It is worth noting that in the scenario we are considering, a Border
   Gateway Protocol (BGP) peering may exist between the two ASBRs and
   that this could be used to detect inconsistencies in configuration
   (e.g., the administration that originally supplied the information
   may be lying, or some manual mis-configurations or mistakes may be
   made by the operators).  For example, if a different remote AS number
   is received in a BGP OPEN [BGP] from that locally configured to
   ISIS-TE, as we describe here, then local policy SHOULD be applied to
   determine whether to alert the operator to a potential mis-

It is worth noting that in the scenario we are considering, a Border Gateway Protocol (BGP) peering may exist between the two ASBRs and that this could be used to detect inconsistencies in configuration (e.g., the administration that originally supplied the information may be lying, or some manual mis-configurations or mistakes may be made by the operators). For example, if a different remote AS number is received in a BGP OPEN [BGP] from that locally configured to ISIS-TE, as we describe here, then local policy SHOULD be applied to determine whether to alert the operator to a potential mis-

Chen, et al.                Standards Track                    [Page 14]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 14] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

   configuration or to suppress the ISIS advertisement of the inter-AS
   TE link.  Note further that if BGP is used to exchange TE information
   as described in Section 4.1, the inter-AS BGP session SHOULD be
   secured using mechanisms as described in [BGP] to provide
   authentication and integrity checks.

configuration or to suppress the ISIS advertisement of the inter-AS TE link. Note further that if BGP is used to exchange TE information as described in Section 4.1, the inter-AS BGP session SHOULD be secured using mechanisms as described in [BGP] to provide authentication and integrity checks.

   For a discussion of general security considerations for IS-IS, see
   [RFC5304].

For a discussion of general security considerations for IS-IS, see [RFC5304].

6.  IANA Considerations

6. IANA Considerations

   IANA has made the following allocations from registries under its
   control.

IANA has made the following allocations from registries under its control.

6.1.  Inter-AS Reachability TLV

6.1. Inter-AS Reachability TLV

   This document defines the following new ISIS TLV type, described in
   Section 3.1, which has been registered in the ISIS TLV codepoint
   registry:

This document defines the following new ISIS TLV type, described in Section 3.1, which has been registered in the ISIS TLV codepoint registry:

              Type        Description              IIH   LSP   SNP
              ----        ----------------------   ---   ---   ---
               141        inter-AS reachability     n     y     n
                                information

Type Description IIH LSP SNP ---- ---------------------- --- --- --- 141 inter-AS reachability n y n information

6.2.  Sub-TLVs for the Inter-AS Reachability TLV

6.2. Sub-TLVs for the Inter-AS Reachability TLV

   This document defines the following new sub-TLV types (described in
   Sections 3.3.1, 3.3.2, and 3.3.3) of top-level TLV 141 (see Section
   6.1 above), which have been registered in the ISIS sub-TLV registry
   for TLV 141.  Note that these three new sub-TLVs SHOULD NOT appear in
   TLV 22 (or TLV 222) and MUST be ignored in TLV 22 (or TLV 222).

This document defines the following new sub-TLV types (described in Sections 3.3.1, 3.3.2, and 3.3.3) of top-level TLV 141 (see Section 6.1 above), which have been registered in the ISIS sub-TLV registry for TLV 141. Note that these three new sub-TLVs SHOULD NOT appear in TLV 22 (or TLV 222) and MUST be ignored in TLV 22 (or TLV 222).

     Type        Description
     ----        ------------------------------
       24        remote AS number
       25        IPv4 remote ASBR Identifier
       26        IPv6 remote ASBR Identifier

Type Description ---- ------------------------------ 24 remote AS number 25 IPv4 remote ASBR Identifier 26 IPv6 remote ASBR Identifier

   As described above in Section 3.1, the sub-TLVs defined in [ISIS-TE],
   [ISIS-TE-V3], and other documents for describing the TE properties of
   a TE link are applicable to describe an inter-AS TE link and MAY be
   included in the inter-AS reachability TLV when adverting inter-AS TE
   links.

As described above in Section 3.1, the sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3], and other documents for describing the TE properties of a TE link are applicable to describe an inter-AS TE link and MAY be included in the inter-AS reachability TLV when adverting inter-AS TE links.

   IANA has updated the registry that was specified as "Sub-TLVs for TLV
   22" to be named "Sub-TLVs for TLVs 22, 141, and 222".  Three new
   columns have been added to the registry to show in which TLVs the

IANA has updated the registry that was specified as "Sub-TLVs for TLV 22" to be named "Sub-TLVs for TLVs 22, 141, and 222". Three new columns have been added to the registry to show in which TLVs the

Chen, et al.                Standards Track                    [Page 15]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 15] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

   sub-TLVs may be present.  All sub-TLVs currently defined may be
   present in all three TLVs, hence the registry (with the definition of
   the new sub-TLVs defined here) should read as follows.

sub-TLVs may be present. All sub-TLVs currently defined may be present in all three TLVs, hence the registry (with the definition of the new sub-TLVs defined here) should read as follows.

                                               TLV TLV TLV
   Type    Description                          22  141 222 Reference
   ------- ------------------------------------ --- --- --- ---------
      0    Unassigned                            y   y   y
      1    Unassigned                            y   y   y
      2    Unassigned                            y   y   y
      3    Administrative group (color)          y   y   y  [RFC5305]
      4    Link Local/Remote Identifiers         y   y   y
                                                   [RFC4205][RFC5307]
      5    Unassigned                            y   y   y
      6    IPv4 interface address                y   y   y  [RFC5305]
      7    Unassigned                            y   y   y
      8    IPv4 neighbor address                 y   y   y  [RFC5305]
      9    Maximum link bandwidth                y   y   y  [RFC5305]
     10    Maximum reservable link bandwidth     y   y   y  [RFC5305]
     11    Unreserved bandwidth                  y   y   y  [RFC5305]
     12    Unassigned                            y   y   y
     13    Unassigned                            y   y   y
     14    Unassigned                            y   y   y
     15    Unassigned                            y   y   y
     16    Unassigned                            y   y   y
     17    Unassigned                            y   y   y
     18    TE Default metric                     y   y   y  [RFC5305]
     19    Link-attributes                       y   y   y  [RFC5029]
     20    Link Protection Type                  y   y   y
                                                      [RFC4205][RFC5307]
     21    Interface Switching Capability Desc   y   y   y
                                                      [RFC4205][RFC5307]
     22    Bandwidth Constraints                 y   y   y  [RFC4124]
     23    Unconstrained TE LSP Count (sub-)TLV  y   y   y  [RFC5330]
     24    remote AS number                      n   y   n  [RFC5316]
     25    IPv4 remote ASBR identifier           n   y   n  [RFC5316]
     26    IPv6 remote ASBR identifier           n   y   n  [RFC5316]
   27-249  Unassigned
   250-254 Reserved for Cisco-specific exts
   255     Reserved for future expansion

TLV TLV TLV Type Description 22 141 222 Reference ------- ------------------------------------ --- --- --- --------- 0 Unassigned y y y 1 Unassigned y y y 2 Unassigned y y y 3 Administrative group (color) y y y [RFC5305] 4 Link Local/Remote Identifiers y y y [RFC4205][RFC5307] 5 Unassigned y y y 6 IPv4 interface address y y y [RFC5305] 7 Unassigned y y y 8 IPv4 neighbor address y y y [RFC5305] 9 Maximum link bandwidth y y y [RFC5305] 10 Maximum reservable link bandwidth y y y [RFC5305] 11 Unreserved bandwidth y y y [RFC5305] 12 Unassigned y y y 13 Unassigned y y y 14 Unassigned y y y 15 Unassigned y y y 16 Unassigned y y y 17 Unassigned y y y 18 TE Default metric y y y [RFC5305] 19 Link-attributes y y y [RFC5029] 20 Link Protection Type y y y [RFC4205][RFC5307] 21 Interface Switching Capability Desc y y y [RFC4205][RFC5307] 22 Bandwidth Constraints y y y [RFC4124] 23 Unconstrained TE LSP Count (sub-)TLV y y y [RFC5330] 24 remote AS number n y n [RFC5316] 25 IPv4 remote ASBR identifier n y n [RFC5316] 26 IPv6 remote ASBR identifier n y n [RFC5316] 27-249 Unassigned 250-254 Reserved for Cisco-specific exts 255 Reserved for future expansion

   Further sub-TLVs may be defined in the future for inclusion in any of
   the TLVs 22, 141, or 222.  The re-naming of the registry as above
   ensures that there is no accidental overlap of sub-TLV codepoints.
   The introduction of the columns within the registry clarify the use
   of the sub-TLVs.

Further sub-TLVs may be defined in the future for inclusion in any of the TLVs 22, 141, or 222. The re-naming of the registry as above ensures that there is no accidental overlap of sub-TLV codepoints. The introduction of the columns within the registry clarify the use of the sub-TLVs.

Chen, et al.                Standards Track                    [Page 16]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 16] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

6.3.  Sub-TLVs for the IS-IS Router Capability TLV

6.3. Sub-TLVs for the IS-IS Router Capability TLV

   This document defines the following new sub-TLV types, described in
   Sections 3.3.4 and 3.3.5, of top-level TLV 242 (which is defined in
   [ISIS-CAP]) that have been registered in the ISIS sub-TLV registry
   for TLV 242:

This document defines the following new sub-TLV types, described in Sections 3.3.4 and 3.3.5, of top-level TLV 242 (which is defined in [ISIS-CAP]) that have been registered in the ISIS sub-TLV registry for TLV 242:

      Type        Description                        Length
      ----        ------------------------------   --------
        11        IPv4 TE Router ID                       4
        12        IPv6 TE Router ID                      16

Type Description Length ---- ------------------------------ -------- 11 IPv4 TE Router ID 4 12 IPv6 TE Router ID 16

7.  Acknowledgments

7. Acknowledgments

   The authors would like to thank Adrian Farrel, Jean-Louis Le Roux,
   Christian Hopps, Les Ginsberg, and Hannes Gredler for their review
   and comments on this document.

The authors would like to thank Adrian Farrel, Jean-Louis Le Roux, Christian Hopps, Les Ginsberg, and Hannes Gredler for their review and comments on this document.

8.  References

8. References

8.1.  Normative References

8.1. Normative References

   [RFC2119]         Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3209]         Awduche, D., Berger, L., Gan, D., Li, T.,
                     Srinivasan, V., and G. Swallow, "RSVP-TE:
                     Extensions to RSVP for LSP Tunnels", RFC 3209,
                     December 2001.

[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001.

   [RFC5304]         Li, T. and R. Atkinson, "IS-IS Cryptographic
                     Authentication", RFC 5304, October 2008.

[RFC5304] Li, T. and R. Atkinson, "IS-IS Cryptographic Authentication", RFC 5304, October 2008.

   [ISIS]            Callon, R., "Use of OSI IS-IS for routing in TCP/IP
                     and dual environments", RFC 1195, December 1990.

[ISIS] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, December 1990.

   [ISIS-CAP]        Vasseur, JP., Ed., Shen, N., Ed., and R. Aggarwal,
                     Ed., "Intermediate System to Intermediate System
                     (IS-IS) Extensions for Advertising Router
                     Information", RFC 4971, July 2007.

[ISIS-CAP] Vasseur, JP., Ed., Shen, N., Ed., and R. Aggarwal, Ed., "Intermediate System to Intermediate System (IS-IS) Extensions for Advertising Router Information", RFC 4971, July 2007.

8.2.  Informative References

8.2. Informative References

   [INTER-AS-TE-REQ] Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS
                     Inter-Autonomous System (AS) Traffic Engineering
                     (TE) Requirements", RFC 4216, November 2005.

[INTER-AS-TE-REQ] Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS Inter-Autonomous System (AS) Traffic Engineering (TE) Requirements", RFC 4216, November 2005.

Chen, et al.                Standards Track                    [Page 17]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 17] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

   [PD-PATH]         Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang,
                     "A Per-Domain Path Computation Method for
                     Establishing Inter-Domain Traffic Engineering (TE)
                     Label Switched Paths (LSPs)", RFC 5152, February
                     2008.

[PD-PATH] Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A Per-Domain Path Computation Method for Establishing Inter-Domain Traffic Engineering (TE) Label Switched Paths (LSPs)", RFC 5152, February 2008.

   [BRPC]            Vasseur, JP., Ed., Zhang, R., Bitar, N., JL. Le
                     Roux, "A Backward Recursive PCE-Based Computation
                     (BRPC) Procedure to Compute Shortest Inter-Domain
                     Traffic Engineering Label Switched Paths", Work in
                     Progress, April 2008.

[BRPC] Vasseur, JP., Ed., Zhang, R., Bitar, N., JL. Le Roux, "A Backward Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Inter-Domain Traffic Engineering Label Switched Paths", Work in Progress, April 2008.

   [PCE]             Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
                     Computation Element (PCE)-Based Architecture", RFC
                     4655, August 2006.

[PCE] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, August 2006.

   [ISIS-TE]         Li, T. and H. Smit, "IS-IS Extensions for Traffic
                     Engineering", RFC 5305, October 2008.

[ISIS-TE] Li, T. and H. Smit, "IS-IS Extensions for Traffic Engineering", RFC 5305, October 2008.

   [ISIS-TE-V3]      Harrison, J., Berger, J., and Bartlett, M., "IPv6
                     Traffic Engineering in IS-IS", Work in Progress,
                     June 2008.

[ISIS-TE-V3] Harrison, J., Berger, J., and Bartlett, M., "IPv6 Traffic Engineering in IS-IS", Work in Progress, June 2008.

   [GMPLS-TE]        Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS
                     Extensions in Support of Generalized Multi-Protocol
                     Label Switching (GMPLS)", RFC 5307, October 2008.

[GMPLS-TE] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, October 2008.

   [BGP]             Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed.,
                     "A Border Gateway Protocol 4 (BGP-4)", RFC 4271,
                     January 2006.

[BGP] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006.

   [GENINFO]         L. Ginsberg., Previdi, S., and M. Shand,
                     "Advertising Generic Information in IS-IS", Work in
                     Progress, June 2008.

[GENINFO] L. Ginsberg., Previdi, S., and M. Shand, "Advertising Generic Information in IS-IS", Work in Progress, June 2008.

Chen, et al.                Standards Track                    [Page 18]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008

Chen, et al. Standards Track [Page 18] RFC 5316 ISIS Extensions for Inter-AS TE December 2008

Authors' Addresses

Authors' Addresses

   Mach (Guoyi) Chen
   Huawei Technologies Co., Ltd
   KuiKe Building, No.9 Xinxi Rd.
   Hai-Dian District
   Beijing, 100085
   P.R. China

Mach (Guoyi) Chen Huawei Technologies Co., Ltd KuiKe Building, No.9 Xinxi Rd. Hai-Dian District Beijing, 100085 P.R. China

   EMail: mach@huawei.com

EMail: mach@huawei.com

   Renhai Zhang
   Huawei Technologies Co., Ltd
   KuiKe Building, No.9 Xinxi Rd.
   Hai-Dian District
   Beijing, 100085
   P.R. China

Renhai Zhang Huawei Technologies Co., Ltd KuiKe Building, No.9 Xinxi Rd. Hai-Dian District Beijing, 100085 P.R. China

   EMail: zhangrenhai@huawei.com

EMail: zhangrenhai@huawei.com

   Xiaodong Duan
   China Mobile
   53A, Xibianmennei Ave.
   Xunwu District
   Beijing, China

Xiaodong Duan China Mobile 53A, Xibianmennei Ave. Xunwu District Beijing, China

   EMail: duanxiaodong@chinamobile.com

EMail: duanxiaodong@chinamobile.com

Chen, et al.                Standards Track                    [Page 19]

Chen, et al. Standards Track [Page 19]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

Viewの表示・非表示を切り替える方法

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る