RFC3955 日本語訳

3955 Evaluation of Candidate Protocols for IP Flow Information Export(IPFIX). S. Leinen. October 2004. (Format: TXT=55143 bytes) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                          S. Leinen
Request for Comments: 3955                                        SWITCH
Category: Informational                                     October 2004

Network Working Group S. Leinen Request for Comments: 3955 SWITCH Category: Informational October 2004

                 Evaluation of Candidate Protocols for
                   IP Flow Information Export (IPFIX)

Evaluation of Candidate Protocols for IP Flow Information Export (IPFIX)

Status of this Memo

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (2004).

Copyright (C) The Internet Society (2004).

Abstract

Abstract

   This document contains an evaluation of the five candidate protocols
   for an IP Flow Information Export (IPFIX) protocol, based on the
   requirements document produced by the IPFIX Working Group.  The
   protocols are characterized and grouped in broad categories, and
   evaluated against specific requirements.  Finally, a recommendation
   is made to select the NetFlow v9 protocol as the basis for the IPFIX
   specification.

This document contains an evaluation of the five candidate protocols for an IP Flow Information Export (IPFIX) protocol, based on the requirements document produced by the IPFIX Working Group. The protocols are characterized and grouped in broad categories, and evaluated against specific requirements. Finally, a recommendation is made to select the NetFlow v9 protocol as the basis for the IPFIX specification.

Table of Contents

Table of Contents

   1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .   2
   2. Protocol Summaries . . . . . . . . . . . . . . . . . . . . . .   2
      2.1.  CRANE. . . . . . . . . . . . . . . . . . . . . . . . . .   3
      2.2.  Diameter . . . . . . . . . . . . . . . . . . . . . . . .   4
      2.3.  LFAP . . . . . . . . . . . . . . . . . . . . . . . . . .   4
      2.4.  NetFlow v9 . . . . . . . . . . . . . . . . . . . . . . .   5
      2.5.  Streaming IPDR . . . . . . . . . . . . . . . . . . . . .   6
   3. Broad Classification of Candidate Protocols .  . . . . . . . .   7
      3.1.  Design Goals . . . . . . . . . . . . . . . . . . . . . .   7
      3.2.  Data Representation. . . . . . . . . . . . . . . . . . .   8
      3.3.  Protocol Flow. . . . . . . . . . . . . . . . . . . . . .   9
   4. Item-Level Compliance Evaluation . . . . . . . . . . . . . . .  10
      4.1.  Meter Reliability (5.1). . . . . . . . . . . . . . . . .  10
      4.2.  Sampling (5.2) . . . . . . . . . . . . . . . . . . . . .  11
      4.3.  Overload Behavior (5.3). . . . . . . . . . . . . . . . .  12
      4.4.  Timestamps (5.4) . . . . . . . . . . . . . . . . . . . .  12
      4.5.  Time Synchronization (5.5) . . . . . . . . . . . . . . .  12
      4.6.  Flow Expiration (5.6). . . . . . . . . . . . . . . . . .  13

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Protocol Summaries . . . . . . . . . . . . . . . . . . . . . . 2 2.1. CRANE. . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. Diameter . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3. LFAP . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4. NetFlow v9 . . . . . . . . . . . . . . . . . . . . . . . 5 2.5. Streaming IPDR . . . . . . . . . . . . . . . . . . . . . 6 3. Broad Classification of Candidate Protocols . . . . . . . . . 7 3.1. Design Goals . . . . . . . . . . . . . . . . . . . . . . 7 3.2. Data Representation. . . . . . . . . . . . . . . . . . . 8 3.3. Protocol Flow. . . . . . . . . . . . . . . . . . . . . . 9 4. Item-Level Compliance Evaluation . . . . . . . . . . . . . . . 10 4.1. Meter Reliability (5.1). . . . . . . . . . . . . . . . . 10 4.2. Sampling (5.2) . . . . . . . . . . . . . . . . . . . . . 11 4.3. Overload Behavior (5.3). . . . . . . . . . . . . . . . . 12 4.4. Timestamps (5.4) . . . . . . . . . . . . . . . . . . . . 12 4.5. Time Synchronization (5.5) . . . . . . . . . . . . . . . 12 4.6. Flow Expiration (5.6). . . . . . . . . . . . . . . . . . 13

Leinen                       Informational                      [Page 1]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 1] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

      4.7.  Ignore Port Copy (5.9) . . . . . . . . . . . . . . . . .  13
      4.8.  Information Model (6.1). . . . . . . . . . . . . . . . .  13
      4.9.  Data Model (6.2) . . . . . . . . . . . . . . . . . . . .  13
      4.10. Data Transfer (6.3). . . . . . . . . . . . . . . . . . .  14
   5. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . .  18
      5.1.  Recommendation . . . . . . . . . . . . . . . . . . . . .  19
   6. Security Considerations. . . . . . . . . . . . . . . . . . . .  19
   7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .  19
   8. References . . . . . . . . . . . . . . . . . . . . . . . . . .  20
      8.1.  Normative References . . . . . . . . . . . . . . . . . .  20
      8.2.  Informative References . . . . . . . . . . . . . . . . .  20
   Appendix.  A Note on References to the Candidate Protocol
              Documents. . . . . . . . . . . . . . . . . . . . . . .  22
   Author's Address. . . . . . . . . . . . . . . . . . . . . . . . .  22
   Full Copyright Statement. . . . . . . . . . . . . . . . . . . . .  23

4.7. Ignore Port Copy (5.9) . . . . . . . . . . . . . . . . . 13 4.8. Information Model (6.1). . . . . . . . . . . . . . . . . 13 4.9. Data Model (6.2) . . . . . . . . . . . . . . . . . . . . 13 4.10. Data Transfer (6.3). . . . . . . . . . . . . . . . . . . 14 5. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1. Recommendation . . . . . . . . . . . . . . . . . . . . . 19 6. Security Considerations. . . . . . . . . . . . . . . . . . . . 19 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 19 8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.1. Normative References . . . . . . . . . . . . . . . . . . 20 8.2. Informative References . . . . . . . . . . . . . . . . . 20 Appendix. A Note on References to the Candidate Protocol Documents. . . . . . . . . . . . . . . . . . . . . . . 22 Author's Address. . . . . . . . . . . . . . . . . . . . . . . . . 22 Full Copyright Statement. . . . . . . . . . . . . . . . . . . . . 23

1.  Introduction

1. Introduction

   The IP Flow Information Export (IPFIX) Working Group has been
   chartered to select a protocol for the export of flow information
   from traffic-observing devices (such as routers or dedicated probes).
   To this end, an evaluation team was formed to evaluate submitted
   protocols.  Each protocol was represented by an advocate, who
   submitted a specific evaluation document for the respective protocol
   against the requirements document [1].  The specification of each
   protocol was itself available as one or several Internet-Drafts,
   sometimes referring normatively to documents from outside the IETF.

The IP Flow Information Export (IPFIX) Working Group has been chartered to select a protocol for the export of flow information from traffic-observing devices (such as routers or dedicated probes). To this end, an evaluation team was formed to evaluate submitted protocols. Each protocol was represented by an advocate, who submitted a specific evaluation document for the respective protocol against the requirements document [1]. The specification of each protocol was itself available as one or several Internet-Drafts, sometimes referring normatively to documents from outside the IETF.

   This document contains an evaluation of the submitted protocols with
   respect to the requirements document, and on a more general level, to
   the working group charter.

This document contains an evaluation of the submitted protocols with respect to the requirements document, and on a more general level, to the working group charter.

   The following IPFIX candidate protocol submissions were evaluated:

The following IPFIX candidate protocol submissions were evaluated:

   o  CRANE [7], [8]
   o  Diameter [9], [10]
   o  LFAP [11], [12], [13]
   o  NetFlow v9 [2], [15], [16]
   o  Streaming IPDR [17], [18]

o CRANE [7], [8] o Diameter [9], [10] o LFAP [11], [12], [13] o NetFlow v9 [2], [15], [16] o Streaming IPDR [17], [18]

   This document uses terminology defined in [1] intermixed with that
   from submissions to explain the mapping between the two.

This document uses terminology defined in [1] intermixed with that from submissions to explain the mapping between the two.

2.  Protocol Summaries

2. Protocol Summaries

   In the following, each candidate protocol is described briefly,
   highlighting its specific distinguishing features.

In the following, each candidate protocol is described briefly, highlighting its specific distinguishing features.

Leinen                       Informational                      [Page 2]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 2] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

2.1.  CRANE

2.1. CRANE

   XACCT's Common Reliable Accounting for Network Element Protocol
   Version 1.0 [7][8] is described as a protocol for the transmission of
   accounting information from "Network Elements" to "mediation" and
   "business support systems".

XACCT's Common Reliable Accounting for Network Element Protocol Version 1.0 [7][8] is described as a protocol for the transmission of accounting information from "Network Elements" to "mediation" and "business support systems".

2.1.1.  CRANE Protocol Operation

2.1.1. CRANE Protocol Operation

   The exporting side is the CRANE client, the collecting side is the
   CRANE server.  Note that it is the server that is responsible for
   initiating the connection to the client.  A client can have multiple
   simultaneous connections to different servers for robustness.  Each
   server has an associated priority.  A client only exports to the
   server with the highest priority that is perceived operational.

The exporting side is the CRANE client, the collecting side is the CRANE server. Note that it is the server that is responsible for initiating the connection to the client. A client can have multiple simultaneous connections to different servers for robustness. Each server has an associated priority. A client only exports to the server with the highest priority that is perceived operational.

   Clients and servers exchange messages over a reliable protocol such
   as TCP [3] or (preferably) the Stream Control Transmission Protocol
   (SCTP) [5].  The protocol uses application-layer acknowledgements as
   an indication of successful processing by the server.  Strong
   authentication or data confidentiality aren't supported by the
   protocol, but can be supported by lower-layer mechanisms such as
   IPsec [20] or TLS [21].

Clients and servers exchange messages over a reliable protocol such as TCP [3] or (preferably) the Stream Control Transmission Protocol (SCTP) [5]. The protocol uses application-layer acknowledgements as an indication of successful processing by the server. Strong authentication or data confidentiality aren't supported by the protocol, but can be supported by lower-layer mechanisms such as IPsec [20] or TLS [21].

   The protocol is bidirectional over the entire duration of a session.
   There are 20 different message types.  The protocol supports template
   negotiation, not only at startup but also later on in a session, as
   well as general status inquiries.  There is a separate version
   negotiation protocol defined over UDP.

The protocol is bidirectional over the entire duration of a session. There are 20 different message types. The protocol supports template negotiation, not only at startup but also later on in a session, as well as general status inquiries. There is a separate version negotiation protocol defined over UDP.

2.1.2.  CRANE Data Encoding

2.1.2. CRANE Data Encoding

   Data encoding is based on templates.  Templates contain "keys"
   representing items in data records.  Clients (exporters) publish
   templates to servers (collectors).  Servers can then select the
   subset of fields in a template that they are interested in.  The
   client will suppress keys that haven't been selected by the server.

Data encoding is based on templates. Templates contain "keys" representing items in data records. Clients (exporters) publish templates to servers (collectors). Servers can then select the subset of fields in a template that they are interested in. The client will suppress keys that haven't been selected by the server.

   Data records contain references to template and configuration
   instances.  They also carry sequence numbers (DSNs for Data Sequence
   Numbers).  These sequence numbers can be used to de-duplicate data
   records that have been delivered multiple times during
   failover/fail-back in redundant configurations.  A "duplicate" bit is
   set in these situations as a hint for the de-duplication process.

Data records contain references to template and configuration instances. They also carry sequence numbers (DSNs for Data Sequence Numbers). These sequence numbers can be used to de-duplicate data records that have been delivered multiple times during failover/fail-back in redundant configurations. A "duplicate" bit is set in these situations as a hint for the de-duplication process.

Leinen                       Informational                      [Page 3]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 3] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

   The encoding of (flow information) data records themselves is very
   compact.  The client (exporter) can choose to send data in big-endian
   (network byte order) or little-endian format.  There are eighteen
   fixed-size key types, as well as five variable-length string and
   binary data (BLOB) types.

The encoding of (flow information) data records themselves is very compact. The client (exporter) can choose to send data in big-endian (network byte order) or little-endian format. There are eighteen fixed-size key types, as well as five variable-length string and binary data (BLOB) types.

2.2.  Diameter

2.2. Diameter

   Diameter [9][10] is an evolution of the Remote Authentication Dial In
   User Service (RADIUS) protocol [22].  RADIUS is widely used to
   outsource authentication and authorization in dialup access
   environments.  Diameter is a generalized and extensible protocol
   intended to support Authentication, Authorization and Accounting
   (AAA) requirements of different applications.  Dialup and Mobile IPv4
   are examples of such applications defined in the IETF.

Diameter [9][10] is an evolution of the Remote Authentication Dial In User Service (RADIUS) protocol [22]. RADIUS is widely used to outsource authentication and authorization in dialup access environments. Diameter is a generalized and extensible protocol intended to support Authentication, Authorization and Accounting (AAA) requirements of different applications. Dialup and Mobile IPv4 are examples of such applications defined in the IETF.

2.2.1.  Diameter Protocol Operation

2.2.1. Diameter Protocol Operation

   Diameter is a peer-to-peer protocol.  The base protocol defines
   fourteen command codes, organized as seven request/response command
   pairs.  Presumably, only a subset of these would be used in a pure
   IPFIX application.  Diameter includes capability negotiation and
   error notifications.  Diameter operates over TCP or (preferred) SCTP.
   There is a framework for end-to-end security, the mechanisms for
   which are defined in a separate document.  IPsec or TLS can be used
   to provide authentication or encryption at the underlying layers.

Diameter is a peer-to-peer protocol. The base protocol defines fourteen command codes, organized as seven request/response command pairs. Presumably, only a subset of these would be used in a pure IPFIX application. Diameter includes capability negotiation and error notifications. Diameter operates over TCP or (preferred) SCTP. There is a framework for end-to-end security, the mechanisms for which are defined in a separate document. IPsec or TLS can be used to provide authentication or encryption at the underlying layers.

2.2.2.  Diameter Data Encoding

2.2.2. Diameter Data Encoding

   Diameter conveys data in the form of attribute/value pairs (AVPs).
   An AVP consists of eight bytes of header plus the space to store the
   data, which depends on the data format.  There are numerous
   predefined AVP data formats, including signed and unsigned integer
   types, each in 32 and 64 bit variants, IPv4 and IPv6 addresses, as
   well as others.  The advocacy document [10] suggests that the
   predefined data formats IPFilterRule and/or QoSFilterRule could be
   extended to represent IP Flow Information.  Such rules are
   represented as readable UTF-8 strings.  Alternatively, new AVPs could
   be defined to represent flow information.

Diameter conveys data in the form of attribute/value pairs (AVPs). An AVP consists of eight bytes of header plus the space to store the data, which depends on the data format. There are numerous predefined AVP data formats, including signed and unsigned integer types, each in 32 and 64 bit variants, IPv4 and IPv6 addresses, as well as others. The advocacy document [10] suggests that the predefined data formats IPFilterRule and/or QoSFilterRule could be extended to represent IP Flow Information. Such rules are represented as readable UTF-8 strings. Alternatively, new AVPs could be defined to represent flow information.

2.3.  LFAP

2.3. LFAP

   LFAP [11][12][13] started out as the "Lightweight Flow Admission
   Protocol" and was used to outsource shortcut creation decisions on
   flow-based routers, as well as to provide per-flow statistics.  Later
   versions removed the admission function and changed the name to
   "Lightweight Flow Accounting Protocol".

LFAP [11][12][13] started out as the "Lightweight Flow Admission Protocol" and was used to outsource shortcut creation decisions on flow-based routers, as well as to provide per-flow statistics. Later versions removed the admission function and changed the name to "Lightweight Flow Accounting Protocol".

Leinen                       Informational                      [Page 4]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 4] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

2.3.1.  LFAP Protocol Operation

2.3.1. LFAP Protocol Operation

   The exporter in LFAP is called the Connection Control Entity (CCE),
   and the collector is the Flow Accounting Server (FAS).  These
   entities communicate with each other over a TCP connection.  LFAP
   knows thirteen message types, including operations for connection
   management, version negotiation, flow information messages and
   administrative requests.  Authentication and encryption can be
   provided by IPsec or TLS at lower layers.  Additionally, the LFAP
   protocol itself supports four levels of security using HMAC-MD5
   authentication and DES-CBC encryption.  Note that DES is now widely
   regarded as not adequately secure, because its small key size makes
   brute-force attacks viable.

The exporter in LFAP is called the Connection Control Entity (CCE), and the collector is the Flow Accounting Server (FAS). These entities communicate with each other over a TCP connection. LFAP knows thirteen message types, including operations for connection management, version negotiation, flow information messages and administrative requests. Authentication and encryption can be provided by IPsec or TLS at lower layers. Additionally, the LFAP protocol itself supports four levels of security using HMAC-MD5 authentication and DES-CBC encryption. Note that DES is now widely regarded as not adequately secure, because its small key size makes brute-force attacks viable.

   A distinguishing feature is that LFAP has two different message types
   for flow information: A Flow Accounting Request (FAR) message is sent
   when a new flow is identified at the CCE (meter/exporter).
   Accounting information is sent later in one or multiple Flow Update
   Notification (FUN) messages.  A collector must match each FUN to a
   Flow ID previously sent in a FAR.

A distinguishing feature is that LFAP has two different message types for flow information: A Flow Accounting Request (FAR) message is sent when a new flow is identified at the CCE (meter/exporter). Accounting information is sent later in one or multiple Flow Update Notification (FUN) messages. A collector must match each FUN to a Flow ID previously sent in a FAR.

   The LFAP document also defines a set of useful statistics about the
   accounting process.  A separate MIB document [14] is provided for
   management of LFAP entities using SNMP.

The LFAP document also defines a set of useful statistics about the accounting process. A separate MIB document [14] is provided for management of LFAP entities using SNMP.

2.3.2.  LFAP Data Encoding

2.3.2. LFAP Data Encoding

   LFAP encodes data in a Type/Length/Value format with four bytes of
   overhead per data item (two bytes for the type and two bytes for the
   length field).

LFAP encodes data in a Type/Length/Value format with four bytes of overhead per data item (two bytes for the type and two bytes for the length field).

2.4.  NetFlow v9

2.4. NetFlow v9

   NetFlow v9 [2][15] is a generalized version of Cisco's NetFlow
   protocol.  Previous versions of NetFlow, in particular version 5,
   have been widely implemented and used for the exporting and
   collecting of IP flow information.

NetFlow v9 [2][15] is a generalized version of Cisco's NetFlow protocol. Previous versions of NetFlow, in particular version 5, have been widely implemented and used for the exporting and collecting of IP flow information.

2.4.1.  NetFlow Protocol Operation

2.4.1. NetFlow Protocol Operation

   NetFlow uses a very simple protocol, with the exporter sending
   template, options, and data "FlowSets" to the collector.  FlowSets
   are sequences of data records of similar format.  NetFlow is the only
   one of the candidate protocols that works over UDP [4].  Because of
   the simple unidirectional nature of the protocol, it should be
   relatively straightforward to add mappings to other transport
   protocols such as SCTP or TCP.

NetFlow uses a very simple protocol, with the exporter sending template, options, and data "FlowSets" to the collector. FlowSets are sequences of data records of similar format. NetFlow is the only one of the candidate protocols that works over UDP [4]. Because of the simple unidirectional nature of the protocol, it should be relatively straightforward to add mappings to other transport protocols such as SCTP or TCP.

Leinen                       Informational                      [Page 5]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 5] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

   The use of SCTP to transport NetFlow v9 has been suggested in [16].
   The suggested mapping describes how control and data can be mapped to
   different streams within a single SCTP connection, and suggests that
   the Partial Reliability extension [23] be used on data streams.  In
   the proposed mapping, the exporter would initiate the connection.

The use of SCTP to transport NetFlow v9 has been suggested in [16]. The suggested mapping describes how control and data can be mapped to different streams within a single SCTP connection, and suggests that the Partial Reliability extension [23] be used on data streams. In the proposed mapping, the exporter would initiate the connection.

2.4.2.  NetFlow Data Encoding

2.4.2. NetFlow Data Encoding

   NetFlow v9 uses a template facility to describe exported data.  The
   data itself is represented in a compact way using network byte order.

NetFlow v9 uses a template facility to describe exported data. The data itself is represented in a compact way using network byte order.

2.5.  Streaming IPDR

2.5. Streaming IPDR

   Streaming IPDR [17][18] is an application of the Network Data
   Management-Usage (NDM-U) for IP Services specification version 3.1
   [19].  It has been developed by the Internet Protocol Detail Record
   Organization (IPDR, Inc. or ipdr.org).  The terminology used is
   similar to CRANE's, talking about Service Elements (SEs), mediation
   systems and Business Support Systems (BSS).

Streaming IPDR [17][18] is an application of the Network Data Management-Usage (NDM-U) for IP Services specification version 3.1 [19]. It has been developed by the Internet Protocol Detail Record Organization (IPDR, Inc. or ipdr.org). The terminology used is similar to CRANE's, talking about Service Elements (SEs), mediation systems and Business Support Systems (BSS).

2.5.1.  Streaming IPDR Protocol Operation

2.5.1. Streaming IPDR Protocol Operation

   Streaming IPDR operates over TCP.  There is a "Trivial TCP Delivery"
   mode as well as an "Acknowledged TCP Delivery" or "Reliable
   Streaming" mode.  The latter uses application-layer acknowledgements
   for increased reliability.

Streaming IPDR operates over TCP. There is a "Trivial TCP Delivery" mode as well as an "Acknowledged TCP Delivery" or "Reliable Streaming" mode. The latter uses application-layer acknowledgements for increased reliability.

   The protocol is basically unidirectional.  The exporter opens a
   connection towards the collector, then sends a header followed by a
   set of record descriptors.  Then it can send "Usage Event" records
   corresponding to these descriptors until the connection is
   terminated.  New record descriptors can be sent at any time.
   Messages carry sequence numbers that are used for de-duplication
   during failover.  They are also referenced by application-level
   acknowledgements when Reliable Streaming is used.

The protocol is basically unidirectional. The exporter opens a connection towards the collector, then sends a header followed by a set of record descriptors. Then it can send "Usage Event" records corresponding to these descriptors until the connection is terminated. New record descriptors can be sent at any time. Messages carry sequence numbers that are used for de-duplication during failover. They are also referenced by application-level acknowledgements when Reliable Streaming is used.

2.5.2.  Streaming IPDR Data Encoding

2.5.2. Streaming IPDR Data Encoding

   IPDR uses an information modeling technique based on the XML-Schema
   language [24].  Data can be represented in XML or in a streamlined
   encoding based on the External Data Representation [25].  XDR forms
   the basis of Sun's Remote Procedure Call and Network File System
   protocols, and has proven to be both space- and processing-efficient.

IPDR uses an information modeling technique based on the XML-Schema language [24]. Data can be represented in XML or in a streamlined encoding based on the External Data Representation [25]. XDR forms the basis of Sun's Remote Procedure Call and Network File System protocols, and has proven to be both space- and processing-efficient.

Leinen                       Informational                      [Page 6]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 6] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

3.  Broad Classification of Candidate Protocols

3. Broad Classification of Candidate Protocols

   In order to evaluate the candidate protocols against the higher-level
   requirements laid out in the IPFIX Working Group charter, it is
   useful to group them into broader categories.

In order to evaluate the candidate protocols against the higher-level requirements laid out in the IPFIX Working Group charter, it is useful to group them into broader categories.

3.1.  Design Goals

3.1. Design Goals

   One way to look at the candidate protocols is to study the goals that
   have directed their respective design.  Note that the intention is
   not to exclude protocols that have been designed with a different
   class of applications in mind, but simply to better understand the
   different tradeoffs that distinguish the protocols.

One way to look at the candidate protocols is to study the goals that have directed their respective design. Note that the intention is not to exclude protocols that have been designed with a different class of applications in mind, but simply to better understand the different tradeoffs that distinguish the protocols.

3.1.1.  High-Performance Flow Metering (NetFlow, LFAP)

3.1.1. High-Performance Flow Metering (NetFlow, LFAP)

   Of the candidate protocols, Cisco's NetFlow is the purest example of
   a highly specialized protocol that has been designed with the sole
   objective of conveying accounting data from flow-aware routers at
   high rates.  Starting from a fixed set of accounting fields, it has
   been extended a few times over the years to support additional fields
   and various types of aggregation in the metering/exporting process.

Of the candidate protocols, Cisco's NetFlow is the purest example of a highly specialized protocol that has been designed with the sole objective of conveying accounting data from flow-aware routers at high rates. Starting from a fixed set of accounting fields, it has been extended a few times over the years to support additional fields and various types of aggregation in the metering/exporting process.

   Riverstone's LFAP is similarly focused, except that it originated in
   a protocol to outsource the decision whether to create shortcuts in
   flow-based routers.  This is still manifest in an increased emphasis
   on reliable operation, and in the split reporting of flow information
   using Flow Accounting Request (FAR) and Flow Update Notification
   (FUN) messages.

Riverstone's LFAP is similarly focused, except that it originated in a protocol to outsource the decision whether to create shortcuts in flow-based routers. This is still manifest in an increased emphasis on reliable operation, and in the split reporting of flow information using Flow Accounting Request (FAR) and Flow Update Notification (FUN) messages.

   It has been pointed out that split reporting as done by LFAP can
   reduce memory requirements at the exporter.  This concerns a subset
   of attributes that are neither "key" attributes which define flows,
   nor attributes such as packet or byte counters that must be updated
   for each packet anyway.  On the other hand, when there are many
   short-lived flows, the number of flow export messages will be
   significantly higher than with "unitary" flow export models, and the
   collector will have to keep state about active flows until they are
   terminated.

It has been pointed out that split reporting as done by LFAP can reduce memory requirements at the exporter. This concerns a subset of attributes that are neither "key" attributes which define flows, nor attributes such as packet or byte counters that must be updated for each packet anyway. On the other hand, when there are many short-lived flows, the number of flow export messages will be significantly higher than with "unitary" flow export models, and the collector will have to keep state about active flows until they are terminated.

3.1.2.  Carrier-Grade Multi-Purpose Accounting (IPDR, CRANE)

3.1.2. Carrier-Grade Multi-Purpose Accounting (IPDR, CRANE)

   Streaming IPDR and CRANE describe themselves as protocols to
   facilitate the reliable transfer of accounting information between
   Network Elements (or more generally "Service Elements" in the case of
   IPDR) and Mediation Systems or Business Support Systems (BSS).  They

Streaming IPDR and CRANE describe themselves as protocols to facilitate the reliable transfer of accounting information between Network Elements (or more generally "Service Elements" in the case of IPDR) and Mediation Systems or Business Support Systems (BSS). They

Leinen                       Informational                      [Page 7]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 7] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

   reflect a view of the accounting problem and of network system
   architectures that originates in traditional "vertically integrated"
   telecommunications.

reflect a view of the accounting problem and of network system architectures that originates in traditional "vertically integrated" telecommunications.

   Both protocols also emphasize extensibility with the goal of
   applicability to a wide range of accounting tasks.

Both protocols also emphasize extensibility with the goal of applicability to a wide range of accounting tasks.

   IPDR is based on NDM-U, which uses the XML-Schema language for
   machine-readable specification of accounting data structures, while
   using the efficient XDR encoding for the actual data transfer.

IPDR is based on NDM-U, which uses the XML-Schema language for machine-readable specification of accounting data structures, while using the efficient XDR encoding for the actual data transfer.

   CRANE uses templates to describe exported data.  These templates are
   negotiated between collector and exporter and can change during a
   session.

CRANE uses templates to describe exported data. These templates are negotiated between collector and exporter and can change during a session.

3.1.3.  General-Purpose AAA (Diameter)

3.1.3. General-Purpose AAA (Diameter)

   Diameter is another example of a broader-purpose protocol, in that it
   covers aspects of authentication and authorization as well as
   accounting.  This explains its strong emphasis on security and
   reliability.  The design also takes into account various types of
   intermediate agents.

Diameter is another example of a broader-purpose protocol, in that it covers aspects of authentication and authorization as well as accounting. This explains its strong emphasis on security and reliability. The design also takes into account various types of intermediate agents.

3.2.  Data Representation

3.2. Data Representation

   IPFIX is intended to be deployed, among others, in high-speed routers
   and to be used for exporting detailed flow data at high flow rates.
   Therefore it is useful to look at the tradeoffs between the
   efficiency of data representation and the extensibility of data
   models.  The two main efficiency goals should be (1) to minimize the
   export data rate and (2) to minimize data encoding overhead in the
   exporter.  The overhead of decoding flow data at the collector is
   deemed less critical, and is partly covered by efficiency target (2),
   since an encoding that is easy on the encoder is often also easy on
   the decoder.

IPFIX is intended to be deployed, among others, in high-speed routers and to be used for exporting detailed flow data at high flow rates. Therefore it is useful to look at the tradeoffs between the efficiency of data representation and the extensibility of data models. The two main efficiency goals should be (1) to minimize the export data rate and (2) to minimize data encoding overhead in the exporter. The overhead of decoding flow data at the collector is deemed less critical, and is partly covered by efficiency target (2), since an encoding that is easy on the encoder is often also easy on the decoder.

3.2.1.  Externally Described Encoding (CRANE, IPDR, NetFlow)

3.2.1. Externally Described Encoding (CRANE, IPDR, NetFlow)

   The protocols in this group use an external mechanism to fully
   describe the format in which flow data is encoded.  The mechanisms
   are "templates" in the case of CRANE and NetFlow, and a subset of the
   XML-Schema language, or alternatively XDR IDL, for IPDR.

The protocols in this group use an external mechanism to fully describe the format in which flow data is encoded. The mechanisms are "templates" in the case of CRANE and NetFlow, and a subset of the XML-Schema language, or alternatively XDR IDL, for IPDR.

Leinen                       Informational                      [Page 8]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 8] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

   A fully external data format description allows for very compact
   encoding, with data components such as 32-bit integers taking up only
   four octets.  The XDR representation used in IPDR additionally
   ensures that larger fields are always aligned on 32-bit boundaries,
   which can reduce processing requirements at both the exporter and the
   collector, at a slight cost of space (thus bandwidth) due to padding.

A fully external data format description allows for very compact encoding, with data components such as 32-bit integers taking up only four octets. The XDR representation used in IPDR additionally ensures that larger fields are always aligned on 32-bit boundaries, which can reduce processing requirements at both the exporter and the collector, at a slight cost of space (thus bandwidth) due to padding.

   Most protocols specify "network byte order" or "big-endian" format in
   the export data format.  CRANE is the only protocol where the
   exporter may choose the byte ordering.  The principal benefit is that
   this lowers the processing demand on exporters based on little-endian
   architectures.

Most protocols specify "network byte order" or "big-endian" format in the export data format. CRANE is the only protocol where the exporter may choose the byte ordering. The principal benefit is that this lowers the processing demand on exporters based on little-endian architectures.

3.2.2.  Partly Self-describing Encoding (Diameter, LFAP)

3.2.2. Partly Self-describing Encoding (Diameter, LFAP)

   Diameter and LFAP represent flow data using Type/Length/Value
   encodings.  While this makes it possible to partly decode flow data
   without full context information - possibly useful for debugging - it
   does increase the encoding size and thus the bandwidth requirements
   both on the wire and in the exporter and collector.

Diameter and LFAP represent flow data using Type/Length/Value encodings. While this makes it possible to partly decode flow data without full context information - possibly useful for debugging - it does increase the encoding size and thus the bandwidth requirements both on the wire and in the exporter and collector.

   LFAP has a "multi-record" encoding which claims to provide similar
   wire efficiency as the externally described encodings while still
   supporting diagnostic tools.

LFAP has a "multi-record" encoding which claims to provide similar wire efficiency as the externally described encodings while still supporting diagnostic tools.

3.3.  Protocol Flow

3.3. Protocol Flow

   Another criterion for classification is the flow of protocol messages
   between exporter and collector.

Another criterion for classification is the flow of protocol messages between exporter and collector.

3.3.1.  Mainly Unidirectional Protocols (IPDR, NetFlow)

3.3.1. Mainly Unidirectional Protocols (IPDR, NetFlow)

   In IPDR and NetFlow, the data flow is essentially from exporter to
   collector, with the collector only sending acknowledgements.  The
   protocols send data descriptions (templates) on session
   establishment, and then start sending flow export data based on these
   templates.  "Meta-information" about the operational status of the
   metering and exporting processes (for example about the sampling
   parameters in force at a given moment) is conveyed using a special
   type of "Option" template in NetFlow v9.  IPDR currently doesn't have
   definitions for such "meta-data" types, but they could easily be
   defined outside the protocol proper.

In IPDR and NetFlow, the data flow is essentially from exporter to collector, with the collector only sending acknowledgements. The protocols send data descriptions (templates) on session establishment, and then start sending flow export data based on these templates. "Meta-information" about the operational status of the metering and exporting processes (for example about the sampling parameters in force at a given moment) is conveyed using a special type of "Option" template in NetFlow v9. IPDR currently doesn't have definitions for such "meta-data" types, but they could easily be defined outside the protocol proper.

Leinen                       Informational                      [Page 9]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 9] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

3.3.2.  Bidirectional Protocols (CRANE, LFAP)

3.3.2. Bidirectional Protocols (CRANE, LFAP)

   CRANE allows for negotiation of the templates used for data export at
   the start of a session, and also allows negotiated template updates
   later on.  CRANE sessions include an exporter and potentially several
   collectors, so these negotiations can involve more than two parties.

CRANE allows for negotiation of the templates used for data export at the start of a session, and also allows negotiated template updates later on. CRANE sessions include an exporter and potentially several collectors, so these negotiations can involve more than two parties.

   LFAP has an initial phase of version negotiation, followed by a phase
   of "data negotiation".  After these startup phases, the exporter
   sends FAR and FUN messages to the collector.  However, either party
   may also send Administrative Request (AR) messages to the other, and
   will normally receive Administrative Request Answers (ARA) in
   response.  Administrative Requests can be used for status inquiries,
   including information about a specific active flow, or for
   negotiation of the "Information Elements" that the collector wants
   the exporter to export.

LFAP has an initial phase of version negotiation, followed by a phase of "data negotiation". After these startup phases, the exporter sends FAR and FUN messages to the collector. However, either party may also send Administrative Request (AR) messages to the other, and will normally receive Administrative Request Answers (ARA) in response. Administrative Requests can be used for status inquiries, including information about a specific active flow, or for negotiation of the "Information Elements" that the collector wants the exporter to export.

3.3.3.  Unidirectional after Negotiation (Diameter)

3.3.3. Unidirectional after Negotiation (Diameter)

   Diameter has a general capabilities negotiation mechanism.  The use
   of Diameter for IPFIX hasn't been described in sufficient detail to
   determine how capabilities negotiation would be used.  After
   negotiation, the protocol would operate in essentially unidirectional
   mode, with Accounting-Request (ACR) messages flowing from the
   exporter to the collector, and Accounting-Answer (ACA) messages
   flowing back.

Diameter has a general capabilities negotiation mechanism. The use of Diameter for IPFIX hasn't been described in sufficient detail to determine how capabilities negotiation would be used. After negotiation, the protocol would operate in essentially unidirectional mode, with Accounting-Request (ACR) messages flowing from the exporter to the collector, and Accounting-Answer (ACA) messages flowing back.

4.  Item-Level Compliance Evaluation

4. Item-Level Compliance Evaluation

   The template for protocol advocates noted that not all requirements
   in [1] apply directly to the flow export protocol.  In particular,
   sections 4 (Distinguishing Flows) and 5 (Metering Process) mainly
   specify requirements on the metering mechanism that "feeds" the
   exporter.  However, in some cases they require information about the
   metering process to be reported to collectors, so the flow export
   protocol must support conveying this information.

The template for protocol advocates noted that not all requirements in [1] apply directly to the flow export protocol. In particular, sections 4 (Distinguishing Flows) and 5 (Metering Process) mainly specify requirements on the metering mechanism that "feeds" the exporter. However, in some cases they require information about the metering process to be reported to collectors, so the flow export protocol must support conveying this information.

4.1.  Meter Reliability (5.1)

4.1. Meter Reliability (5.1)

   CRANE, Diameter, IPDR consider requirement 5.1 (reliability of the
   metering process or indication of "missing reliability") out of scope
   for the IPFIX protocol, which presumably means that they assume the
   metering process to be reliable.

CRANE, Diameter, IPDR consider requirement 5.1 (reliability of the metering process or indication of "missing reliability") out of scope for the IPFIX protocol, which presumably means that they assume the metering process to be reliable.

   The NetFlow v9 advocacy document takes a similar stance when it
   claims "Total Compliance.  The metering process is reliable."
   (although this has been documented not to be true for all current
   Cisco implementations of NetFlow v5).

The NetFlow v9 advocacy document takes a similar stance when it claims "Total Compliance. The metering process is reliable." (although this has been documented not to be true for all current Cisco implementations of NetFlow v5).

Leinen                       Informational                     [Page 10]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

Leinen Informational [Page 10] RFC 3955 Evaluation of Candidate Protocols for IPFIX October 2004

   LFAP is the only protocol that explicitly addresses the possibility
   that data might be lost in the metering process, and provides useful
   statistics for the collectors to estimate, not just the amount of
   flow data that was lost, but also the amount of data that was not
   unaccounted for.

LFAP is the only protocol that explicitly addresses the possibility that data might be lost in the metering process, and provides useful statistics for the collectors to estimate, not just the amount of flow data that was lost, but also the amount of data that was not unaccounted for.

   Note that in the general case, it can be considered unrealistic to
   assume total reliability of a flow-based metering process in all
   situations, unless sampling or coarse flow definitions are used.
   With the fine-grained flow classification mechanisms mandated by
   IPFIX, it is easy to imagine traffic where each - possibly very small
   - packet would create a new flow.  This kind of traffic is in fact
   encountered in practice during aggressive port scans, and will
   eventually lead to table overflows or exceeding of memory bandwidth
   at the meter.

一般的な場合では、すべての状況における、流れベースの計量プロセスの総信頼性を仮定するために非現実的であるとそれを考えることができることに注意してください、標本抽出か下品なフロー定義が使用されていない場合。 きめ細かに粒状の流れ分類メカニズムがIPFIXによって強制されている状態で、それぞれ、ことによると非常に小さいところでトラフィックを想像するのは簡単です--パケットは新しい流れを引き起こすでしょう。 この種類のトラフィックは、事実上、実際には攻撃的なポート・スキャンの間、遭遇して、結局、メーターでメモリ帯域幅のテーブルオーバーフローか超過につながるでしょう。

   While some of these situations can be handled by dropping data later
   on in the exporter, data transfer, or collector, or by transitioning
   the meter to sampling mode (or increasing the sampling interval), it
   will sometimes be considered the lesser evil to simply report on the
   data that couldn't be accounted for.  Currently LFAP is the only
   protocol that supports this.

標本抽出モードへの後で輸出業者でデータを下げるか、データ転送、コレクタ、または移行によるメーターでこれらの状況のいくつかを扱うことができますが(標本抽出間隔を増強して)、それは、説明できなかったデータに関して単に報告するためにレサー・イーブルであると時々考えられるでしょう。 現在の、LFAPはこれをサポートする唯一のプロトコルです。

4.2.  Sampling (5.2)

4.2. 標本抽出(5.2)

   CRANE and IPDR don't mention the possibility of sampling.  This is
   natural because they are targeted towards telco-grade accounting,
   where sampling would be considered inadmissible.  Since support for
   sampling is a "MAY" requirement, its lack could be tolerated, but
   severely restricts the applicability of these protocols in places of
   high aggregation, where absolute precision is not necessary.  This
   includes applications such as traffic profiling, traffic engineering,
   and large-scale attack/intrusion detection, but also usage-based
   accounting applications where charging based on sampling is agreed
   upon.

CRANEとIPDRは標本抽出の可能性について言及しません。 これは、通信業者グレード会計に向かって狙うので、当然です。そこでは、標本抽出が承認しがたいと考えられるでしょう。 標本抽出のサポートが「5月」要件であるので、不足は、許容できましたが、高い集合の場所で厳しくこれらのプロトコルの適用性を制限します。そこでは、絶対精度は必要ではありません。 これは標本抽出に基づく充電が同意されるトラフィックプロフィールや、交通工学や、大規模な攻撃/侵入検出ですが、用法ベースのも会計アプリケーションなどの応用を含んでいます。

   The Diameter advocate acknowledges the existence of sampling and
   suggests to define new (grouped) AVPs to carry information about the
   sampling parameters in use.

Diameter支持者は、標本抽出の存在を承認して、使用中の標本抽出パラメタの情報を運ぶために新しい(分類される)AVPsを定義するために示します。

   LFAP does not currently support sampling, although its advocate
   contends that adding support for this would be relatively
   straightforward, without going into too much detail.

LFAPは現在標本抽出をサポートしません、支持者は、このサポートを加えるのが比較的簡単であると主張しますが、あまりに多くの詳細を調べないで。

   NetFlow v9 does support sampling (and many implementations and
   deployments of sampled NetFlow exist for previous NetFlow versions).
   Option Data is supposed to convey sampling configuration, although no
   sampling-related field types have yet been defined in the document.

NetFlow v9は標本抽出をサポートします(抽出されたNetFlowの多くの実装と展開は前のNetFlowバージョンのために存在しています)。 どんな標本抽出関連のフィールド・タイプもドキュメントではまだ定義されていませんが、オプションDataは標本抽出構成を伝えるべきです。

Leinen                       Informational                     [Page 11]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[11ページ]のRFC3955評価

4.3.  Overload Behavior (5.3)

4.3. 振舞いを積みすぎてください。(5.3)

   The requirements document suggests that meters adapt to overload
   situations, for example by changing to sampling (or reducing the
   sampling rate if sampling is already in effect), by changing the flow
   definition to coarser flow categories (thinning), by stopping to
   meter, or by reducing packet processing.

それが計量するドキュメントが、示す要件は、例えば、標本抽出(標本抽出が既に有効であるなら標本抽出率を減少させて)に変化するか、フロー定義をより下品な流れカテゴリ(間引き)に変えるか、計量するために止まるか、またはパケット処理を抑えることによって状況を積みすぎるために適合します。

   In these situations, the requirements document mandates that flow
   information from before the modification of metering behavior can be
   cleanly distinguished from flow information from after the
   modification.  For the suggested mitigation methods of sampling or
   thinning, this essentially means that all existing flows have to be
   expired, and an entirely new set of flows must be started.  This is
   undesirable because it causes a peak of resource usage in an already
   overloaded situation.

これらの状況、ドキュメントが変更の後に以前と、流れ情報と計量の振舞いの変更を清潔に区別できるというその流れ情報を強制する要件で。 標本抽出か間引きの提案された緩和メソッドのために、これは、すべての既存の流れが吐き出されなければならなくて、完全に新しい流れを始めなければならないことを本質的には意味します。 既に積みすぎられた状況におけるリソース用法のピークを引き起こすので、これは望ましくありません。

   LFAP and NetFlow claim to handle this requirement, both by supporting
   only the simple overload mitigation methods that don't require the
   entire set of existing flows to be expired.  The NetFlow advocate
   claims that the reporting requirement could be easily met by expiring
   existing flows with the old template, while sending a new template
   for new flows.  While it is true that NetFlow handles this
   requirement in a very graceful manner, the general performance issue
   remains.

LFAPとNetFlowは、この要件を扱うと主張します、ともに吐き出されるために全体のセットに存在を要求しない簡単なオーバーロード緩和メソッドだけに流れをサポートすることによって。 NetFlowは新しい流れのために新しいテンプレートを送る間、古いテンプレートで既存の流れを吐き出すことによって容易に報告必要条件を満たすことができるだろうというクレームを支持します。 NetFlowが非常に優雅な方法でこの要件を扱うのが、本当ですが、一般的能力問題は残っています。

   CRANE, Diameter, and IPDR consider the requirement out of scope for
   the protocol, although Diameter summarily acknowledges the possible
   need for new AVP definitions related to mitigation methods.

CRANE、Diameter、およびIPDRはプロトコルのために範囲から要件を考えます、Diameterが要約して緩和メソッドに関連する新しいAVP定義の可能な必要性を承認しますが。

4.4.  Timestamps (5.4)

4.4. タイムスタンプ(5.4)

   All protocols support reporting of timestamps with the required (one
   centisecond) or better precision.

すべてのプロトコルが必要(1つのセンチセカンド)か、より良い精度でタイムスタンプの報告をサポートします。

4.5.  Time Synchronization (5.5)

4.5. 時間同期化(5.5)

   While all other protocols have timestamp types that are relative to a
   well-known reference time, timestamps in NetFlow are reported
   relative to the sysUpTime of the exporting device.  For applications
   that require the absolute start/end times of flows, this means that
   exporter sysUpTime has to be matched with absolute time.  Although
   every NetFlow export packet header contains a "UNIX Secs" field, it
   cannot be used for UTC synchronization without loss of precision,
   because this field only has 1-second resolution.

他のすべてのプロトコルにはよく知られる参照時間に比例しているタイムスタンプタイプがある間、NetFlowのタイムスタンプは輸出デバイスのsysUpTimeに比例して報告されます。 流れの絶対始め/終わりの倍を必要とするアプリケーションのために、これは、輸出業者sysUpTimeが絶対時間に合わせられなければならないことを意味します。 すべてのNetFlow輸出パケットのヘッダーが「UNIX Secs」分野を含みますが、UTC同期に精度の損失なしでそれを使用できません、この分野には1秒の解決があるだけであるので。

Leinen                       Informational                     [Page 12]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[12ページ]のRFC3955評価

4.6.  Flow Expiration (5.6)

4.6. 流れ満了(5.6)

   As currently specified, this requirement concerns the metering
   process only and has no bearing on the export protocol.

現在指定されるように、この要件は、計量プロセスだけに関係があって、輸出プロトコルに堪えることを持っていません。

   If it is desired to export the reason for flow expiration (e.g.,
   inactivity timeout, active flow timeout, expiration to reclaim
   resources, or observation of a flow termination indication such as a
   TCP FIN segment), then none of the protocols currently supports this,
   although each could be extended to do so.

流れ満了(TCP FINセグメントなどの流れ終了しるしの例えば、不活発タイムアウト、アクティブな流れタイムアウト、リソースを取り戻す満了、または観測)の理由をエクスポートするのが必要であるなら、プロトコルのいずれも現在これをサポートしません、そうするためにそれぞれを広げることができましたが。

4.7.  Ignore Port Copy (5.9)

4.7. ポートコピーを無視してください。(5.9)

   This requirement only concerns the metering process and has no
   bearing on the export protocol.

この要件は、計量プロセスに関係があるだけであり、輸出プロトコルに堪えることを持っていません。

4.8.  Information Model (6.1)

4.8. 情報モデル(6.1)

   All candidate protocols have information models that can represent
   all required and all optional attributes.  The Diameter contribution
   lacks some detail on how exactly the IPFIX-specific attributes should
   be mapped.

すべての候補プロトコルには、すべての必要な属性とすべての任意の属性を表すことができる情報モデルがあります。 貢献が何らかの詳細を欠いているDiameter IPFIX特有の属性が写像されるべきである。

4.9.  Data Model (6.2)

4.9. データモデル(6.2)

4.9.1.  Data Model Extensibility

4.9.1. データモデル伸展性

   Each candidate protocol defines a data model that allows for some
   degree of extensibility.

それぞれの候補プロトコルはいくらかの伸展性を考慮するデータモデルを定義します。

   CRANE uses Keys to specify fields in templates.  A key "specification
   MUST consist of the description and the data type of the accounting
   item."  Apparently extensibility is intended, but it is not clear
   whether adding a new Key really only involves writing a textual
   description and deciding upon a base type.  Every Key also has a 32-
   bit Key ID, but from the current specification they don't seem to
   carry global semantics.

CRANEは、テンプレートの分野を指定するのにキーズを使用します。 A「仕様は会計項目に関する記述とデータ型から成らなければなりません」主要な。 明らかに、伸展性は意図しますが、新しいKeyが、本当に原文の記述を書くことを伴うだけであると言い足して、ベースについて決めるのがタイプされるかどうかは、明確ではありません。 また、あらゆるKeyには、Key IDが32ビットありますが、現在の仕様から、彼らは、グローバルな意味論を運ぶように思えません。

   Diameter's Attribute/Value Pairs (AVP) have a 32-bit identifier (AVP
   Code) administered by IANA.  In addition, there is an optional 32-bit
   Vendor-ID that can contain an SMI Enterprise Number for vendor-
   defined attributes.  If the Vendor-ID (and a corresponding flag in
   the attribute) is set, the AVP Code becomes local to that vendor.

直径のAttribute/値のペア(AVP)で、IANAは32ビットの識別子(AVP Code)を管理します。 さらに、ベンダーの定義された属性のためのSMIエンタープライズNumberを含むことができる任意の32ビットのVendor-IDがあります。 Vendor-ID(そして、属性における対応する旗)が設定されるなら、AVP Codeはそのベンダーに地方になります。

   IPDR uses a subset of the XML-Schema language for extensibility, thus
   allowing for vendor- and application-specific extensions of the data
   model.

IPDRは伸展性にXML-スキーマ言語の部分集合を使用します、その結果、データモデルのベンダーとアプリケーション特有の拡大を考慮します。

Leinen                       Informational                     [Page 13]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[13ページ]のRFC3955評価

   In LFAP, flow attributes are defined as Information Elements.  There
   is a 16-bit IE type code (which is carried in the export protocol for
   every IE).  One type code is reserved for vendor-specific extensions.
   Arbitrary sub-types of the vendor-specific IE can be defined using
   ASN.1 Object IDs (OIDs).

LFAPでは、流れ属性はInformation Elementsと定義されます。 16ビットのIEタイプコード(あらゆるIEのために輸出プロトコルで運ばれる)があります。 1つのタイプコードがベンダー特有の拡大のために予約されます。 ASN.1Object ID(OIDs)を使用することでベンダー特有のIEの任意のサブタイプを定義できます。

   In NetFlow v9 as reviewed, data items are identified by a sixteen-bit
   field type.  26 field types are defined in the document.  The
   document suggests to look check a Web page at Cisco Systems' site for
   the current list of field types.  It would be preferable if the
   administration of the field type space would be delegated to IANA.

見直されるとしてのNetFlow v9では、データ項目は16ビットのフィールド・タイプによって特定されます。 26 分野タイプはドキュメントで定義されます。 ドキュメントはフィールド・タイプの現在のリストのためにシスコシステムズのサイトに外観チェックにウェブページを示します。 フィールド・タイプスペースの管理をIANAへ代表として派遣するなら、望ましいでしょう。

4.9.2.  Flexible Flow Record Definition

4.9.2. フレキシブルな流れ記録的な定義

   All protocols allow for flexible flow record definitions.  CRANE and
   LFAP make the selection/negotiation of the attributes to be included
   in flow records a part of the protocol, the other protocols leave
   this to outside configuration mechanisms.

すべてのプロトコルがフレキシブルな流れのために記録的な定義を許します。 CRANEとLFAPは、プロトコルの一部であり、他のプロトコルが外の構成メカニズムにこれを残すという流れ記録に含まれるように属性の選択/交渉をします。

4.10.  Data Transfer (6.3)

4.10. データ転送(6.3)

4.10.1.  Congestion Awareness (6.3.1)

4.10.1. 混雑認識(6.3.1)

   All protocols except for NetFlow v9 operate over a single TCP or SCTP
   transport connection, and inherit the congestion-friendliness of
   these protocols.

NetFlow v9以外のすべてのプロトコルが、独身のTCPかSCTP輸送接続の上で作動して、これらのプロトコルの混雑友情を引き継ぎます。

   NetFlow v9 was initially defined to operate over UDP, but specified
   in a transport-independent manner.  Recently, a document [16] has
   been issued that describes how NetFlow v9 can be run over SCTP with
   the proposed Partial Reliability extension.  This transport mapping
   would fill the congestion awareness requirement.

NetFlow v9は初めはUDPの上で作動するために定義されましたが、輸送から独立している方法で指定されました。 最近、提案されたPartial Reliability拡張子でどうNetFlow v9を実行できるかをSCTPに説明するドキュメント[16]を発行しました。 この輸送マッピングは混雑認識要件をいっぱいにしているでしょう。

4.10.2.  Reliability (6.3.2)

4.10.2. 信頼性(6.3.2)

   The requirements in the area of reliability are specified as follows:
   If flow records can be lost during transfer, this must be indicated
   to the collector in a way that permits the number of lost records to
   be gauged; and the protocol must be open to reliability extensions
   including retransmission of lost flow records, detection of
   exporter/collector disconnection and fail-over, and acknowledgement
   of flow records by the collecting process (application-level
   acknowledgements).

信頼性の領域の要件は以下の通り指定されます: 転送の間、流れ記録を失うことができるなら、無くなっている記録の数が測られることを許可する方法でこれをコレクタに示さなければなりません。 そして、プロトコルは収集プロセス(アプリケーションレベル承認)で無くなっている流れ記録の「再-トランスミッション」、輸出業者/コレクタ断線とフェイルオーバーの検出、および流れ記録の承認を含む信頼性の拡大に開かれているに違いありません。

   Here are a few observations regarding the candidate protocols'
   approaches to reliability.  Note that the requirement for multiple
   collectors (8.3) also touches on the issue of reliability.

ここに、信頼性への候補プロトコルのアプローチに関していくつかの観測があります。 また、複数のコレクタ(8.3)のための要件が信頼性の問題に触れることに注意してください。

Leinen                       Informational                     [Page 14]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[14ページ]のRFC3955評価

   CRANE, Diameter, and IPDR, as protocols that strive to be carrier-
   grade accounting protocols, understandably exhibit a strong emphasis
   on near-total reliability of the flow export process.  All three
   protocols use application-level acknowledgements (in case of IPDR,
   optionally) to include the entire collection process in the feedback
   loop.  Indications of "lack of reliability" (lost flow data) are
   somewhat unnatural to these protocols, because they take every effort
   to never lose anything.  These protocols seem suitable in situations
   where one would rather drop a packet than forward it unaccounted for.

CRANE(プロトコルとしてのキャリヤーグレード会計プロトコルであるように努力するDiameter、およびIPDR)は合計における、流れ輸出プロセスの信頼性への強い強調を目立って示します。 すべての3つのプロトコルが、フィードバックループに全体の収集プロセスを含むのに、アプリケーションレベル承認(IPDRの場合に任意に)を使用します。 「信頼性の不足」(フロー・データを失う)のしるしはこれらのプロトコルにいくらか不自然です、何も決して失わないようにあらゆる取り組みを取るので。 これらのプロトコルは1つがそれが非説明したフォワードよりパケットを下げる方がましである状況で適当に思えます。

   LFAP has application-level acknowledgements, and it also reports
   detailed statistics about lost flows and the amount of data that
   couldn't be accounted for.  It represents a middle ground in that it
   acknowledges that accounting reliability will sometimes be sacrificed
   for the benefit of other tasks, such as switching packets, and
   provides the tools to gracefully deal with such situations.

LFAPには、アプリケーションレベル承認があります、そして、また、それは原因にならされることができなかった無くなっている流れとデータ量に関する詳細な統計を報告します。 会計の信頼性が切り換えパケットなどの他のタスクの利益のために時々犠牲にされて、優雅にそのような状況に対処するためにツールを提供すると認めるので、それは妥協点を表します。

   NetFlow v9 is the only protocol for which the use of a "reliable"
   transport protocol is optional, and the only protocol that doesn't
   support application-level acknowledgements.  In all fairness, it
   should be noted that it is a very simple and efficient protocol, so
   in an actual deployment it might exhibit a higher level of
   reliability than some of the other protocols given the same amount of
   resources.

NetFlow v9は「信頼できる」トランスポート・プロトコルの使用が任意である唯一のプロトコルと、アプリケーションレベル承認をサポートしない唯一のプロトコルです。 公平に見て、同じ量のリソースを考えて、実際の展開では、他のプロトコルのいくつかより高いレベルの信頼性を示すことができるようにそれが非常に簡単で効率的なプロトコルであることに注意されるべきです。

4.10.3.  Security (6.3.3)

4.10.3. セキュリティ(6.3.3)

4.10.3.1.  IPsec and TLS

4.10.3.1. IPsecとTLS

   All protocols can use, and their descriptions in fact recommend them
   to use, lower-layer security mechanisms such as IPsec and, with the
   exception of NetFlow v9 over UDP, TLS.  It can be argued that in all
   envisioned usage scenarios for IPFIX, both IPsec and TLS provide
   sufficient protection against the main identified threats of flow
   data disclosure and forgery.

プロトコルが使用できて、事実上、彼らの記述が使用、IPsecやUDPの上のNetFlow v9以外のTLSなどの下層セキュリティー対策へのそれらを推薦するすべて。 IPFIXのためのすべての思い描かれた用法シナリオに、IPsecとTLSの両方がフロー・データ公開と偽造の主な特定された脅威に対する十分な保護を提供すると主張できます。

   The Diameter document is the only protocol definition that goes into
   sufficient level of detail with respect to the application of these
   mechanisms, in particular the negotiation of certificates and ciphers
   in TLS, and the use of IKE [6] for IPsec.  Diameter also mandates
   that either IPsec or TLS be used.

DiameterドキュメントはIPsecのために特にこれらのメカニズムの応用、TLSの証明書と暗号の交渉、およびIKE[6]の使用に関して十分なレベルの詳細を調べる唯一のプロトコル定義です。 また、直径は、IPsecかTLSのどちらかが使用されるのを強制します。

4.10.3.2.  Application-level Security

4.10.3.2. アプリケーションレベルセキュリティ

   Diameter suggests an additional end-to-end security framework for
   dealing with untrusted third-party agents.  I am not entirely
   convinced that this additional level of security justifies the
   additional complexity in the context of IPFIX.

直径は、信頼されていない第三者エージェントに対応するために終わりから終わりへの追加セキュリティフレームワークを示します。 私はこの追加レベルのセキュリティがIPFIXの文脈における追加複雑さを正当化すると完全に確信していません。

Leinen                       Informational                     [Page 15]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[15ページ]のRFC3955評価

   LFAP [11] is the only other protocol that includes some higher-level
   security mechanisms, providing four levels of security including no
   security, authenticated peers, flow data authentication, and flow
   data encryption using HMAC-MD5-96 and DES-CBC.

LFAP[11]はいくつかの、よりハイレベルのセキュリティー対策を含んでいる他の唯一のプロトコルです、HMAC-MD5-96とDES-CBCを使用することでセキュリティがなく、認証された同輩、フロー・データ認証、および流れデータ暗号化を含む4つのレベルのセキュリティを提供して。

   As far as the author can judge (not being a security expert), LFAP's
   built-in support for authentication and encryption doesn't provide
   significant additional security compared with the use of TLS or
   IPsec.  It is potentially useful in situations where TLS or IPsec are
   unavailable for some reason, although in the context of IPFIX
   scenarios, it should be possible to assume support for these lower-
   layer mechanisms if the participating devices are capable of the
   necessary cryptographic methods at all.

作者が判断できる(安全保障専門家でなく)限り、認証と暗号化のためのLFAPの標準装備はTLSかIPsecの使用と比べて重要な追加担保を提供しません。 それはTLSかIPsecがある理由で入手できないところで状況で潜在的に役に立ちます、参加デバイスが全く必要な暗号のメソッドができるならこれらの低い層のメカニズムのサポートを仮定するのがIPFIXシナリオの文脈で可能であるべきですが。

4.10.4.  Push and Pull Mode Reporting (6.4)

4.10.4. モード報告を押して、引いてください。(6.4)

   All protocols support the mandatory "push" mode.

すべてのプロトコルが、義務的な「プッシュ」がモードであるとサポートします。

   The optional "pull" mode could be supported relatively easily in
   Diameter, and is foreseen in NDM-U, the basis of the Streaming IPDR
   proposal.  CRANE, LFAP and NetFlow don't have a "pull" mode.  For
   CRANE and LFAP, adding one would not violate the spirit of the
   protocols because they are already two-way, and in fact LFAP already
   foresees inquiries about specific active flows using Administrative
   Request (AR) messages with a RETURN_INDICATED_FLOWS Command Code IE.

任意の「牽引力」モードは、Diameterで比較的容易にサポートすることができて、NDM-U(Streaming IPDR提案の基礎)で見通されます。 CRANE、LFAP、およびNetFlowには、「牽引力」モードがありません。 CRANEとLFAPに関しては、それらが既に両用であるので、1つを加えるのはプロトコルの精神に違反しないで、事実上、LFAPはRETURN_INDICATED_FLOWS Command Code IEがあるAdministrative Request(AR)メッセージを使用することで既に特定のアクティブな流れに関する問い合せについて見通します。

4.10.5.  Regular Reporting Interval (6.5)

4.10.5. 一定の報告間隔(6.5)

   As stated, this requirement concerns the metering process only and
   has no bearing on the export protocol.

述べられているように、この要件は、計量プロセスだけに関係があって、輸出プロトコルに堪えることを持っていません。

4.10.6.  Notification on Specific Events (6.6)

4.10.6. 特定のイベントに関する通知(6.6)

   The specific events listed in the requirements documents as examples
   for "specific events" are "the arrival of the first packet of a new
   flow and the termination of a flow after flow timeout".  For the
   former, only LFAP explicitly generates messages upon creation of a
   new flow.  NetFlow always exported flow information on expiration of
   flows, either due to timeout or due to an indication of flow
   termination.  The other protocols are unspecific about when flow
   information is exported.

特定のイベントは、「特定のイベント」のための例が「新しい流れの最初のパケットの到着と流れタイムアウトの後の流れの終了」であるので、要件ドキュメントに記載しました。 前者のために、LFAPだけが明らかに新しい流れの作成に関するメッセージを生成します。 NetFlowは、タイムアウトのためか流れの満了か、流れ終了のしるしのためいつも流れが情報であるとエクスポートしました。 他のプロトコルは流れ情報がエクスポートされる時に関して「非-特定」です。

   On "specific events" in general, all protocols have some mechanism
   that could be used for notification of asynchronous events.  An
   example for such an event would be that the sampling rate of the
   meter was changed in response to a change in the load on the
   exporting process.

一般に、「特定のイベント」では、すべてのプロトコルが非同期的なイベントの通知に使用できる何らかのメカニズムを持っています。 そのようなイベントのための例は輸出プロセスで負荷における変化に対応してメーターの標本抽出率を変えたということでしょう。

Leinen                       Informational                     [Page 16]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[16ページ]のRFC3955評価

   CRANE has Status Request/Status Response messages, but as defined,
   Status Requests can only be issued by the server (collector), so they
   cannot be used by the server to signal asynchronous events.  As in
   IPDR, this could be circumvented by defining templates for meta-
   information.

彼らはCRANEにはStatus Request/状態Responseメッセージがありますが、定義されるようにサーバ(コレクタ)でStatus Requestsを発行できるだけであるのでサーバによって使用されて、非同期的なイベントに合図することがないことができます。 IPDRのように、メタ情報のためにテンプレートを定義することによって、これを回避できるでしょう。

   Diameter could use special Accounting-Request messages for event
   notification.

直径はイベント通知に特別なAccounting-要求メッセージを使用するかもしれません。

   IPDR would presumably define pseudo-"Usage Events" using an XML
   Schema so that events can be reported along with usage data.

おそらく、IPDRは用法データと共にイベントを報告できるようにXML Schemaを使用する疑似な「用法Events」を定義するでしょう。

   LFAP has Administrative Requests (AR) that can be initiated from
   either side.  The currently defined ARs are all information inquiries
   or reconfiguration requests, but new ARs could be defined to provide
   unsolicited information about specific asynchronous events.  The LFAP
   MIB also defines some traps/notifications.  SNMP notifications are
   useful to signal events to a network management system, but they are
   less attractive as a mechanism to signal events that should be
   somehow handled by a collector.

LFAPはどちらの側からも開始できるAdministrative Requests(AR)を持っています。 現在定義されたARsはすべての情報問い合せか再構成要求ですが、特定の非同期的なイベントの求められていない情報を提供するために新しいARsを定義できました。 また、LFAP MIBはいくつかの罠/通知を定義します。 SNMP通知はネットワーク管理システムにイベントに合図するために役に立ちますが、それらはメカニズムとしてそれほどコレクタによってどうにか扱われるべきである信号イベントに魅力的ではありません。

   In NetFlow v9, Option Data FlowSets are defined to convey information
   about the metering and export processes.  The current document
   specifies that Option Data should be exported periodically, although
   this requirement will be relaxed for asynchronous events.  It should
   be noted that periodical export of option flowsets (and also of
   templates) may have been considered necessary because NetFlow can run
   over an unreliable transport; it seems less natural when a reliable
   transport such as TCP is used.

NetFlow v9では、Option Data FlowSetsは、計量に関して情報を伝達して、プロセスをエクスポートするために定義されます。 この要件は非同期的なイベントのためにリラックスするでしょうが、現在のドキュメントは、Option Dataが定期的にエクスポートされるべきであると指定します。 NetFlowが頼り無い輸送をひくことができるのでオプションflowsets(そしてテンプレートについても)の定期刊行の輸出が必要であると考えられたかもしれないことに注意されるべきです。 TCPなどの信頼できる輸送が使用されているとき、それは、より自然でなく見えます。

4.10.7.  Anonymization (6.7)

4.10.7. Anonymization(6.7)

   None of the protocols include explicit support for anonymization.
   All protocols could be extended to convey when and how anonymization
   is being performed by an exporter, using mechanisms similar to those
   that would be used to report on sampling.

プロトコルのいずれもanonymizationの明白なサポートを含んでいません。 いつ、anonymizationが輸出業者によってどう実行されているかを運ぶためにすべてのプロトコルを広げることができました、標本抽出に関して報告するのに使用されるものと同様のメカニズムを使用して。

4.10.8.  Several Collecting Processes (8.3)

4.10.8. いくつかの収集プロセス(8.3)

   CRANE, Diameter, and IPDR all support multiple collectors in a backup
   configuration.  The failover case is analyzed in some detail, with
   support for data buffering and de-duplication in failover situations.

CRANE、Diameter、およびIPDRはバックアップ構成で複数のコレクタを皆、サポートします。 フェイルオーバーケースはフェイルオーバー状況におけるデータバッファリングと反-複製のサポートで何らかの詳細に分析されます。

   NetFlow takes a more simple-minded approach in that it allows
   multiple (currently: two) collectors to be configured in an exporter.
   Both collectors will generally receive all data and could use
   sequence numbers and inter-collector communication to de-duplicate
   them.  This is a simple way to improve availability but may also be

複数の(: 現在の2)コレクタが輸出業者で構成されるのを許容するので、NetFlowは、より純真なアプローチを取ります。 両方のコレクタは、一般に、すべてのデータを受け取って、反-それらをコピーするのに一連番号と相互コレクタコミュニケーションを使用できました。 これは、有用性を改良する簡単な方法ですが、また、あるかもしれません。

Leinen                       Informational                     [Page 17]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[17ページ]のRFC3955評価

   considered to be wasteful, both in terms of bandwidth and in terms of
   other exporter resources.  With the current UDP mapping it is easy
   enough to send multiple copies of datagrams to different collectors,
   but when SCTP or TCP is used, sending all data over multiple
   connections will exacerbate performance issues.

帯域幅と他の輸出業者リソースで無駄であると考えられます。 現在のUDPでは、それを写像するのは複本のデータグラムを異なったコレクタに送るほど簡単ですが、SCTPかTCPが使用されているとき、複数の接続の上にすべてのデータを送るのは性能問題を悪化させるでしょう。

   Failover in LFAP must take into account that flow information is
   split into FARs and FUNs.  When a (primary) FAS A fails, a secondary
   FAS B will receive FUNs for flows whose FARs had only been sent to A.
   If such FUNs are to be handled correctly in the failover case, then
   either the set of active flows must be kept in sync between the
   primary and backup FASs, or the exporting CCE must have a way to
   generate new FARs on failover.

LFAPのフェイルオーバーは、流れ情報がFARsとFUNsに分けられるのを考慮に入れなければなりません。 (プライマリ)のFAS Aが失敗すると、セカンダリFAS BがFARsによるA.Ifに送って、そのようなFUNsがフェイルオーバー場合で正しく扱われることになっていて、次に、予備選挙とバックアップFASsの間の同時性でアクティブな流れのセットを維持しなければならないということだけであった流れのためにFUNsを受けなければならないでしょうか、または輸出CCEにはフェイルオーバーで新しいFARsを生成する方法がなければなりません。

5.  Conclusions

5. 結論

   Every candidate protocol has its strengths and weaknesses.  If the
   primary goal of the IPFIX standardization effort were to define a
   carrier-grade accounting protocol that can also be used to carry IP
   flow information, then one of CRANE, Diameter and Streaming IPDR
   would probably be the candidate of choice.

あらゆる候補プロトコルには、その長所と短所があります。 IPFIX標準化取り組みのプライマリ目標がまた、IP流れ情報を運ぶのに使用できるキャリヤーグレード会計プロトコルを定義することであるなら、CRANE、Diameter、およびStreaming IPDRの1つはたぶん選択の候補です。

   But since the goal is to standardize existing practice in the area of
   IP Flow Information Export, it makes sense to analyze why previous
   versions of NetFlow have been so widely implemented and used.  The
   strong position of Cisco in the router market certainly played a
   major role, but we should not underestimate the value of having a
   simple and streamlined protocol that "does one thing and does it
   well".  It has been extremely easy to write NetFlow collecting
   processes, as all the protocol demands from a collector is to sit
   there and receive data.  This model is no longer adequate when one
   wants to support increased levels of reliability or dynamically
   changing semantics for data export.  But NetFlow remains a simple
   protocol, mainly by leaving out issues of configuration/negotiation.

しかし、目標がIP Flow情報Exportの領域の既存の習慣を標準化することであるので、それはNetFlowの旧バージョンがそれほど広く実装されて、使用された理由を分析する意味になります。 ルータ市場のシスコの強い立場は確かに大きな役割を果たしましたが、私たちは「1つのことをして、上手にそれをする」簡単で流線型のプロトコルを持つ値を過小評価するべきではありません。 NetFlow収集にプロセスを書くのは非常に簡単です、プロトコルがコレクタから要求するすべてがそこに座って、データを受け取ることであるので。 人がデータ輸出のために増強されたレベルの信頼性かダイナミックに変化している意味論をサポートしたがっているとき、このモデルはもう適切ではありません。 しかし、NetFlowは、主に構成/交渉の問題を省くことによって、簡単なプロトコルのままで残っています。

   So far, the biggest issue with NetFlow is that it could not resolve
   itself to mandate a reliable (and congestion-friendly) transport.
   This could easily be fixed, and bring with it some additional
   possibilities for simplifications.  For example it would no longer be
   necessary to periodically retransmit Template FlowSets, and Option
   Data FlowSets could become a more versatile way of reporting meta-
   information about the metering and exporting processes either
   synchronously or asynchronously.  Application-level acknowledgements
   - possibly as an option - would be a low-impact addition to improve
   overall reliability.

今までのところ、NetFlowの最も大きい問題は信頼できて(混雑に優しい)の輸送を強制するために自然に解決できなかったということです。 これは、容易に修理されていて、簡素化にそれと共にいくつかの追加可能性をもたらすかもしれません。 例えば、定期的にTemplate FlowSetsを再送するのはもう必要でないだろう、Option Data FlowSetsは計量とプロセスをエクスポートすることのメタ情報を同期か非同期に報告するより多能な方法になるかもしれません。 ことによるとオプションとしてのアプリケーションレベル承認は、総合的な信頼性を改良するためには低い影響追加でしょう。

Leinen                       Informational                     [Page 18]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[18ページ]のRFC3955評価

   LFAP is also relatively focused on flow information export, but
   carries around too much baggage from its youth as the Lightweight
   Flow Admission Protocol.  The bidirectional nature and large number
   of message types in the protocol are one symptom of this, the
   separation of flow information into FARs and FUNs - which must be
   matched at the collector - are another.  Data encoding is less
   space-efficient than that of CRANE, NetFlow or IPDR, and will present
   a performance issue at high flow rates.

LFAPはまた、流れ情報輸出に比較的集中していますが、ライト級Flow Admissionプロトコルとして若者からあまりに多くの手荷物を持ち歩きます。 プロトコルの双方向の自然と多くのメッセージタイプが、この1回の兆候、FARsとFUNs(コレクタで合わせなければならない)への流れ情報の分離です--別です。 zデータの符号化は、それほどスペースCRANE、NetFlowまたはIPDRで効率的でなく、ハイフローレートで性能問題を提示するでしょう。

   LFAP's indications of unaccounted data and its MIB are excellent
   features that would be very useful in many operational situations.

非説明されたデータとそのMIBに関するLFAPの指摘は多くの操作上の状況で非常に役に立つ素晴らしい特徴です。

5.1.  Recommendation

5.1. 推薦

   It is the opinion of the evaluation team that the goals of the IPFIX
   WG charter would best be served by starting with NetFlow v9, working
   on lacking mechanisms in the areas of transport, security,
   reliability, and redundant configurations, and doing so very
   carefully in order to retain as much simplicity as possible and to
   avoid overloading the protocol.  By starting from the simplest
   protocol that meets a large percentage of the specific requirements,
   we can hope to arrive at a protocol that meets all requirements and
   still allows widespread and cost-effective implementation.

できるだけ多くの簡単さを保有して、プロトコルを積みすぎるのを避けるのは、欠いているメカニズムに取り組んで、輸送と、セキュリティと、信頼性と、冗長構成と、そうする領域でNetFlow v9から始まることによって非常に慎重にIPFIX WG特許の目標に役立つだろうというのが最も良いという評価チームに関する意見です。 決められた一定の要求の大きな割合を達成する最も簡単なプロトコルから始めることによって、私たちは、すべての必要条件を満たして、まだ広範囲の、そして、費用対効果に優れた実装を許容しているプロトコルに到着することを望むことができます。

   As evaluated, NetFlow v9 doesn't specify any security mechanisms.
   The IPFIX protocol specification must specify how the security
   requirements in section 6.3.3 of [1] can be assured.  The IPFIX
   specification must be specific about the choice of security-
   supporting protocol(s) and about all relevant issues such as security
   negotiation, protocol modes permitted, and key management.

評価されるように、NetFlow v9は少しのセキュリティー対策も指定しません。IPFIXプロトコル仕様はどう[1]のセキュリティ要件コネセクション6.3.3を保証できるかを指定しなければなりません。 IPFIX仕様はセキュリティがプロトコルをサポートすることの選択とセキュリティ交渉や、受入れられたプロトコルモードや、かぎ管理などのすべての当該の問題に関して特定であるに違いありません。

   The other important requirement that isn't fulfilled by NetFlow v9
   today is support for a congestion-aware protocol (see section 6.3.1
   of [1]).  So a mapping to a known congestion-friendly protocol such
   as TCP, or, as suggested in [16], (PR-)SCTP, is considered as another
   necessary step in the preparation of the IPFIX specification.

NetFlow v9が今日実現していないもう片方の重要な要件は混雑意識しているプロトコルのサポートです。([1])についてセクション6.3.1を見てください。 それで、TCP、または[16]に示されるときの(PR)SCTPなどの知られている混雑に優しいプロトコルへのマッピングはIPFIX仕様の準備における必要なもう1ステップであるとみなされます。

6.  Security Considerations

6. セキュリティ問題

   The security mechanisms of the candidate protocols were discussed in
   Section 4.10.3.

セクション4.10.3で候補プロトコルのセキュリティー対策について議論しました。

7.  Acknowledgements

7. 承認

   Many of the issues have been discussed with the other members of the
   IPFIX evaluation team: Juergen Quittek, Mark Fullmer, Ram Gopal, and
   Reinaldo Penno.  Many participants on the ipfix mailing list provided
   valuable feedback, including Vamsidhar Valluri, Paul Calato, Tal

IPFIX評価チームの他のメンバーと問題の多くについて議論しました: ユルゲンQuittek(マークフルマー)はゴパル、およびレイナルド・ペンノに激突します。 ipfixメーリングリストの多くの関係者がVamsidhar Valluri、ポールCalatoを含んでいるタルを有益なフィードバックに提供しました。

Leinen                       Informational                     [Page 19]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[19ページ]のRFC3955評価

   Givoly, Jeff Meyer, Robert Lowe, Benoit Claise, and Carter Bullard.
   Bert Wijnen, Steve Bellovin, Russ Housley, and Allison Mankin
   provided valuable feedback during AD and IESG review.

Givoly、ジェフ・マイヤー、Robert Lowe、ブノワClaise、およびカーター・ブラード。 バートWijnen、スティーブBellovin、ラスHousley、およびアリソン・マンキンはADとIESGレビューの間、有益なフィードバックを提供しました。

8.  References

8. 参照

8.1.  Normative References

8.1. 引用規格

   [1]   Quittek, J., Zseby, T., Claise, B., and S. Zander,
         "Requirements for IP Flow Information Export", RFC 3917,
         October 2004.

2004年10月の[1]QuittekとJ.とZsebyとT.とClaise、B.とS.ザンダー、「IP流れ情報輸出のための要件」RFC3917。

   [2]   Claise, B., Ed., "Cisco Systems NetFlow Services Export Version
         9", RFC 3954, October 2004.

[2]がClaiseする、B.、エド、「シスコシステムズのNetFlowサービスはバージョン9インチ、RFC3954に2004年10月をエクスポートします」。

   [3]   Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
         September 1981.

[3] ポステル、J.、「通信制御プロトコル」、STD7、RFC793、1981年9月。

   [4]   Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
         1980.

[4] ポステル、J.、「ユーザー・データグラム・プロトコル」、STD6、RFC768、1980年8月。

   [5]   Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
         H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V.
         Paxson, "Stream Control Transmission Protocol", RFC 2960,
         October 2000.

[5] スチュワート、R.、シェ、Q.、K.の、そして、鋭いMorneault、C.、Schwarzbauer、H.、テイラー、T.、Rytina、I.、カッラ、M.、チャン、L.、および「ストリーム制御伝動プロトコル」、RFC2960(2000年10月)対パクソン

   [6]   Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
         RFC 2409, November 1998.

[6] ハーキンとD.とD.個人閲覧室、「インターネット・キー・エクスチェンジ(IKE)」、RFC2409 1998年11月。

8.2.  Informative References

8.2. 有益な参照

   [7]   Zhang, K. and E. Elkin, "XACCT's Common Reliable Accounting for
         Network Element (CRANE) Protocol Specification Version 1.0",
         RFC 3423, November 2002.

[7] チャンとK.とE.エルキン、ネットワーク要素(クレーン)のための「のXACCT一般的な信頼できる会計は仕様バージョン1インチについて議定書の中で述べます、RFC3423、2002インチ年11月。

   [8]   Zhang, K., "Evaluation of the CRANE Protocol Against IPFIX
         Requirements", Work in Progress, September 2002.

[8] チャン、K.、「IPFIX要件に対するクレーンプロトコルの評価」、処理中の作業、2002年9月。

   [9]   Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J. Arkko,
         "Diameter Base Protocol", RFC 3588, September 2003.

[9] カルフーンとP.とLoughneyとJ.とGuttmanとE.とゾルン、G.とJ.Arkko、「直径基地のプロトコル」、RFC3588、2003年9月。

   [10]  Zander, S., "Evaluation of Diameter Protocol against IPFIX
         Requirements", Work in Progress, September 2002.

[10] ザンダー、S.、「IPFIX要件に対する直径プロトコルの評価」、処理中の作業、2002年9月。

   [11]  Calato, P. and M. MacFaden, "Light-weight Flow Accounting
         Protocol Specification Version 5.0", July 2002.

[11]CalatoとP.とM.MacFaden、「5インチと、2002年7月にプロトコル仕様がバージョンであることを説明する軽量の流れ。」

Leinen                       Informational                     [Page 20]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[20ページ]のRFC3955評価

   [12]  Calato, P. and M. MacFaden, "Light-weight Flow Accounting
         Protocol Data Definition Specification Version 5.0", July 2002.

[12]CalatoとP.とM.MacFaden、「バージョン5インチと、2002年7月にプロトコルデータ定義が仕様であることを説明する軽量の流れ。」

   [13]  Calato, P., "Evaluation Of Protocol LFAP Against IPFIX
         Requirements", Work in Progress, September 2002.

[13] P.、「IPFIX要件に対するプロトコルLFAPの評価」というCalatoは進歩、2002年9月に働いています。

   [14]  Calato, P. and M. MacFaden, "Light-weight Flow Accounting
         Protocol MIB", Work in Progress, September 2002.

[14] 「軽量の流れ会計プロトコルMIB」というCalato、P.、およびM.MacFadenは進歩、2002年9月に働いています。

   [15]  Claise, B., "Evaluation Of NetFlow Version 9 Against IPFIX
         Requirements", Work in Progress, September 2002.

[15]はClaiseして、「IPFIX要件に対するNetFlowバージョン9の評価」というB.は進歩、2002年9月に働いています。

   [16]  Djernaes, M., "Cisco Systems NetFlow Services Export Version 9
         Transport", Work in Progress, February 2003.

[16] M.、「シスコシステムズのNetFlowサービスはバージョン9輸送を輸出する」というDjernaesが進歩、2003年2月に働いています。

   [17]  Meyer, J., "Reliable Streaming Internet Protocol Detail
         Records", Work in Progress, August 2002.

[17] マイヤー、J.、「信頼できるストリーミングのインターネットプロトコル明細レコード」が進歩、2002年8月に働いています。

   [18]  Meyer, J., "Evaluation Of Streaming IPDR Against IPFIX
         Requirements", Work in Progress, September 2002.

[18] マイヤー、J.、「IPFIX要件に対するストリーミングのIPDRの評価」、処理中の作業、2002年9月。

   [19]  Internet Protocol Detail Record Organization, "Network Data
         Management - Usage (NDM-U) For IP-Based Services Version 3.1",
         April 2002.  URL: http://www.ipdr.org/documents/NDM-U_3.1.pdf

[19] インターネットプロトコルの詳細は、組織を記録して、「3.1インチと、2002年4月にIPベースのサービスバージョンのために、データ管理--用法(NDM-U)をネットワークでつなぎます」。 URL: http://www.ipdr.org/documents/NDM-U_3.1.pdf

   [20]  Kent, S. and R. Atkinson, "Security Architecture for the
         Internet Protocol", RFC 2401, November 1998.

[20] ケントとS.とR.アトキンソン、「インターネットプロトコルのためのセキュリティー体系」、RFC2401、1998年11月。

   [21]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
         2246, January 1999.

[21] Dierks、T.、およびC.アレン、「TLSは1999年1月にバージョン1インチ、RFC2246について議定書の中で述べます」。

   [22]  Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
         Authentication Dial In User Service (RADIUS)", RFC 2865, June
         2000.

[22]RigneyとC.とウィレンスとS.とルーベン、A.とW.シンプソン、「ユーザサービス(半径)におけるリモート認証ダイヤル」RFC2865(2000年6月)。

   [23]  Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad,
         "Stream Control Transmission Protocol (SCTP) Partial
         Reliability Extension", RFC 3758, May 2004.

[23] スチュワート、R.、Ramalho(M.、シェ、Q.、Tuexen、M.、およびP.コンラッド)は「制御伝動のプロトコルの(SCTP)部分的な信頼性の拡大を流します」、RFC3758、2004年5月。

   [24]  DeRose, S., Maler, E. and D. Orchard, "XML 1.0 Recommendation",
         W3C FirstEdition REC-xml-19980210, February 1998.

[24]DeRoseとS.とMalerとE.とD.果樹園、「XML1.0推薦」、W3C FirstEdition REC-xml-19980210、1998年2月。

   [25]  Srinivasan, R., "XDR: External Data Representation Standard",
         RFC 1832, August 1995.

[25]Srinivasan、R.、「XDR:」 「外部データ表現規格」、RFC1832、1995年8月。

   [26]  <http://www.nmops.org/>

[26] <http://www.nmops.org/>。

   [27]  <http://www.ipdr.org/>

[27] <http://www.ipdr.org/>。

Leinen                       Informational                     [Page 21]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[21ページ]のRFC3955評価

Appendix A.  A Note on References to the Candidate Protocol Documents

候補プロトコルの参照に関する注が記録する付録A.

   At the time of the evaluation, the candidate protocol definitions, as
   well as their respective accompanying advocacy documents, were
   available as Internet-Drafts.  As of the time of publication of this
   document, some of the protocols have been published as RFCs, others
   are still being revised as Internet-Drafts, and some will have
   expired.  This document attempts to extract the relevant information
   from the individual protocol definitions and, in the context of the
   IPFIX requirements, provide a meaningful comparison between them.

評価時点で、候補プロトコル定義、およびそれらのそれぞれの付随の支持ドキュメントはインターネット草稿として利用可能でした。 このドキュメントの公表の時付けで、RFCs、他のものがインターネット草稿としてまだ改訂されていて、或るものが期限が切れてしまうだろうというとき、プロトコルのいくつかが発表されました。 このドキュメントは、個々のプロトコル定義から関連情報を抜粋して、IPFIX要件の文脈で重要な比較をそれらの間に提供するのを試みます。

   Since this evaluation proposes to use NetFlow v9 as the basis for the
   IPFIX protocol, only the reference to this protocol is considered
   "normative", although strictly spoken, the present document doesn't
   define any protocol, and the selected protocol will have to be
   further refined to become the IPFIX protocol.

この評価が、IPFIXプロトコルの基礎としてNetFlow v9を使用するよう提案するので、このプロトコルの参照だけが「規範的である」と考えられます、厳密に話されます、現在のドキュメントはどんなプロトコルも定義しません、そして、選択されたプロトコルはIPFIXプロトコルになるようにさらに洗練されなければならないでしょうが。

   In the interest of stable references, the bibliography points to RFCs
   where those have become available (for DIAMETER and CRANE).  Other
   protocols are still available only as Internet-Drafts and may
   eventually expire.  The LFAP drafts - which already have expired -
   are still available from the www.nmops.org Web site [26] (as well as
   other places).  The IPDR documents are available on the IPDR Web site
   [27].

安定した参照のために、図書目録はものが利用可能に(DIAMETERとCRANEのための)なったRFCsを示します。 他のプロトコルは、単にインターネット草稿としてまだ利用可能であり、結局、期限が切れるかもしれません。 LFAP草稿はwww.nmops.orgウェブサイト[26](他の場所と同様に)からまだ利用可能です。(既に、草稿は期限が切れました)。 IPDRドキュメントはIPDRウェブサイト[27]で利用可能です。

Author's Address

作者のアドレス

   Simon Leinen
   SWITCH
   Limmatquai 138
   P.O. Box
   CH-8021 Zurich
   Switzerland

サイモンLeinenスイッチLimmatquai138私書箱CH-8021チューリッヒスイス

   Phone: +41 1 268 1536
   EMail: simon@switch.ch

以下に電話をしてください。 +41 1 268 1536はメールされます: simon@switch.ch

Leinen                       Informational                     [Page 22]

RFC 3955      Evaluation of Candidate Protocols for IPFIX   October 2004

IPFIX2004年10月のための候補プロトコルのLeinen情報[22ページ]のRFC3955評価

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The Internet Society (2004).

Copyright(C)インターネット協会(2004)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and at www.rfc-editor.org, and except as set
   forth therein, the authors retain all their rights.

このドキュメントはBCP78と、www.rfc-editor.orgに含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントと「そのままで」という基礎と貢献者、その人が代表する組織で提供するか、または後援されて、インターネット協会とインターネット・エンジニアリング・タスク・フォースはすべての保証を放棄します、と急行ORが含意したということであり、他を含んでいて、ここに含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the ISOC's procedures with respect to rights in ISOC Documents can
   be found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実現に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するためのどんな独立している努力もしました。 BCP78とBCP79でISOC Documentsの権利に関するISOCの手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

IETFはこの規格を実行するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf ipr@ietf.org のIETFに情報を記述してください。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Leinen                       Informational                     [Page 23]

Leinen情報です。[23ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

Ultimate Defrag よく使うファイルを外周に配置するデフラグツール

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る