RFC3079 日本語訳

3079 Deriving Keys for use with Microsoft Point-to-Point Encryption(MPPE). G. Zorn. March 2001. (Format: TXT=38905 bytes) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                            G. Zorn
Request for Comments: 3079                                 cisco Systems
Category: Informational                                       March 2001

Network Working Group G. Zorn Request for Comments: 3079 cisco Systems Category: Informational March 2001

 Deriving Keys for use with Microsoft Point-to-Point Encryption (MPPE)

Deriving Keys for use with Microsoft Point-to-Point Encryption (MPPE)

Status of this Memo

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

Abstract

   The Point-to-Point Protocol (PPP) provides a standard method for
   transporting multi-protocol datagrams over point-to-point links.

The Point-to-Point Protocol (PPP) provides a standard method for transporting multi-protocol datagrams over point-to-point links.

   The PPP Compression Control Protocol provides a method to negotiate
   and utilize compression protocols over PPP encapsulated links.

The PPP Compression Control Protocol provides a method to negotiate and utilize compression protocols over PPP encapsulated links.

   Microsoft Point to Point Encryption (MPPE) is a means of representing
   PPP packets in an encrypted form.  MPPE uses the RSA RC4 algorithm to
   provide data confidentiality.  The length of the session key to be
   used for initializing encryption tables can be negotiated.  MPPE
   currently supports 40-bit, 56-bit and 128-bit session keys.  MPPE
   session keys are changed frequently; the exact frequency depends upon
   the options negotiated, but may be every packet.  MPPE is negotiated
   within option 18 in the Compression Control Protocol.

Microsoft Point to Point Encryption (MPPE) is a means of representing PPP packets in an encrypted form. MPPE uses the RSA RC4 algorithm to provide data confidentiality. The length of the session key to be used for initializing encryption tables can be negotiated. MPPE currently supports 40-bit, 56-bit and 128-bit session keys. MPPE session keys are changed frequently; the exact frequency depends upon the options negotiated, but may be every packet. MPPE is negotiated within option 18 in the Compression Control Protocol.

   This document describes the method used to derive initial MPPE
   session keys from a variety of credential types.  It is expected that
   this memo will be updated whenever Microsoft defines a new key
   derivation method for MPPE, since its primary purpose is to provide
   an open, easily accessible reference for third-parties wishing to
   interoperate with Microsoft products.

This document describes the method used to derive initial MPPE session keys from a variety of credential types. It is expected that this memo will be updated whenever Microsoft defines a new key derivation method for MPPE, since its primary purpose is to provide an open, easily accessible reference for third-parties wishing to interoperate with Microsoft products.

   MPPE itself (including the protocol used to negotiate its use, the
   details of the encryption method used and the algorithm used to
   change session keys during a session) is described in RFC 3078.

MPPE itself (including the protocol used to negotiate its use, the details of the encryption method used and the algorithm used to change session keys during a session) is described in RFC 3078.

Zorn                         Informational                      [Page 1]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 1] RFC 3079 MPPE Key Derivation March 2001

Table of Contents

Table of Contents

   1.  Specification of Requirements ............................... 2
   2.  Deriving Session Keys from MS-CHAP Credentials .............. 2
   2.1.  Generating 40-bit Session Keys ............................ 3
   2.2.  Generating 56-bit Session Keys ............................ 3
   2.3.  Generating 128-bit Session Keys ........................... 4
   2.4.  Key Derivation Functions .................................. 5
   2.5.  Sample Key Derivations .................................... 6
   2.5.1.  Sample 40-bit Key Derivation ............................ 6
   2.5.2.  Sample 56-bit Key Derivation ............................ 6
   2.5.3.  Sample 128-bit Key Derivation ........................... 7
   3.  Deriving Session Keys from MS-CHAP-2 Credentials ............ 7
   3.1.  Generating 40-bit Session Keys ............................ 8
   3.2.  Generating 56-bit Session Keys ............................ 9
   3.3.  Generating 128-bit Session Keys ...........................10
   3.4.  Key Derivation Functions ..................................11
   3.5.  Sample Key Derivations ....................................13
   3.5.1.  Sample 40-bit Key Derivation ............................13
   3.5.2.  Sample 56-bit Key Derivation ............................14
   3.5.3.  Sample 128-bit Key Derivation ...........................15
   4.  Deriving MPPE Session Keys from TLS Session Keys ............16
   4.1.  Generating 40-bit Session Keys ............................16
   4.2.  Generating 56-bit Session Keys ............................17
   4.3.  Generating 128-bit Session Keys ...........................17
   5.  Security Considerations .....................................18
   5.1.  MS-CHAP Credentials .......................................18
   5.2.  EAP-TLS Credentials .......................................19
   6.  References ..................................................19
   7.  Acknowledgements ............................................20
   8.  Author's Address ............................................20
   9.  Full Copyright Statement ....................................21

1. Specification of Requirements ............................... 2 2. Deriving Session Keys from MS-CHAP Credentials .............. 2 2.1. Generating 40-bit Session Keys ............................ 3 2.2. Generating 56-bit Session Keys ............................ 3 2.3. Generating 128-bit Session Keys ........................... 4 2.4. Key Derivation Functions .................................. 5 2.5. Sample Key Derivations .................................... 6 2.5.1. Sample 40-bit Key Derivation ............................ 6 2.5.2. Sample 56-bit Key Derivation ............................ 6 2.5.3. Sample 128-bit Key Derivation ........................... 7 3. Deriving Session Keys from MS-CHAP-2 Credentials ............ 7 3.1. Generating 40-bit Session Keys ............................ 8 3.2. Generating 56-bit Session Keys ............................ 9 3.3. Generating 128-bit Session Keys ...........................10 3.4. Key Derivation Functions ..................................11 3.5. Sample Key Derivations ....................................13 3.5.1. Sample 40-bit Key Derivation ............................13 3.5.2. Sample 56-bit Key Derivation ............................14 3.5.3. Sample 128-bit Key Derivation ...........................15 4. Deriving MPPE Session Keys from TLS Session Keys ............16 4.1. Generating 40-bit Session Keys ............................16 4.2. Generating 56-bit Session Keys ............................17 4.3. Generating 128-bit Session Keys ...........................17 5. Security Considerations .....................................18 5.1. MS-CHAP Credentials .......................................18 5.2. EAP-TLS Credentials .......................................19 6. References ..................................................19 7. Acknowledgements ............................................20 8. Author's Address ............................................20 9. Full Copyright Statement ....................................21

1.  Specification of Requirements

1. Specification of Requirements

   In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
   "recommended", "SHOULD", and "SHOULD NOT" are to be interpreted as
   described in [6].

In this document, the key words "MAY", "MUST, "MUST NOT", "optional", "recommended", "SHOULD", and "SHOULD NOT" are to be interpreted as described in [6].

2.  Deriving Session Keys from MS-CHAP Credentials

2. Deriving Session Keys from MS-CHAP Credentials

   The Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP-1)
   [2] is a Microsoft-proprietary PPP [1] authentication protocol,
   providing the functionality to which LAN-based users are accustomed
   while integrating the encryption and hashing algorithms used on
   Windows networks.

The Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP-1) [2] is a Microsoft-proprietary PPP [1] authentication protocol, providing the functionality to which LAN-based users are accustomed while integrating the encryption and hashing algorithms used on Windows networks.

Zorn                         Informational                      [Page 2]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 2] RFC 3079 MPPE Key Derivation March 2001

   The following sections detail the methods used to derive initial
   session keys (40-, 56- and 128-bit) from MS-CHAP-1 credentials.

The following sections detail the methods used to derive initial session keys (40-, 56- and 128-bit) from MS-CHAP-1 credentials.

   Implementation Note

Implementation Note

      The initial session key in both directions is derived from the
      credentials of the peer that initiated the call and the challenge
      used (if any) is the challenge from the first authentication.
      This is true for both unilateral and bilateral authentication, as
      well as for each link in a multilink bundle.  In the multi-chassis
      multilink case, implementations are responsible for ensuring that
      the correct keys are generated on all participating machines.

The initial session key in both directions is derived from the credentials of the peer that initiated the call and the challenge used (if any) is the challenge from the first authentication. This is true for both unilateral and bilateral authentication, as well as for each link in a multilink bundle. In the multi-chassis multilink case, implementations are responsible for ensuring that the correct keys are generated on all participating machines.

2.1.  Generating 40-bit Session Keys

2.1. Generating 40-bit Session Keys

   MPPE uses a derivative of the peer's LAN Manager password as the 40-
   bit session key used for initializing the RC4 encryption tables.

MPPE uses a derivative of the peer's LAN Manager password as the 40- bit session key used for initializing the RC4 encryption tables.

   The first step is to obfuscate the peer's password using the
   LmPasswordHash() function (described in [2]).  The first 8 octets of
   the result are used as the basis for the session key generated in the
   following way:

The first step is to obfuscate the peer's password using the LmPasswordHash() function (described in [2]). The first 8 octets of the result are used as the basis for the session key generated in the following way:

/*
* PasswordHash is the basis for the session key
* SessionKey is a copy of PasswordHash and is the generative session key
* 8 is the length (in octets) of the key to be generated.
*
*/
Get_Key(PasswordHash, SessionKey, 8)

/* * PasswordHash is the basis for the session key * SessionKey is a copy of PasswordHash and is the generative session key * 8 is the length (in octets) of the key to be generated. * */ Get_Key(PasswordHash, SessionKey, 8)

/*
* The effective length of the key is reduced to 40 bits by
* replacing the first three bytes as follows:
*/
SessionKey[0] = 0xd1 ;
SessionKey[1] = 0x26 ;
SessionKey[2] = 0x9e ;

/* * The effective length of the key is reduced to 40 bits by * replacing the first three bytes as follows: */ SessionKey[0] = 0xd1 ; SessionKey[1] = 0x26 ; SessionKey[2] = 0x9e ;

2.2.  Generating 56-bit Session Keys

2.2. Generating 56-bit Session Keys

   MPPE uses a derivative of the peer's LAN Manager password as the 56-
   bit session key used for initializing the RC4 encryption tables.

MPPE uses a derivative of the peer's LAN Manager password as the 56- bit session key used for initializing the RC4 encryption tables.

   The first step is to obfuscate the peer's password using the
   LmPasswordHash() function (described in [2]).  The first 8 octets of
   the result are used as the basis for the session key generated in the
   following way:

The first step is to obfuscate the peer's password using the LmPasswordHash() function (described in [2]). The first 8 octets of the result are used as the basis for the session key generated in the following way:

Zorn                         Informational                      [Page 3]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 3] RFC 3079 MPPE Key Derivation March 2001

/*
* PasswordHash is the basis for the session key
* SessionKey is a copy of PasswordHash and is the generative session key
* 8 is the length (in octets) of the key to be generated.
*
*/
Get_Key(PasswordHash, SessionKey, 8)

/* * PasswordHash is the basis for the session key * SessionKey is a copy of PasswordHash and is the generative session key * 8 is the length (in octets) of the key to be generated. * */ Get_Key(PasswordHash, SessionKey, 8)

/*
* The effective length of the key is reduced to 56 bits by
* replacing the first byte as follows:
*/
SessionKey[0] = 0xd1 ;

/* * The effective length of the key is reduced to 56 bits by * replacing the first byte as follows: */ SessionKey[0] = 0xd1 ;

2.3.  Generating 128-bit Session Keys

2.3. Generating 128-bit Session Keys

   MPPE uses a derivative of the peer's Windows NT password as the 128-
   bit session key used for initializing encryption tables.

MPPE uses a derivative of the peer's Windows NT password as the 128- bit session key used for initializing encryption tables.

   The first step is to obfuscate the peer's password using
   NtPasswordHash() function as described in [2].  The first 16 octets
   of the result are then hashed again using the MD4 algorithm.  The
   first 16 octets of the second hash are used as the basis for the
   session key generated in the following way:

The first step is to obfuscate the peer's password using NtPasswordHash() function as described in [2]. The first 16 octets of the result are then hashed again using the MD4 algorithm. The first 16 octets of the second hash are used as the basis for the session key generated in the following way:

/*
* Challenge (as described in [9]) is sent by the PPP authenticator
* during authentication and is 8 octets long.
* NtPasswordHashHash is the basis for the session key.
* On return, InitialSessionKey contains the initial session
* key to be used.
*/
Get_Start_Key(Challenge, NtPasswordHashHash, InitialSessionKey)

/* * Challenge (as described in [9]) is sent by the PPP authenticator * during authentication and is 8 octets long. * NtPasswordHashHash is the basis for the session key. * On return, InitialSessionKey contains the initial session * key to be used. */ Get_Start_Key(Challenge, NtPasswordHashHash, InitialSessionKey)

/*
* CurrentSessionKey is a copy of InitialSessionKey
* and is the generative session key.
* Length (in octets) of the key to generate is 16.
*
*/
Get_Key(InitialSessionKey, CurrentSessionKey, 16)

/* * CurrentSessionKey is a copy of InitialSessionKey * and is the generative session key. * Length (in octets) of the key to generate is 16. * */ Get_Key(InitialSessionKey, CurrentSessionKey, 16)

Zorn                         Informational                      [Page 4]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 4] RFC 3079 MPPE Key Derivation March 2001

2.4.  Key Derivation Functions

2.4. Key Derivation Functions

   The following procedures are used to derive the session key.

The following procedures are used to derive the session key.

/*
 * Pads used in key derivation
 */

/* * Pads used in key derivation */

SHApad1[40] =
   {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHApad1[40] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHApad2[40] =
   {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

SHApad2[40] = {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

/*
 * SHAInit(), SHAUpdate() and SHAFinal() functions are an
 * implementation of Secure Hash Algorithm (SHA-1) [7]. These are
 * available in public domain or can be licensed from
 * RSA Data Security, Inc.
 *
 * 1) InitialSessionKey is 8 octets long for 56- and 40-bit
 *    session keys, 16 octets long for 128 bit session keys.
 * 2) CurrentSessionKey is same as InitialSessionKey when this
 *    routine is called for the first time for the session.
 */

/* * SHAInit(), SHAUpdate() and SHAFinal() functions are an * implementation of Secure Hash Algorithm (SHA-1) [7]. These are * available in public domain or can be licensed from * RSA Data Security, Inc. * * 1) InitialSessionKey is 8 octets long for 56- and 40-bit * session keys, 16 octets long for 128 bit session keys. * 2) CurrentSessionKey is same as InitialSessionKey when this * routine is called for the first time for the session. */

Get_Key(
IN     InitialSessionKey,
IN/OUT CurrentSessionKey
IN     LengthOfDesiredKey )
{
   SHAInit(Context)
   SHAUpdate(Context, InitialSessionKey, LengthOfDesiredKey)
   SHAUpdate(Context, SHAPad1, 40)
   SHAUpdate(Context, CurrentSessionKey, LengthOfDesiredKey)
   SHAUpdate(Context, SHAPad2, 40)
   SHAFinal(Context, Digest)
   memcpy(CurrentSessionKey, Digest, LengthOfDesiredKey)
}

Get_Key( IN InitialSessionKey, IN/OUT CurrentSessionKey IN LengthOfDesiredKey ) { SHAInit(Context) SHAUpdate(Context, InitialSessionKey, LengthOfDesiredKey) SHAUpdate(Context, SHAPad1, 40) SHAUpdate(Context, CurrentSessionKey, LengthOfDesiredKey) SHAUpdate(Context, SHAPad2, 40) SHAFinal(Context, Digest) memcpy(CurrentSessionKey, Digest, LengthOfDesiredKey) }

Get_Start_Key(
IN  Challenge,

Get_Start_Key( IN Challenge,

Zorn                         Informational                      [Page 5]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 5] RFC 3079 MPPE Key Derivation March 2001

IN  NtPasswordHashHash,
OUT InitialSessionKey)
{
   SHAInit(Context)
   SHAUpdate(Context, NtPasswordHashHash, 16)
   SHAUpdate(Context, NtPasswordHashHash, 16)
   SHAUpdate(Context, Challenge, 8)
   SHAFinal(Context, Digest)
   memcpy(InitialSessionKey, Digest, 16)
}

IN NtPasswordHashHash, OUT InitialSessionKey) { SHAInit(Context) SHAUpdate(Context, NtPasswordHashHash, 16) SHAUpdate(Context, NtPasswordHashHash, 16) SHAUpdate(Context, Challenge, 8) SHAFinal(Context, Digest) memcpy(InitialSessionKey, Digest, 16) }

2.5.  Sample Key Derivations

2.5. Sample Key Derivations

   The following sections illustrate 40-, 56- and 128-bit key
   derivations.  All intermediate values are in hexadecimal.

The following sections illustrate 40-, 56- and 128-bit key derivations. All intermediate values are in hexadecimal.

2.5.1.  Sample 40-bit Key Derivation

2.5.1. Sample 40-bit Key Derivation

   Initial Values
      Password = "clientPass"

Initial Values Password = "clientPass"

   Step 1: LmPasswordHash(Password, PasswordHash)
      PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

Step 1: LmPasswordHash(Password, PasswordHash) PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

   Step 2: Copy PasswordHash to SessionKey
      SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

Step 2: Copy PasswordHash to SessionKey SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

   Step 3: GetKey(PasswordHash, SessionKey, 8)
      SessionKey = d8 08 01 53 8c ec 4a 08

Step 3: GetKey(PasswordHash, SessionKey, 8) SessionKey = d8 08 01 53 8c ec 4a 08

   Step 4: Reduce the effective key length to 40 bits
      SessionKey = d1 26 9e 53 8c ec 4a 08

Step 4: Reduce the effective key length to 40 bits SessionKey = d1 26 9e 53 8c ec 4a 08

2.5.2.  Sample 56-bit Key Derivation

2.5.2. Sample 56-bit Key Derivation

   Initial Values
      Password = "clientPass"

Initial Values Password = "clientPass"

   Step 1: LmPasswordHash(Password, PasswordHash)
      PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

Step 1: LmPasswordHash(Password, PasswordHash) PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

   Step 2: Copy PasswordHash to SessionKey
      SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

Step 2: Copy PasswordHash to SessionKey SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

   Step 3: GetKey(PasswordHash, SessionKey, 8)
      SessionKey = d8 08 01 53 8c ec 4a 08

Step 3: GetKey(PasswordHash, SessionKey, 8) SessionKey = d8 08 01 53 8c ec 4a 08

Zorn                         Informational                      [Page 6]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 6] RFC 3079 MPPE Key Derivation March 2001

   Step 4: Reduce the effective key length to 56 bits
      SessionKey = d1 08 01 53 8c ec 4a 08

Step 4: Reduce the effective key length to 56 bits SessionKey = d1 08 01 53 8c ec 4a 08

2.5.3.  Sample 128-bit Key Derivation

2.5.3. Sample 128-bit Key Derivation

Initial Values
   Password = "clientPass"
   Challenge = 10 2d b5 df 08 5d 30 41

Initial Values Password = "clientPass" Challenge = 10 2d b5 df 08 5d 30 41

Step 1: NtPasswordHash(Password, PasswordHash)
   PasswordHash = 44 eb ba 8d 53 12 b8 d6 11 47 44 11 f5 69 89 ae

Step 1: NtPasswordHash(Password, PasswordHash) PasswordHash = 44 eb ba 8d 53 12 b8 d6 11 47 44 11 f5 69 89 ae

Step 2: PasswordHashHash = MD4(PasswordHash)
   PasswordHashHash = 41 c0 0c 58 4b d2 d9 1c 40 17 a2 a1 2f a5 9f 3f

Step 2: PasswordHashHash = MD4(PasswordHash) PasswordHashHash = 41 c0 0c 58 4b d2 d9 1c 40 17 a2 a1 2f a5 9f 3f

Step 3: GetStartKey(Challenge, PasswordHashHash, InitialSessionKey)
   InitialSessionKey = a8 94 78 50 cf c0 ac ca d1 78 9f b6 2d dc dd b0

Step 3: GetStartKey(Challenge, PasswordHashHash, InitialSessionKey) InitialSessionKey = a8 94 78 50 cf c0 ac ca d1 78 9f b6 2d dc dd b0

Step 4: Copy InitialSessionKey to CurrentSessionKey
   CurrentSessionKey = a8 94 78 50 cf c0 ac c1 d1 78 9f b6 2d dc dd b0

Step 4: Copy InitialSessionKey to CurrentSessionKey CurrentSessionKey = a8 94 78 50 cf c0 ac c1 d1 78 9f b6 2d dc dd b0

Step 5: GetKey(InitialSessionKey, CurrentSessionKey, 16)
   CurrentSessionKey = 59 d1 59 bc 09 f7 6f 1d a2 a8 6a 28 ff ec 0b 1e

Step 5: GetKey(InitialSessionKey, CurrentSessionKey, 16) CurrentSessionKey = 59 d1 59 bc 09 f7 6f 1d a2 a8 6a 28 ff ec 0b 1e

3.  Deriving Session Keys from MS-CHAP-2 Credentials

3. Deriving Session Keys from MS-CHAP-2 Credentials

   Version 2 of the Microsoft Challenge-Handshake Authentication
   Protocol (MS-CHAP-2) [8] is a Microsoft-proprietary PPP
   authentication protocol, providing the functionality to which LAN-
   based users are accustomed while integrating the encryption and
   hashing algorithms used on Windows networks.

Version 2 of the Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP-2) [8] is a Microsoft-proprietary PPP authentication protocol, providing the functionality to which LAN- based users are accustomed while integrating the encryption and hashing algorithms used on Windows networks.

   The following sections detail the methods used to derive initial
   session keys from MS-CHAP-2 credentials.  40-, 56- and 128-bit keys
   are all derived using the same algorithm from the authenticating
   peer's Windows NT password.  The only difference is in the length of
   the keys and their effective strength: 40- and 56-bit keys are 8
   octets in length, while 128-bit keys are 16 octets long.  Separate
   keys are derived for the send and receive directions of the session.

The following sections detail the methods used to derive initial session keys from MS-CHAP-2 credentials. 40-, 56- and 128-bit keys are all derived using the same algorithm from the authenticating peer's Windows NT password. The only difference is in the length of the keys and their effective strength: 40- and 56-bit keys are 8 octets in length, while 128-bit keys are 16 octets long. Separate keys are derived for the send and receive directions of the session.

   Implementation Note

Implementation Note

      The initial session keys in both directions are derived from the
      credentials of the peer that initiated the call and the challenges
      used are those from the first authentication.  This is true as
      well for each link in a multilink bundle.  In the multi-chassis
      multilink case, implementations are responsible for ensuring that
      the correct keys are generated on all participating machines.

The initial session keys in both directions are derived from the credentials of the peer that initiated the call and the challenges used are those from the first authentication. This is true as well for each link in a multilink bundle. In the multi-chassis multilink case, implementations are responsible for ensuring that the correct keys are generated on all participating machines.

Zorn                         Informational                      [Page 7]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 7] RFC 3079 MPPE Key Derivation March 2001

3.1.  Generating 40-bit Session Keys

3.1. Generating 40-bit Session Keys

   When used in conjunction with MS-CHAP-2 authentication, the initial
   MPPE session keys are derived from the peer's Windows NT password.

When used in conjunction with MS-CHAP-2 authentication, the initial MPPE session keys are derived from the peer's Windows NT password.

   The first step is to obfuscate the peer's password using
   NtPasswordHash() function as described in [8].

The first step is to obfuscate the peer's password using NtPasswordHash() function as described in [8].

      NtPasswordHash(Password, PasswordHash)

NtPasswordHash(Password, PasswordHash)

   The first 16 octets of the result are then hashed again using the MD4
   algorithm.

The first 16 octets of the result are then hashed again using the MD4 algorithm.

      PasswordHashHash = md4(PasswordHash)

PasswordHashHash = md4(PasswordHash)

   The first 16 octets of this second hash are used together with the
   NT- Response field from the MS-CHAP-2 Response packet [8] as the
   basis for the master session key:

The first 16 octets of this second hash are used together with the NT- Response field from the MS-CHAP-2 Response packet [8] as the basis for the master session key:

      GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

   Once the master key has been generated, it is used to derive two 40-
   bit session keys, one for sending and one for receiving:

Once the master key has been generated, it is used to derive two 40- bit session keys, one for sending and one for receiving:

      GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE)
      GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE) GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

   The master session keys are never used to encrypt or decrypt data;
   they are only used in the derivation of transient session keys.  The
   initial transient session keys are obtained by calling the function
   GetNewKeyFromSHA() (described in [3]):

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. The initial transient session keys are obtained by calling the function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
                                               ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey) GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8, ReceiveSessionKey)

   Next, the effective strength of both keys is reduced by setting the
   first three octets to known constants:

Next, the effective strength of both keys is reduced by setting the first three octets to known constants:

      SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1
      SendSessionKey[1] = ReceiveSessionKey[1] = 0x26
      SendSessionKey[2] = ReceiveSessionKey[2] = 0x9e

SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1 SendSessionKey[1] = ReceiveSessionKey[1] = 0x26 SendSessionKey[2] = ReceiveSessionKey[2] = 0x9e

   Finally, the RC4 tables are initialized using the new session keys:

Finally, the RC4 tables are initialized using the new session keys:

      rc4_key(SendRC4key, 8, SendSessionKey)
      rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

rc4_key(SendRC4key, 8, SendSessionKey) rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

Zorn                         Informational                      [Page 8]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 8] RFC 3079 MPPE Key Derivation March 2001

3.2.  Generating 56-bit Session Keys

3.2. Generating 56-bit Session Keys

   When used in conjunction with MS-CHAP-2 authentication, the initial
   MPPE session keys are derived from the peer's Windows NT password.

When used in conjunction with MS-CHAP-2 authentication, the initial MPPE session keys are derived from the peer's Windows NT password.

   The first step is to obfuscate the peer's password using
   NtPasswordHash() function as described in [8].

The first step is to obfuscate the peer's password using NtPasswordHash() function as described in [8].

      NtPasswordHash(Password, PasswordHash)

NtPasswordHash(Password, PasswordHash)

   The first 16 octets of the result are then hashed again using the MD4
   algorithm.

The first 16 octets of the result are then hashed again using the MD4 algorithm.

      PasswordHashHash = md4(PasswordHash)

PasswordHashHash = md4(PasswordHash)

   The first 16 octets of this second hash are used together with the
   NT-Response field from the MS-CHAP-2 Response packet [8] as the basis
   for the master session key:

The first 16 octets of this second hash are used together with the NT-Response field from the MS-CHAP-2 Response packet [8] as the basis for the master session key:

      GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

   Once the master key has been generated, it is used to derive two
   56-bit session keys, one for sending and one for receiving:

Once the master key has been generated, it is used to derive two 56-bit session keys, one for sending and one for receiving:

      GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE)
      GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE) GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

   The master session keys are never used to encrypt or decrypt data;
   they are only used in the derivation of transient session keys.  The
   initial transient session keys are obtained by calling the function
   GetNewKeyFromSHA() (described in [3]):

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. The initial transient session keys are obtained by calling the function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
                                               ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey) GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8, ReceiveSessionKey)

   Next, the effective strength of both keys is reduced by setting the
   first octet to a known constant:

Next, the effective strength of both keys is reduced by setting the first octet to a known constant:

      SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1

SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1

   Finally, the RC4 tables are initialized using the new session keys:

Finally, the RC4 tables are initialized using the new session keys:

      rc4_key(SendRC4key, 8, SendSessionKey)
      rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

rc4_key(SendRC4key, 8, SendSessionKey) rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

Zorn                         Informational                      [Page 9]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 9] RFC 3079 MPPE Key Derivation March 2001

3.3.  Generating 128-bit Session Keys

3.3. Generating 128-bit Session Keys

   When used in conjunction with MS-CHAP-2 authentication, the initial
   MPPE session keys are derived from the peer's Windows NT password.

When used in conjunction with MS-CHAP-2 authentication, the initial MPPE session keys are derived from the peer's Windows NT password.

   The first step is to obfuscate the peer's password using
   NtPasswordHash() function as described in [8].

The first step is to obfuscate the peer's password using NtPasswordHash() function as described in [8].

      NtPasswordHash(Password, PasswordHash)

NtPasswordHash(Password, PasswordHash)

   The first 16 octets of the result are then hashed again using the MD4
   algorithm.

The first 16 octets of the result are then hashed again using the MD4 algorithm.

      PasswordHashHash = md4(PasswordHash)

PasswordHashHash = md4(PasswordHash)

   The first 16 octets of this second hash are used together with the
   NT-Response field from the MS-CHAP-2 Response packet [8] as the basis
   for the master session key:

The first 16 octets of this second hash are used together with the NT-Response field from the MS-CHAP-2 Response packet [8] as the basis for the master session key:

      GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

   Once the master key has been generated, it is used to derive two
   128-bit master session keys, one for sending and one for receiving:

Once the master key has been generated, it is used to derive two 128-bit master session keys, one for sending and one for receiving:

GetAsymmetricStartKey(MasterKey, MasterSendKey, 16, TRUE, TRUE)
GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 16, FALSE, TRUE)

GetAsymmetricStartKey(MasterKey, MasterSendKey, 16, TRUE, TRUE) GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 16, FALSE, TRUE)

   The master session keys are never used to encrypt or decrypt data;
   they are only used in the derivation of transient session keys.  The
   initial transient session keys are obtained by calling the function
   GetNewKeyFromSHA() (described in [3]):

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. The initial transient session keys are obtained by calling the function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16,
                                                ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey) GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16, ReceiveSessionKey)

   Finally, the RC4 tables are initialized using the new session keys:

Finally, the RC4 tables are initialized using the new session keys:

      rc4_key(SendRC4key, 16, SendSessionKey)
      rc4_key(ReceiveRC4key, 16, ReceiveSessionKey)

rc4_key(SendRC4key, 16, SendSessionKey) rc4_key(ReceiveRC4key, 16, ReceiveSessionKey)

Zorn                         Informational                     [Page 10]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 10] RFC 3079 MPPE Key Derivation March 2001

3.4.  Key Derivation Functions

3.4. Key Derivation Functions

   The following procedures are used to derive the session key.

The following procedures are used to derive the session key.

/*
 * Pads used in key derivation
 */

/* * Pads used in key derivation */

SHSpad1[40] =
   {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHSpad1[40] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHSpad2[40] =
   {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
    0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

SHSpad2[40] = {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

/*
 * "Magic" constants used in key derivations
 */

/* * "Magic" constants used in key derivations */

Magic1[27] =
   {0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74,
    0x68, 0x65, 0x20, 0x4d, 0x50, 0x50, 0x45, 0x20, 0x4d,
    0x61, 0x73, 0x74, 0x65, 0x72, 0x20, 0x4b, 0x65, 0x79};

Magic1[27] = {0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x4d, 0x50, 0x50, 0x45, 0x20, 0x4d, 0x61, 0x73, 0x74, 0x65, 0x72, 0x20, 0x4b, 0x65, 0x79};

Magic2[84] =
   {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69,
    0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20,
    0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
    0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6b, 0x65, 0x79,
    0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
    0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73, 0x69, 0x64, 0x65,
    0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
    0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20,
    0x6b, 0x65, 0x79, 0x2e};

Magic2[84] = {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69, 0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20, 0x6b, 0x65, 0x79, 0x2e};

Magic3[84] =
   {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69,
    0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20,
    0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
    0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20,
    0x6b, 0x65, 0x79, 0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68,
    0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73,
    0x69, 0x64, 0x65, 0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73,

Magic3[84] = {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69, 0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73,

Zorn                         Informational                     [Page 11]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 11] RFC 3079 MPPE Key Derivation March 2001

    0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20,
    0x6b, 0x65, 0x79, 0x2e};

0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6b, 0x65, 0x79, 0x2e};

   GetMasterKey(
   IN  16-octet  PasswordHashHash,
   IN  24-octet  NTResponse,
   OUT 16-octet  MasterKey )
   {
      20-octet Digest

GetMasterKey( IN 16-octet PasswordHashHash, IN 24-octet NTResponse, OUT 16-octet MasterKey ) { 20-octet Digest

      ZeroMemory(Digest, sizeof(Digest));

ZeroMemory(Digest, sizeof(Digest));

      /*
       * SHSInit(), SHSUpdate() and SHSFinal()
       * are an implementation of the Secure Hash Standard [7].
       */

/* * SHSInit(), SHSUpdate() and SHSFinal() * are an implementation of the Secure Hash Standard [7]. */

      SHSInit(Context);
      SHSUpdate(Context, PasswordHashHash, 16);
      SHSUpdate(Context, NTResponse, 24);
      SHSUpdate(Context, Magic1, 27);
      SHSFinal(Context, Digest);

SHSInit(Context); SHSUpdate(Context, PasswordHashHash, 16); SHSUpdate(Context, NTResponse, 24); SHSUpdate(Context, Magic1, 27); SHSFinal(Context, Digest);

      MoveMemory(MasterKey, Digest, 16);
   }

MoveMemory(MasterKey, Digest, 16); }

   VOID
   GetAsymetricStartKey(
   IN   16-octet      MasterKey,
   OUT  8-to-16 octet SessionKey,
   IN   INTEGER       SessionKeyLength,
   IN   BOOLEAN       IsSend,
   IN   BOOLEAN       IsServer )
   {

VOID GetAsymetricStartKey( IN 16-octet MasterKey, OUT 8-to-16 octet SessionKey, IN INTEGER SessionKeyLength, IN BOOLEAN IsSend, IN BOOLEAN IsServer ) {

      20-octet Digest;

20-octet Digest;

      ZeroMemory(Digest, 20);

ZeroMemory(Digest, 20);

      if (IsSend) {
         if (IsServer) {
            s = Magic3
         } else {
            s = Magic2
         }
      } else {
         if (IsServer) {

if (IsSend) { if (IsServer) { s = Magic3 } else { s = Magic2 } } else { if (IsServer) {

Zorn                         Informational                     [Page 12]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 12] RFC 3079 MPPE Key Derivation March 2001

            s = Magic2
         } else {
            s = Magic3
         }
      }

s = Magic2 } else { s = Magic3 } }

      /*
       * SHSInit(), SHSUpdate() and SHSFinal()
       * are an implementation of the Secure Hash Standard [7].
       */

/* * SHSInit(), SHSUpdate() and SHSFinal() * are an implementation of the Secure Hash Standard [7]. */

      SHSInit(Context);
      SHSUpdate(Context, MasterKey, 16);
      SHSUpdate(Context, SHSpad1, 40);
      SHSUpdate(Context, s, 84);
      SHSUpdate(Context, SHSpad2, 40);
      SHSFinal(Context, Digest);

SHSInit(Context); SHSUpdate(Context, MasterKey, 16); SHSUpdate(Context, SHSpad1, 40); SHSUpdate(Context, s, 84); SHSUpdate(Context, SHSpad2, 40); SHSFinal(Context, Digest);

      MoveMemory(SessionKey, Digest, SessionKeyLength);
   }

MoveMemory(SessionKey, Digest, SessionKeyLength); }

3.5.  Sample Key Derivations

3.5. Sample Key Derivations

   The following sections illustrate 40-, 56- and 128-bit key
   derivations. All intermediate values are in hexadecimal.

The following sections illustrate 40-, 56- and 128-bit key derivations. All intermediate values are in hexadecimal.

3.5.1.  Sample 40-bit Key Derivation

3.5.1. Sample 40-bit Key Derivation

Initial Values
   UserName = "User"
            =  55 73 65 72

Initial Values UserName = "User" = 55 73 65 72

   Password = "clientPass"
            = 63 00 6C 00 69 00 65 00 6E 00
              74 00 50 00 61 00 73 00 73 00

Password = "clientPass" = 63 00 6C 00 69 00 65 00 6E 00 74 00 50 00 61 00 73 00 73 00

   AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
                            60 21 32 26 26 28
   PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C 60 21 32 26 26 28 PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

   Challenge = D0 2E 43 86 BC E9 12 26

Challenge = D0 2E 43 86 BC E9 12 26

   NT-Response =
   82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
   11 4A 3D 85 D6 DF

NT-Response = 82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33 11 4A 3D 85 D6 DF

Step 1: NtPasswordHash(Password, PasswordHash)
   PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

Step 1: NtPasswordHash(Password, PasswordHash) PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

Zorn                         Informational                     [Page 13]

RFC 3079                  MPPE Key Derivation                 March 2001

Zorn Informational [Page 13] RFC 3079 MPPE Key Derivation March 2001

Step 2: PasswordHashHash = MD4(PasswordHash)
   PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

Step 2: PasswordHashHash = MD4(PasswordHash) PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

Step 3: Derive the master key (GetMasterKey())
   MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

Step 3: Derive the master key (GetMasterKey()) MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

Step 4: Derive the master send session key (GetAsymmetricStartKey())
   SendStartKey40 = 8B 7C DC 14 9B 99 3A 1B

Step 4: Derive the master send session key (GetAsymmetricStartKey()) SendStartKey40 = 8B 7C DC 14 9B 99 3A 1B

Step 5: Derive the initial send session key (GetNewKeyFromSHA())
   SendSessionKey40 = D1 26 9E C4 9F A6 2E 3E

ステップ5: 派生、イニシャルがセッションキーを送る、(GetNewKeyFromSHA()) SendSessionKey40はD1 26 9EのC4 9F A6 2Eと3E等しいです。

Sample Encrypted Message
   rc4(SendSessionKey40, "test message") = 92 91 37 91 7E 58 03 D6
                                           68 D7 58 98

サンプルEncrypted Message rc4(SendSessionKey40、「テストメッセージ」)は92 91 37 91 7E58 03D6 68D7 58 98と等しいです。

3.5.2.  Sample 56-bit Key Derivation

3.5.2. 56ビットの主要な派生を抽出してください。

Initial Values
   UserName = "User"
            =  55 73 65 72

初期の値ユーザ名=「ユーザ」=55 73 65 72

   Password = "clientPass"
            = 63 00 6C 00 69 00 65 00 6E 00 74 00 50
              00 61 00 73 00 73 00

パスワード=「clientPass」=63 00 6C00 69 00 65 00 6E00 74 00 50 00 61 00 73 00 73 00

   AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
                            60 21 32 26 26 28
   PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

AuthenticatorChallenge=5B 5D7C7D 7B3F2F3 3EのC2C60 21 32 26 26 28PeerChallengeは21 40 23 24 25 5 26Eの2A28 29 5F2B 3A33と7 7C E等しいです。

   Challenge = D0 2E 43 86 BC E9 12 26

挑戦はD0 2E紀元前43 86年Eの9 12 26と等しいです。

   NT-Response =
   82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
   11 4A 3D 85 D6 DF

NT-応答は82 30 9EのCD8D70 8B5E A0 8F AA39 81CD83 54 42 33 11 4A3D85D6 DFと等しいです。

Step 1: NtPasswordHash(Password, PasswordHash)
   PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

ステップ1: NtPasswordHash(パスワード、PasswordHash)PasswordHashは44EB Ba8D53 12B8 D6 11 47 44 11F5 69 89AEと等しいです。

Step 2: PasswordHashHash = MD4(PasswordHash)
   PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

ステップ2: PasswordHashHash=MD4(PasswordHash)PasswordHashHashは41C0 0C58 4B D2 D9 1C40 17A2 A1 2F A5 9Fと3F等しいです。

Step 3: Derive the master key (GetMasterKey())
   MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

ステップ3: マスターキーを引き出してください、(GetMasterKey()) MasterKeyはFD EC E3 71 7A8C83 8C B3 88E5 27AE3C DD31と等しいです。

Step 4: Derive the master send session key (GetAsymmetricStartKey())
   SendStartKey56 = 8B 7C DC 14 9B 99 3A 1B

ステップ4: 派生、マスターがセッションキーを送る、(GetAsymmetricStartKey()) SendStartKey56は8B7C DC14 9B99 3A 1Bと等しいです。

Zorn                         Informational                     [Page 14]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[14ページ]のRFC3079MPPE

Step 5: Derive the initial send session key (GetNewKeyFromSHA())
   SendSessionKey56 = D1 5C 00 C4 9F A6 2E 3E

ステップ5: 派生、イニシャルがセッションキーを送る、(GetNewKeyFromSHA()) SendSessionKey56はD1 5C00C4 9F A6 2Eと3E等しいです。

Sample Encrypted Message
   rc4(SendSessionKey40, "test message") = 3F 10 68 33 FA 44 8D
                                           A8 42 BC 57 58

サンプルEncrypted Message rc4(SendSessionKey40、「テストメッセージ」)は3F10 68 33FA44 8D A8 42紀元前57 58年と等しいです。

3.5.3.  Sample 128-bit Key Derivation

3.5.3. 128ビットの主要な派生を抽出してください。

Initial Values
   UserName = "User"
            =  55 73 65 72

初期の値ユーザ名=「ユーザ」=55 73 65 72

   Password = "clientPass"
            = 63 00 6C 00 69 00 65 00 6E 00
              74 00 50 00 61 00 73 00 73 00

パスワード=「clientPass」=63 00 6C00 69 00 65 00 6E00 74 00 50 00 61 00 73 00 73 00

   AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
                            60 21 32 26 26 28

AuthenticatorChallengeは5B 5D7C7D 7B3F2F3 3EのC2C60 21 32 26 26 28と等しいです。

   PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

PeerChallengeは21 40 23 24 25 5 26Eの2A28 29 5F2B 3A33と7 7C E等しいです。

   Challenge = D0 2E 43 86 BC E9 12 26

挑戦はD0 2E紀元前43 86年Eの9 12 26と等しいです。

   NT-Response =
   82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
   11 4A 3D 85 D6 DF

NT-応答は82 30 9EのCD8D70 8B5E A0 8F AA39 81CD83 54 42 33 11 4A3D85D6 DFと等しいです。

Step 1: NtPasswordHash(Password, PasswordHash)
   PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

ステップ1: NtPasswordHash(パスワード、PasswordHash)PasswordHashは44EB Ba8D53 12B8 D6 11 47 44 11F5 69 89AEと等しいです。

Step 2: PasswordHashHash = MD4(PasswordHash)
   PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

ステップ2: PasswordHashHash=MD4(PasswordHash)PasswordHashHashは41C0 0C58 4B D2 D9 1C40 17A2 A1 2F A5 9Fと3F等しいです。

Step 2: Derive the master key (GetMasterKey())
   MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

ステップ2: マスターキーを引き出してください、(GetMasterKey()) MasterKeyはFD EC E3 71 7A8C83 8C B3 88E5 27AE3C DD31と等しいです。

Step 3: Derive the send master session key (GetAsymmetricStartKey())

ステップ3: 派生、マスターセッションキーを送ってください。(GetAsymmetricStartKey())

   SendStartKey128 = 8B 7C DC 14 9B 99 3A 1B A1 18 CB 15 3F 56 DC CB

SendStartKey128は8B7C DC14 9B99 3A 1B A1 18CB15 3Fの56DC CBと等しいです。

Step 4: Derive the initial send session key (GetNewKeyFromSHA())
   SendSessionKey128 = 40 5C B2 24 7A 79 56 E6 E2 11 00 7A E2 7B 22 D4

ステップ4: 派生、イニシャルがセッションキーを送る、(GetNewKeyFromSHA()) SendSessionKey128は40 5C B2 24 7A79 56 6EのE2 11 00 7A E2 7B22D4と等しいです。

Sample Encrypted Message
  rc4(SendSessionKey128, "test message") = 81 84 83 17 DF 68
                                           84 62 72 FB 5A BE

サンプルEncrypted Message rc4(SendSessionKey128、「テストメッセージ」)は81 84 83 17DF68 84 62 72FB 5A BEと等しいです。

Zorn                         Informational                     [Page 15]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[15ページ]のRFC3079MPPE

4.  Deriving MPPE Session Keys from TLS Session Keys

4. TLSセッションキーからMPPEセッションキーを得ます。

   The Extensible Authentication Protocol (EAP) [10] is a PPP extension
   that provides support  for  additional  authentication methods within
   PPP.  Transport  Level  Security  (TLS) [11] provides for mutual
   authentication, integrity-protected ciphersuite negotiation and key
   exchange between two  endpoints.  EAP-TLS [12] is an EAP
   authentication type which allows the use of TLS within the PPP
   authentication framework.  The following sections describe the
   methods used to derive initial session keys from TLS session keys.
   56-, 40- and 128-bit keys are derived using the same algorithm.  The
   only difference is in the length of the keys and their effective
   strength: 56- and 40-bit keys are 8 octets in length, while 128-bit
   keys are 16 octets long.  Separate keys are derived for the send and
   receive directions of the session.

拡張認証プロトコル(EAP)[10]はPPPの中の追加認証方法のサポートを提供するPPP拡張子です。 輸送Level Security(TLS)[11]は2つの終点の間の互いの認証、保全で保護されたciphersuite交渉、および主要な交換に備えます。 EAP-TLS[12]はPPP認証枠組みの中でTLSの使用を許すEAP認証タイプです。 以下のセクションはTLSセッションキーから初期のセッションキーを得るのに使用される方法を説明します。 56、40、および128ビットのキーは、同じアルゴリズムを使用することで引き出されます。 唯一の違いがキーの長さとそれらの有効な強さにあります: 56と40ビットのキーは長さが8つの八重奏ですが、長い間128ビットのキーは16の八重奏です。 別々のキーが引き出される、セッションの指示を送って、受け取ってください。

4.1.  Generating 40-bit Session Keys

4.1. 40ビットのセッションキーを発生させます。

   When MPPE is used in conjunction with EAP-TLS authentication, the TLS
   master secret is used as the master session key.

MPPEがEAP-TLS認証に関連して使用されるとき、TLSマスター秘密はマスターセッションキーとして使用されます。

   The algorithm used to derive asymmetrical master session keys from
   the TLS master secret is described in [12].  The master session keys
   are never used to encrypt or decrypt data; they are only used in the
   derivation of transient session keys.

TLSマスター秘密から非対称的なマスターセッションキーを得るのに使用されるアルゴリズムは[12]で説明されます。 マスターセッションキーはデータをコード化するか、または解読するのに決して使用されません。 それらは一時的なセッションキーの派生に使用されるだけです。

   Implementation Note

実現注意

      If the asymmetrical master keys are less than 8 octets in length,
      they MUST be padded on the left with zeroes before being used to
      derive the initial transient session keys.  Conversely, if the
      asymmetrical master keys are more than 8 octets in length, they
      must be truncated to 8 octets before being used to derive the
      initial transient session keys.

非対称的なマスターキーが長さが8つ未満の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に左でゼロでそれらを水増ししなければなりません。 逆に、非対称的なマスターキーが長さが8つ以上の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に8つの八重奏にそれらに先端を切らせなければなりません。

   The initial transient session keys are obtained by calling the
   function GetNewKeyFromSHA() (described in [3]):

機能をGetNewKeyFromSHA()と呼ぶことによって初期の一時的なセッションキーを入手する、([3])で説明される:

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey、MasterSendKey、8、SendSessionKey)GetNewKeyFromSHA(MasterReceiveKey、MasterReceiveKey、8、ReceiveSessionKey)

   Next, the effective strength of both keys is reduced by setting the
   first three octets to known constants:

次に、両方のキーの有効な強さは最初の3つの八重奏を知られている定数に設定することによって、減少します:

      SendSessionKey[0] = ReceiveSessionKey[0] = 0xD1
      SendSessionKey[1] = ReceiveSessionKey[1] = 0x26
      SendSessionKey[2] = ReceiveSessionKey[2] = 0x9E

0×26SendSessionKey[0]=ReceiveSessionKey[0]=0xD1 SendSessionKey[1]=ReceiveSessionKey[1]=SendSessionKey[2]=ReceiveSessionKey[2]は0x9Eと等しいです。

Zorn                         Informational                     [Page 16]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[16ページ]のRFC3079MPPE

   Finally, the RC4 tables are initialized using the new session keys:

最終的に、RC4テーブルは新しいセッションキーを使用することで初期化されます:

      rc4_key(SendRC4key, 8, SendSessionKey)
      rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

rc4の_の主要な(SendRC4key、8、SendSessionKey)rc4_キー(ReceiveRC4key、8、ReceiveSessionKey)

4.2.  Generating 56-bit Session Keys

4.2. 56ビットのセッションキーを発生させます。

   When MPPE is used in conjunction with EAP-TLS authentication, the TLS
   master secret is used as the master session key.

MPPEがEAP-TLS認証に関連して使用されるとき、TLSマスター秘密はマスターセッションキーとして使用されます。

   The algorithm used to derive asymmetrical master session keys from
   the TLS master secret is described in [12].  The master session keys
   are never used to encrypt or decrypt data; they are only used in the
   derivation of transient session keys.

TLSマスター秘密から非対称的なマスターセッションキーを得るのに使用されるアルゴリズムは[12]で説明されます。 マスターセッションキーはデータをコード化するか、または解読するのに決して使用されません。 それらは一時的なセッションキーの派生に使用されるだけです。

   Implementation Note

実現注意

      If the asymmetrical master keys are less than 8 octets in length,
      they MUST be padded on the left with zeroes before being used to
      derive the initial transient session keys.  Conversely, if the
      asymmetrical master keys are more than 8 octets in length, they
      must be truncated to 8 octets before being used to derive the
      initial transient session keys.

非対称的なマスターキーが長さが8つ未満の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に左でゼロでそれらを水増ししなければなりません。 逆に、非対称的なマスターキーが長さが8つ以上の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に8つの八重奏にそれらに先端を切らせなければなりません。

   The initial transient session keys are obtained by calling the
   function GetNewKeyFromSHA() (described in [3]):

機能をGetNewKeyFromSHA()と呼ぶことによって初期の一時的なセッションキーを入手する、([3])で説明される:

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey、MasterSendKey、8、SendSessionKey)GetNewKeyFromSHA(MasterReceiveKey、MasterReceiveKey、8、ReceiveSessionKey)

   Next, the effective strength of both keys is reduced by setting the
   initial octet to a known constant:

次に、両方のキーの有効な強さは知られている定数に初期の八重奏を設定することによって、減少します:

      SendSessionKey[0] = ReceiveSessionKey[0] = 0xD1

SendSessionKey[0]=ReceiveSessionKey[0]は0xD1と等しいです。

   Finally, the RC4 tables are initialized using the new session keys:

最終的に、RC4テーブルは新しいセッションキーを使用することで初期化されます:

      rc4_key(SendRC4key, 8, SendSessionKey)
      rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

rc4の_の主要な(SendRC4key、8、SendSessionKey)rc4_キー(ReceiveRC4key、8、ReceiveSessionKey)

4.3.  Generating 128-bit Session Keys

4.3. 128ビットのセッションキーを発生させます。

   When MPPE is used in conjunction with EAP-TLS authentication, the TLS
   master secret is used as the master session key.

MPPEがEAP-TLS認証に関連して使用されるとき、TLSマスター秘密はマスターセッションキーとして使用されます。

Zorn                         Informational                     [Page 17]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[17ページ]のRFC3079MPPE

   The algorithm used to derive asymmetrical master session keys from
   the TLS master secret is described in [12].  Note that the send key
   on one side is the receive key on the other.

TLSマスター秘密から非対称的なマスターセッションキーを得るのに使用されるアルゴリズムは[12]で説明されます。 それに注意してください、発信、半面の上のキーがそう、もう片方でキーを受けてください。

   The master session keys are never used to encrypt or decrypt data;
   they are only used in the derivation of transient session keys.

マスターセッションキーはデータをコード化するか、または解読するのに決して使用されません。 それらは一時的なセッションキーの派生に使用されるだけです。

   Implementation Note

実現注意

      If the asymmetrical master keys are less than 16 octets in length,
      they MUST be padded on the left with zeroes before being used to
      derive the initial transient session keys.  Conversely, if the
      asymmetrical master keys are more than 16 octets in length, they
      must be truncated to 16 octets before being used to derive the
      initial transient session keys.

非対称的なマスターキーが長さが16未満の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に左でゼロでそれらを水増ししなければなりません。 逆に、非対称的なマスターキーが長さが16以上の八重奏であるなら、初期の一時的なセッションキーを引き出すのに使用される前に16の八重奏にそれらに先端を切らせなければなりません。

   The initial transient session keys are obtained by calling the
   function GetNewKeyFromSHA() (described in [3]):

機能をGetNewKeyFromSHA()と呼ぶことによって初期の一時的なセッションキーを入手する、([3])で説明される:

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16,
ReceiveSessionKey)

GetNewKeyFromSHA(MasterSendKey、MasterSendKey、16、SendSessionKey)GetNewKeyFromSHA(MasterReceiveKey、MasterReceiveKey、16、ReceiveSessionKey)

   Finally, the RC4 tables are initialized using the new session keys:

最終的に、RC4テーブルは新しいセッションキーを使用することで初期化されます:

      rc4_key(SendRC4key, 16, SendSessionKey)
      rc4_key(ReceiveRC4key, 16, ReceiveSessionKey)

rc4の_の主要な(SendRC4key、16、SendSessionKey)rc4_キー(ReceiveRC4key、16、ReceiveSessionKey)

5.  Security Considerations

5. セキュリティ問題

5.1.  MS-CHAP Credentials

5.1. やつCredentialsさん

   Because of the way in which 40-bit keys are derived from MS-CHAP-1
   credentials, the initial 40-bit session key will be identical in all
   sessions established under the same peer credentials.  For this
   reason, and because RC4 with a 40-bit key length is believed to be a
   relatively weak cipher, peers SHOULD NOT use 40-bit keys derived from
   the LAN Manager password hash (as described above) if it can be
   avoided.

40ビットのキーがさん-CHAP-1信任状から得られる方法のために、初期の40ビットのセッションキーは同じ同輩信任状の下で確立されたすべてのセッションで同じになるでしょう。 この理由、40ビットのキー長があるRC4が比較的弱い暗号であると信じられているので、同輩SHOULD NOTはそれを避けることができるならLANマネージャパスワード細切れ肉料理(上で説明されるように)から得られた40ビットのキーを使用します。

   Since the MPPE session keys are derived from user passwords (in the
   MS- CHAP-1 and MS-CHAP-2 cases), care should be taken to ensure the
   selection of strong passwords and passwords should be changed
   frequently.

ユーザパスワード(CHAP-1さんとさん-CHAP-2場合における)からMPPEセッションキーを得るので、強いパスワードの品揃えを確実にするために注意するべきであり、頻繁にパスワードを変えるべきです。

Zorn                         Informational                     [Page 18]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[18ページ]のRFC3079MPPE

5.2.  EAP-TLS Credentials

5.2. EAP-TLS信任状

   The strength of the session keys is dependent upon the security of
   the TLS protocol.

セッションキーの強さはTLSプロトコルのセキュリティに依存しています。

   The EAP server may be on a separate machine from the PPP
   authenticator; if this is the case, adequate care must be taken in
   the transmission of the EAP-TLS master keys to the authenticator.

EAPサーバは別々のマシンの上でPPP固有識別文字から来ているかもしれません。 これがそうであるなら、EAP-TLSマスターキーのトランスミッションで適切な注意を固有識別文字に払わなければなりません。

6.  References

6. 参照

   [1]  Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
        1661, July 1994.

[1] シンプソン、W.、「二地点間プロトコル(ppp)」、STD51、RFC1661、1994年7月。

   [2]  Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions", RFC 2433,
        October 1998.

[2] ゾルンとG.とS.コッブ、「マイクロソフトpppやつ拡大」、RFC2433、1998年10月。

   [3]  Pall, G. and G. Zorn, "Microsoft Point-to-Point Encryption
        (MPPE) RFC 3078, March 2001.

[3] 祭服とG.とG.ゾルン、「マイクロソフトの二地点間暗号化(MPPE)RFC3078、2001年3月。」

   [4]  RC4 is a proprietary encryption algorithm available under
        license from RSA Data Security Inc.  For licensing information,
        contact:
               RSA Data Security, Inc.
               100 Marine Parkway
               Redwood City, CA 94065-1031

[4] RC4は情報、接触を認可するRSA Data Security株式会社Forからライセンスの下で利用可能な独占暗号化アルゴリズムです: 海洋のParkwayレッドウッドシティー、RSA Data Security Inc.100カリフォルニア94065-1031

   [5]  Pall, G., "Microsoft Point-to-Point Compression (MPPC)
        Protocol", RFC 2118, March 1997.

[5] 祭服、G.、「マイクロソフトの二地点間圧縮(MPPC)プロトコル」、RFC2118、1997年3月。

   [6]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

[6] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [7]  "Secure Hash Standard", Federal Information Processing Standards
        Publication 180-1, National Institute of Standards and
        Technology, April 1995.

[7]「安全な細切れ肉料理規格」、連邦政府の情報処理規格公表180-1、米国商務省標準技術局、1995年4月。

   [8]  Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759,
        January 2000.

[8] ゾルン、G.、「マイクロソフトpppやつ拡大、バージョン2インチ、RFC2759、2000年1月。」

   [9]  Simpson, W., "PPP Challenge Handshake Authentication Protocol
        (CHAP)", RFC 1994, August 1996.

[9] シンプソン、W.、「pppチャレンジハンドシェイク式認証プロトコル(やつ)」、RFC1994、1996年8月。

   [10] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication
        Protocol (EAP)", RFC 2284, March 1998.

[10]BlunkとL.と1998年のJ.Vollbrecht、「ppp拡張認証プロトコル(EAP)」、RFC2284行進。

Zorn                         Informational                     [Page 19]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[19ページ]のRFC3079MPPE

   [11] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
        2246, January 1999.

[11] Dierks、T.、およびC.アレン、「TLSは1999年1月にバージョン1インチ、RFC2246について議定書の中で述べます」。

   [12] Aboba, B. and D. Simon, "PPP EAP TLS Authentication Protocol",
        RFC 2716, October 1999.

[12]AbobaとB.とD.サイモン、「ppp EAP TLS認証プロトコル」、RFC2716、1999年10月。

7.  Acknowledgements

7. 承認

   Anthony Bell, Richard B. Ward, Terence Spies and Thomas Dimitri, all
   of Microsoft Corporation, significantly contributed to the design and
   development of MPPE.

アンソニー・ベル、リチャード・B.ウォード、テレンス・シュピース、およびトーマスディミトリ(マイクロソフト社のすべて)はMPPEのデザインと開発にかなり貢献しました。

   Additional thanks to Robert Friend, Joe Davies, Jody Terrill, Archie
   Cobbs, Mark Deuser, Vijay Baliga, Brad Robel-Forrest and Jeff Haag
   for useful feedback.

役に立つフィードバックのためのロバートFriend、ジョー・デイヴィース、ジョディー・テリル、Archieコッブス、マークDeuser、ビジェイBaliga、ブラッド・Robel-フォレスト、およびジェフ・ハーグへの追加感謝。

   The technical portions of this memo were completed while the author
   was employed by Microsoft Corporation.

作者はマイクロソフト社によって雇われましたが、このメモの技術的な部分は完成しました。

8.  Author's Address

8. 作者のアドレス

   Questions about this memo can also be directed to:

また、このメモに関する質問による以下のことよう指示できます。

   Glen Zorn
   cisco Systems
   500 108th Avenue N.E.
   Suite 500
   Bellevue, Washington 98004
   USA

GlenゾルンコクチマスSystems500第108アベニュー東北Suite500ワシントン98004・ベルビュー(米国)

   Phone: +1 425 438 8218
   FAX:   +1 425 438 1848
   EMail: gwz@cisco.com

以下に電話をしてください。 +1 425 438、8218Fax: +1 1848年の425 438メール: gwz@cisco.com

Zorn                         Informational                     [Page 20]

RFC 3079                  MPPE Key Derivation                 March 2001

2001年の派生行進のときに主要なゾルン情報[20ページ]のRFC3079MPPE

9.  Full Copyright Statement

9. 完全な著作権宣言文

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Copyright(C)インターネット協会(2001)。 All rights reserved。

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

それに関するこのドキュメントと翻訳は、コピーして、それが批評するか、またはそうでなければわかる他のもの、および派生している作品に提供するか、または準備されているかもしれなくて、コピーされて、発行されて、全体か一部広げられた実現を助けるかもしれません、どんな種類の制限なしでも、上の版権情報とこのパラグラフがそのようなすべてのコピーと派生している作品の上に含まれていれば。 しかしながら、このドキュメント自体は何らかの方法で変更されないかもしれません、インターネット協会か他のインターネット組織の版権情報か参照を取り除くのなどように、それを英語以外の言語に翻訳するのが著作権のための手順がインターネットStandardsの過程で定義したどのケースに従わなければならないか、必要に応じてさもなければ、インターネット標準を開発する目的に必要であるのを除いて。

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

上に承諾された限られた許容は、永久であり、インターネット協会、後継者または案配によって取り消されないでしょう。

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとそして、「そのままで」という基礎とインターネットの振興発展を目的とする組織に、インターネット・エンジニアリング・タスク・フォースが速達の、または、暗示しているすべての保証を放棄するかどうかというここにことであり、他を含んでいて、含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Zorn                         Informational                     [Page 21]

ゾルンInformationalです。[21ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

CONCAT関数 c

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る