RFC4051 日本語訳

4051 Additional XML Security Uniform Resource Identifiers (URIs). D.Eastlake 3rd. April 2005. (Format: TXT=33368 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                    D. Eastlake 3rd
Request for Comments: 4051                         Motorola Laboratories
Category: Standards Track                                     April 2005

Network Working Group D. Eastlake 3rd Request for Comments: 4051 Motorola Laboratories Category: Standards Track April 2005

      Additional XML Security Uniform Resource Identifiers (URIs)

Additional XML Security Uniform Resource Identifiers (URIs)

Status of This Memo

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (2005).

Copyright (C) The Internet Society (2005).

Abstract

Abstract

   A number of Uniform Resource Identifiers (URIs) intended for use with
   XML Digital Signatures, Encryption, and Canonicalization are defined.
   These URIs identify algorithms and types of keying information.

A number of Uniform Resource Identifiers (URIs) intended for use with XML Digital Signatures, Encryption, and Canonicalization are defined. These URIs identify algorithms and types of keying information.

Table of Contents

Table of Contents

   1.  Introduction..................................................  2
   2.  Algorithms....................................................  3
       2.1.  DigestMethod Algorithms.................................  3
             2.1.1.  MD5.............................................  3
             2.1.2.  SHA-224.........................................  3
             2.1.3.  SHA-384.........................................  4
       2.2.  SignatureMethod Message Authentication Code Algorithms..  4
             2.2.1.  HMAC-MD5........................................  4
             2.2.2.  HMAC SHA Variations.............................  5
             2.2.3.  HMAC-RIPEMD160..................................  6
       2.3.  SignatureMethod Public Key Signature Algorithms.........  6
             2.3.1.  RSA-MD5.........................................  6
             2.3.2.  RSA-SHA256......................................  7
             2.3.3.  RSA-SHA384......................................  7
             2.3.4.  RSA-SHA512......................................  7
             2.3.5.  RSA-RIPEMD160...................................  8
             2.3.6.  ECDSA-SHA*......................................  8
             2.3.7.  ESIGN-SHA1......................................  8
       2.4.  Minimal Canonicalization................................  9
       2.5.  Transform Algorithms....................................  9
             2.5.1.  XPointer........................................  9

1. Introduction.................................................. 2 2. Algorithms.................................................... 3 2.1. DigestMethod Algorithms................................. 3 2.1.1. MD5............................................. 3 2.1.2. SHA-224......................................... 3 2.1.3. SHA-384......................................... 4 2.2. SignatureMethod Message Authentication Code Algorithms.. 4 2.2.1. HMAC-MD5........................................ 4 2.2.2. HMAC SHA Variations............................. 5 2.2.3. HMAC-RIPEMD160.................................. 6 2.3. SignatureMethod Public Key Signature Algorithms......... 6 2.3.1. RSA-MD5......................................... 6 2.3.2. RSA-SHA256...................................... 7 2.3.3. RSA-SHA384...................................... 7 2.3.4. RSA-SHA512...................................... 7 2.3.5. RSA-RIPEMD160................................... 8 2.3.6. ECDSA-SHA*...................................... 8 2.3.7. ESIGN-SHA1...................................... 8 2.4. Minimal Canonicalization................................ 9 2.5. Transform Algorithms.................................... 9 2.5.1. XPointer........................................ 9

Eastlake 3rd                Standards Track                     [Page 1]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 1] RFC 4051 Additional XML Security URIs April 2005

       2.6.  EncryptionMethod Algorithms............................. 10
             2.6.1.  ARCFOUR Encryption Algorithm.................... 10
             2.6.2.  Camellia Block Encryption....................... 10
             2.6.3.  Camellia Key Wrap............................... 11
             2.6.4.  PSEC-KEM........................................ 11
   3.  KeyInfo....................................................... 12
       3.1.  PKCS #7 Bag of Certificates and CRLs.................... 12
       3.2.  Additional RetrievalMethod Type Values.................. 12
   4.  IANA Considerations........................................... 13
   5.  Security Considerations....................................... 13
   Acknowledgements.................................................. 13
   Normative References.............................................. 13
   Informative References............................................ 15
   Author's Address.................................................. 16
   Full Copyright Statement.......................................... 17

2.6. EncryptionMethod Algorithms............................. 10 2.6.1. ARCFOUR Encryption Algorithm.................... 10 2.6.2. Camellia Block Encryption....................... 10 2.6.3. Camellia Key Wrap............................... 11 2.6.4. PSEC-KEM........................................ 11 3. KeyInfo....................................................... 12 3.1. PKCS #7 Bag of Certificates and CRLs.................... 12 3.2. Additional RetrievalMethod Type Values.................. 12 4. IANA Considerations........................................... 13 5. Security Considerations....................................... 13 Acknowledgements.................................................. 13 Normative References.............................................. 13 Informative References............................................ 15 Author's Address.................................................. 16 Full Copyright Statement.......................................... 17

1.  Introduction

1. Introduction

   XML Digital Signatures, Canonicalization, and Encryption have been
   standardized by the W3C and the joint IETF/W3C XMLDSIG working group.
   All of these are now W3C Recommendations and IETF Informational or
   Standards Track documents.  They are available as follows:

XML Digital Signatures, Canonicalization, and Encryption have been standardized by the W3C and the joint IETF/W3C XMLDSIG working group. All of these are now W3C Recommendations and IETF Informational or Standards Track documents. They are available as follows:

   IETF level           W3C REC     Topic
   -----------          -------     -----
   [RFC3275]  Draft Std [XMLDSIG]   XML Digital Signatures
   [RFC3076]  Info      [CANON]     Canonical XML
    - - - - - -         [XMLENC]    XML Encryption
   [RFC3741]  Info      [EXCANON]   Exclusive XML Canonicalization

IETF level W3C REC Topic ----------- ------- ----- [RFC3275] Draft Std [XMLDSIG] XML Digital Signatures [RFC3076] Info [CANON] Canonical XML - - - - - - [XMLENC] XML Encryption [RFC3741] Info [EXCANON] Exclusive XML Canonicalization

   All of these standards and recommendations use URIs [RFC2396] to
   identify algorithms and keying information types.  This document
   provides a convenient reference list of URIs and descriptions for
   algorithms in which there is substantial interest, but which cannot
   or have not been included in the main documents.  Note that raising
   XML digital signature to a Draft Standard in the IETF required
   removal of any algorithms for which interoperability from the main
   standards document has not been demonstrated.  This required removal
   of the Minimal Canonicalization algorithm, in which there appears to
   be a continued interest, to be dropped from the standards track
   specification.  It is included here.

All of these standards and recommendations use URIs [RFC2396] to identify algorithms and keying information types. This document provides a convenient reference list of URIs and descriptions for algorithms in which there is substantial interest, but which cannot or have not been included in the main documents. Note that raising XML digital signature to a Draft Standard in the IETF required removal of any algorithms for which interoperability from the main standards document has not been demonstrated. This required removal of the Minimal Canonicalization algorithm, in which there appears to be a continued interest, to be dropped from the standards track specification. It is included here.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Eastlake 3rd                Standards Track                     [Page 2]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 2] RFC 4051 Additional XML Security URIs April 2005

2.  Algorithms

2. Algorithms

   The URI [RFC2396] being dropped from the standard because of the
   transition from Proposed Standard to Draft Standard is included in
   Section 2.4 with its original prefix so as to avoid changing the
   XMLDSIG standard's namespace.

The URI [RFC2396] being dropped from the standard because of the transition from Proposed Standard to Draft Standard is included in Section 2.4 with its original prefix so as to avoid changing the XMLDSIG standard's namespace.

      http://www.w3.org/2000/09/xmldsig#

http://www.w3.org/2000/09/xmldsig#

   Additional algorithms are given URIs that start with:

Additional algorithms are given URIs that start with:

      http://www.w3.org/2001/04/xmldsig-more#

http://www.w3.org/2001/04/xmldsig-more#

   An "xmldsig-more" URI does not imply any official W3C status for
   these algorithms or identifiers or that they are only useful in
   digital signatures.  Currently, dereferencing such URIs may or may
   not produce a temporary placeholder document.  Permission to use this
   URI prefix has been given by the W3C.

An "xmldsig-more" URI does not imply any official W3C status for these algorithms or identifiers or that they are only useful in digital signatures. Currently, dereferencing such URIs may or may not produce a temporary placeholder document. Permission to use this URI prefix has been given by the W3C.

2.1.  DigestMethod Algorithms

2.1. DigestMethod Algorithms

   These algorithms are usable wherever a DigestMethod element occurs.

These algorithms are usable wherever a DigestMethod element occurs.

2.1.1.  MD5

2.1.1. MD5

   Identifier:

Identifier:

      http://www.w3.org/2001/04/xmldsig-more#md5

http://www.w3.org/2001/04/xmldsig-more#md5

   The MD5 algorithm [RFC1321] takes no explicit parameters.  An example
   of an MD5 DigestAlgorithm element is:

The MD5 algorithm [RFC1321] takes no explicit parameters. An example of an MD5 DigestAlgorithm element is:

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>

<DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>

   An MD5 digest is a 128-bit string.  The content of the DigestValue
   element shall be the base64 [RFC2405] encoding of this bit string
   viewed as a 16-octet octet stream.

An MD5 digest is a 128-bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this bit string viewed as a 16-octet octet stream.

2.1.2.  SHA-224

2.1.2. SHA-224

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha224

Identifier: http://www.w3.org/2001/04/xmldsig-more#sha224

   The SHA-224 algorithm [FIPS-180-2change, RFC3874] takes no explicit
   parameters.  An example of a SHA-224 DigestAlgorithm element is:

The SHA-224 algorithm [FIPS-180-2change, RFC3874] takes no explicit parameters. An example of a SHA-224 DigestAlgorithm element is:

Eastlake 3rd                Standards Track                     [Page 3]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 3] RFC 4051 Additional XML Security URIs April 2005

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />

<DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />

   A SHA-224 digest is a 224 bit string.  The content of the DigestValue
   element shall be the base64 [RFC2405] encoding of this string viewed
   as a 28-octet stream.  Because it takes roughly the same amount of
   effort to compute a SHA-224 message digest as a SHA-256 digest, and
   terseness is usually not a criteria in an XML application,
   consideration should be given to the use of SHA-256 as an
   alternative.

A SHA-224 digest is a 224 bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this string viewed as a 28-octet stream. Because it takes roughly the same amount of effort to compute a SHA-224 message digest as a SHA-256 digest, and terseness is usually not a criteria in an XML application, consideration should be given to the use of SHA-256 as an alternative.

2.1.3.  SHA-384

2.1.3. SHA-384

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#sha384

Identifier: http://www.w3.org/2001/04/xmldsig-more#sha384

   The SHA-384 algorithm [FIPS-180-2] takes no explicit parameters.  An
   example of a SHA-384 DigestAlgorithm element is:

The SHA-384 algorithm [FIPS-180-2] takes no explicit parameters. An example of a SHA-384 DigestAlgorithm element is:

   <DigestAlgorithm
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />

<DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />

   A SHA-384 digest is a 384 bit string.  The content of the DigestValue
   element shall be the base64 [RFC2405] encoding of this string viewed
   as a 48-octet stream.  Because it takes roughly the same amount of
   effort to compute a SHA-384 message digest as a SHA-512 digest and
   terseness is usually not a criteria in XML application, consideration
   should be given to the use of SHA-512 as an alternative.

A SHA-384 digest is a 384 bit string. The content of the DigestValue element shall be the base64 [RFC2405] encoding of this string viewed as a 48-octet stream. Because it takes roughly the same amount of effort to compute a SHA-384 message digest as a SHA-512 digest and terseness is usually not a criteria in XML application, consideration should be given to the use of SHA-512 as an alternative.

2.2.  SignatureMethod Message Authentication Code Algorithms

2.2. SignatureMethod Message Authentication Code Algorithms

   Note: Some text in this section is duplicated from [RFC3275] for the
   convenience of the reader.  RFC 3275 is normative in case of
   conflict.

Note: Some text in this section is duplicated from [RFC3275] for the convenience of the reader. RFC 3275 is normative in case of conflict.

2.2.1.  HMAC-MD5

2.2.1. HMAC-MD5

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-md5

Identifier: http://www.w3.org/2001/04/xmldsig-more#hmac-md5

   The HMAC algorithm [RFC2104] takes the truncation length in bits as a
   parameter; if the parameter is not specified then all the bits of the
   hash are output.  An example of an HMAC-MD5 SignatureMethod element
   is as follows:

The HMAC algorithm [RFC2104] takes the truncation length in bits as a parameter; if the parameter is not specified then all the bits of the hash are output. An example of an HMAC-MD5 SignatureMethod element is as follows:

Eastlake 3rd                Standards Track                     [Page 4]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 4] RFC 4051 Additional XML Security URIs April 2005

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5">
      <HMACOutputLength>112</HMACOutputLength>
   </SignatureMethod>

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5"> <HMACOutputLength>112</HMACOutputLength> </SignatureMethod>

   The output of the HMAC algorithm is ultimately the output (possibly
   truncated) of the chosen digest algorithm.  This value shall be
   base64 [RFC2405] encoded in the same straightforward fashion as the
   output of the digest algorithms.  For example, the SignatureValue
   element for the HMAC-MD5 digest

The output of the HMAC algorithm is ultimately the output (possibly truncated) of the chosen digest algorithm. This value shall be base64 [RFC2405] encoded in the same straightforward fashion as the output of the digest algorithms. For example, the SignatureValue element for the HMAC-MD5 digest

      9294727A 3638BB1C 13F48EF8 158BFC9D

9294727A 3638BB1C 13F48EF8 158BFC9D

   from the test vectors in [RFC2104] would be

from the test vectors in [RFC2104] would be

      kpRyejY4uxwT9I74FYv8nQ==

kpRyejY4uxwT9I74FYv8nQ==

   Schema Definition:

Schema Definition:

      <simpleType name="HMACOutputLength">
         <restriction base="integer" />
      </simpleType>

<simpleType name="HMACOutputLength"> <restriction base="integer" /> </simpleType>

   DTD:

DTD:

      <!ELEMENT HMACOutputLength (#PCDATA) >

<!ELEMENT HMACOutputLength (#PCDATA) >

   The Schema Definition and DTD immediately shown above are taken from
   [RFC3275].

The Schema Definition and DTD immediately shown above are taken from [RFC3275].

   Although some cryptographic suspicions have recently been cast on MD5
   for use in signatures such as RSA-MD5 below, this does not effect use
   of MD5 in HMAC.

Although some cryptographic suspicions have recently been cast on MD5 for use in signatures such as RSA-MD5 below, this does not effect use of MD5 in HMAC.

2.2.2.  HMAC SHA Variations

2.2.2. HMAC SHA Variations

   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
      http://www.w3.org/2001/04/xmldsig-more#hmac-sha512

Identifiers: http://www.w3.org/2001/04/xmldsig-more#hmac-sha224 http://www.w3.org/2001/04/xmldsig-more#hmac-sha256 http://www.w3.org/2001/04/xmldsig-more#hmac-sha384 http://www.w3.org/2001/04/xmldsig-more#hmac-sha512

   SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS-180-2, FIPS-180-2change,
   RFC3874] can also be used in HMAC as described in section 2.2.1 for
   HMAC-MD5.

SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS-180-2, FIPS-180-2change, RFC3874] can also be used in HMAC as described in section 2.2.1 for HMAC-MD5.

Eastlake 3rd                Standards Track                     [Page 5]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 5] RFC 4051 Additional XML Security URIs April 2005

2.2.3.  HMAC-RIPEMD160

2.2.3. HMAC-RIPEMD160

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160

Identifier: http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160

   RIPEMD-160 [RIPEMD-160] can also be used in HMAC as described in
   section 2.2.1 for HMAC-MD5.

RIPEMD-160 [RIPEMD-160] can also be used in HMAC as described in section 2.2.1 for HMAC-MD5.

2.3.  SignatureMethod Public Key Signature Algorithms

2.3. SignatureMethod Public Key Signature Algorithms

   These algorithms are distinguished from those in Section 2.2 in that
   they use public key methods.  The verification key is different from
   and not feasibly derivable from the signing key.

These algorithms are distinguished from those in Section 2.2 in that they use public key methods. The verification key is different from and not feasibly derivable from the signing key.

2.3.1.  RSA-MD5

2.3.1. RSA-MD5

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-md5

Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-md5

   RSA-MD5 implies the PKCS#1 v1.5 padding algorithm described in
   [RFC3447].  An example of use is

RSA-MD5 implies the PKCS#1 v1.5 padding algorithm described in [RFC3447]. An example of use is

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />

   The SignatureValue content for an RSA-MD5 signature is the base64
   [RFC2405] encoding of the octet string computed as per [RFC3447],
   section 8.1.1, signature generation for the RSASSA-PKCS1-v1_5
   signature scheme.  As specified in the EMSA-PKCS1-V1_5-ENCODE
   function in [RFC3447, section 9.2.1], the value input to the
   signature function MUST contain a pre-pended algorithm object
   identifier for the hash function, but the availability of an ASN.1
   parser and recognition of OIDs are not required of a signature
   verifier.  The PKCS#1 v1.5 representation appears as:

The SignatureValue content for an RSA-MD5 signature is the base64 [RFC2405] encoding of the octet string computed as per [RFC3447], section 8.1.1, signature generation for the RSASSA-PKCS1-v1_5 signature scheme. As specified in the EMSA-PKCS1-V1_5-ENCODE function in [RFC3447, section 9.2.1], the value input to the signature function MUST contain a pre-pended algorithm object identifier for the hash function, but the availability of an ASN.1 parser and recognition of OIDs are not required of a signature verifier. The PKCS#1 v1.5 representation appears as:

      CRYPT (PAD (ASN.1 (OID, DIGEST (data))))

CRYPT (PAD (ASN.1 (OID, DIGEST (data))))

   Note that the padded ASN.1 will be of the following form:

Note that the padded ASN.1 will be of the following form:

      01 | FF* | 00 | prefix | hash

01 | FF* | 00 | prefix | hash

   Vertical bar ("|") represents concatenation.  "01", "FF", and "00"
   are fixed octets of the corresponding hexadecimal value and the
   asterisk ("*") after "FF" indicates repetition.  "hash" is the MD5
   digest of the data.  "prefix" is the ASN.1 BER MD5 algorithm
   designator prefix required in PKCS #1 [RFC3447], that is:

Vertical bar ("|") represents concatenation. "01", "FF", and "00" are fixed octets of the corresponding hexadecimal value and the asterisk ("*") after "FF" indicates repetition. "hash" is the MD5 digest of the data. "prefix" is the ASN.1 BER MD5 algorithm designator prefix required in PKCS #1 [RFC3447], that is:

      hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10

hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10

Eastlake 3rd                Standards Track                     [Page 6]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 6] RFC 4051 Additional XML Security URIs April 2005

   This prefix is included to facilitate the use of standard
   cryptographic libraries.  The FF octet MUST be repeated enough times
   that the value of the quantity being CRYPTed is exactly one octet
   shorter than the RSA modulus.

This prefix is included to facilitate the use of standard cryptographic libraries. The FF octet MUST be repeated enough times that the value of the quantity being CRYPTed is exactly one octet shorter than the RSA modulus.

   Due to increases in computer processor power and advances in
   cryptography, use of RSA-MD5 is NOT RECOMMENDED.

Due to increases in computer processor power and advances in cryptography, use of RSA-MD5 is NOT RECOMMENDED.

2.3.2.  RSA-SHA256

2.3.2. RSA-SHA256

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

   This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
   in section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator
   prefix.  An example of use is:

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator prefix. An example of use is:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

2.3.3 RSA-SHA384

2.3.3 RSA-SHA384

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

   This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
   in section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator
   prefix.  An example of use is:

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator prefix. An example of use is:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />

   Because it takes about the same effort to calculate a SHA-384 message
   digest as a SHA-512 message digest, it is suggested that RSA-SHA512
   be used in preference to RSA-SHA384 where possible.

Because it takes about the same effort to calculate a SHA-384 message digest as a SHA-512 message digest, it is suggested that RSA-SHA512 be used in preference to RSA-SHA384 where possible.

2.3.4.  RSA-SHA512

2.3.4. RSA-SHA512

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

   This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
   in section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator
   prefix.  An example of use is:

This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator prefix. An example of use is:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />

Eastlake 3rd                Standards Track                     [Page 7]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 7] RFC 4051 Additional XML Security URIs April 2005

2.3.5.  RSA-RIPEMD160

2.3.5. RSA-RIPEMD160

   Identifier:
     http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160

Identifier: http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160

   This implies the PKCS#1 v1.5 padding algorithm [RFC3447], as
   described in section 2.3.1, but with the ASN.1 BER RIPEMD160
   algorithm designator prefix.  An example of use is:

This implies the PKCS#1 v1.5 padding algorithm [RFC3447], as described in section 2.3.1, but with the ASN.1 BER RIPEMD160 algorithm designator prefix. An example of use is:

   <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />

2.3.6.  ECDSA-SHA*

2.3.6. ECDSA-SHA*

   Identifiers
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
      http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

Identifiers http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

   The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS-186-2]
   is the elliptic curve analogue of the DSA (DSS) signature method.
   For detailed specifications on how to use it with SHA hash functions
   and XML Digital Signature, please see [X9.62] and [ECDSA].

The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS-186-2] is the elliptic curve analogue of the DSA (DSS) signature method. For detailed specifications on how to use it with SHA hash functions and XML Digital Signature, please see [X9.62] and [ECDSA].

2.3.7.  ESIGN-SHA1

2.3.7. ESIGN-SHA1

   Identifier
      http://www.w3.org/2001/04/xmldsig-more#esign-sha1
      http://www.w3.org/2001/04/xmldsig-more#esign-sha224
      http://www.w3.org/2001/04/xmldsig-more#esign-sha256
      http://www.w3.org/2001/04/xmldsig-more#esign-sha384
      http://www.w3.org/2001/04/xmldsig-more#esign-sha512

Identifier http://www.w3.org/2001/04/xmldsig-more#esign-sha1 http://www.w3.org/2001/04/xmldsig-more#esign-sha224 http://www.w3.org/2001/04/xmldsig-more#esign-sha256 http://www.w3.org/2001/04/xmldsig-more#esign-sha384 http://www.w3.org/2001/04/xmldsig-more#esign-sha512

   The ESIGN algorithm specified in [IEEE-P1363a] is a signature scheme
   based on the integer factorization problem.  It is much faster than
   previous digital signature schemes so ESIGN can be implemented on
   smart cards without special co-processors.

The ESIGN algorithm specified in [IEEE-P1363a] is a signature scheme based on the integer factorization problem. It is much faster than previous digital signature schemes so ESIGN can be implemented on smart cards without special co-processors.

   An example of use is:

An example of use is:

   <SignatureMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" />

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" />

Eastlake 3rd                Standards Track                     [Page 8]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 8] RFC 4051 Additional XML Security URIs April 2005

2.4.  Minimal Canonicalization

2.4. Minimal Canonicalization

   Thus far two independent interoperable implementations of Minimal
   Canonicalization have not been announced.  Therefore, when XML
   Digital Signature was advanced from Proposed Standard [RFC3075] to
   Draft Standard [RFC3275], Minimal Canonicalization was dropped from
   the standards track documents.  However, there is still interest in
   Minimal Canonicalization, indicating its possible future use.  For
   its definition, see [RFC3075], Section 6.5.1.

Thus far two independent interoperable implementations of Minimal Canonicalization have not been announced. Therefore, when XML Digital Signature was advanced from Proposed Standard [RFC3075] to Draft Standard [RFC3275], Minimal Canonicalization was dropped from the standards track documents. However, there is still interest in Minimal Canonicalization, indicating its possible future use. For its definition, see [RFC3075], Section 6.5.1.

   For reference, its identifier remains:
      http://www.w3.org/2000/09/xmldsig#minimal

For reference, its identifier remains: http://www.w3.org/2000/09/xmldsig#minimal

2.5.  Transform Algorithms

2.5. Transform Algorithms

   Note that all CanonicalizationMethod algorithms can also be used as
   transform algorithms.

Note that all CanonicalizationMethod algorithms can also be used as transform algorithms.

2.5.1.  XPointer

2.5.1. XPointer

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more/xptr

Identifier: http://www.w3.org/2001/04/xmldsig-more/xptr

   This transform algorithm takes an [XPointer] as an explicit
   parameter.  An example of use is [RFC3092]:

This transform algorithm takes an [XPointer] as an explicit parameter. An example of use is [RFC3092]:

   <Transform
      Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr">
      <XPointer
         xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr">
            xpointer(id("foo")) xmlns(bar=http://foobar.example)
            xpointer(//bar:Zab[@Id="foo"])
      </XPointer>
   </Transform>

<Transform Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr"> <XPointer xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr"> xpointer(id("foo")) xmlns(bar=http://foobar.example) xpointer(//bar:Zab[@Id="foo"]) </XPointer> </Transform>

   Schema Definition:

Schema Definition:

      <element name="XPointer" type="string">

<element name="XPointer" type="string">

   DTD:

DTD:

      <!ELEMENT XPointer (#PCDATA) >

<!ELEMENT XPointer (#PCDATA) >

   Input to this transform is an octet stream (which is then parsed into
   XML).

Input to this transform is an octet stream (which is then parsed into XML).

Eastlake 3rd                Standards Track                     [Page 9]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 9] RFC 4051 Additional XML Security URIs April 2005

   Output from this transform is a node set; the results of the XPointer
   are processed as defined in the XMLDSIG specification [RFC3275] for a
   same document XPointer.

Output from this transform is a node set; the results of the XPointer are processed as defined in the XMLDSIG specification [RFC3275] for a same document XPointer.

2.6.  EncryptionMethod Algorithms

2.6. EncryptionMethod Algorithms

   This subsection gives identifiers and information for several
   EncryptionMethod Algorithms.

This subsection gives identifiers and information for several EncryptionMethod Algorithms.

2.6.1.  ARCFOUR Encryption Algorithm

2.6.1. ARCFOUR Encryption Algorithm

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#arcfour

Identifier: http://www.w3.org/2001/04/xmldsig-more#arcfour

   ARCFOUR is a fast, simple stream encryption algorithm that is
   compatible with RSA Security's RC4 algorithm.  An example of the
   EncryptionMethod element using ARCFOUR is

ARCFOUR is a fast, simple stream encryption algorithm that is compatible with RSA Security's RC4 algorithm. An example of the EncryptionMethod element using ARCFOUR is

   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour">
      <KeySize>40</KeySize>
   </EncryptionMethod>

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour"> <KeySize>40</KeySize> </EncryptionMethod>

   Note that Arcfour makes use of the generic KeySize parameter
   specified and defined in [XMLENC].

Note that Arcfour makes use of the generic KeySize parameter specified and defined in [XMLENC].

2.6.2.  Camellia Block Encryption

2.6.2. Camellia Block Encryption

   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc
      http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc

Identifiers: http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc

   Camellia is an efficient and secure block cipher with the same
   interface as the AES [Camellia, RFC3713], that is 128-bit block size
   and 128, 192, and 256 bit key sizes.  In XML Encryption, Camellia is
   used in the same way as the AES: It is used in the Cipher Block
   Chaining (CBC) mode with a 128-bit initialization vector (IV).  The
   resulting cipher text is prefixed by the IV.  If included in XML
   output, it is then base64 encoded.  An example Camellia
   EncryptionMethod is as follows:

Camellia is an efficient and secure block cipher with the same interface as the AES [Camellia, RFC3713], that is 128-bit block size and 128, 192, and 256 bit key sizes. In XML Encryption, Camellia is used in the same way as the AES: It is used in the Cipher Block Chaining (CBC) mode with a 128-bit initialization vector (IV). The resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded. An example Camellia EncryptionMethod is as follows:

   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" />

<EncryptionMethod Algorithm= "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" />

Eastlake 3rd                Standards Track                    [Page 10]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 10] RFC 4051 Additional XML Security URIs April 2005

2.6.3.  Camellia Key Wrap

2.6.3. Camellia Key Wrap

   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
      http://www.w3.org/2001/04/xmldsig-more#kw-camellia256

Identifiers: http://www.w3.org/2001/04/xmldsig-more#kw-camellia128 http://www.w3.org/2001/04/xmldsig-more#kw-camellia192 http://www.w3.org/2001/04/xmldsig-more#kw-camellia256

   The Camellia [Camellia, RFC3713] key wrap is identical to the AES key
   wrap algorithm [RFC3394] specified in the XML Encryption standard
   with "AES" replaced by "Camellia".  As with AES key wrap, the check
   value is 0xA6A6A6A6A6A6A6A6.

The Camellia [Camellia, RFC3713] key wrap is identical to the AES key wrap algorithm [RFC3394] specified in the XML Encryption standard with "AES" replaced by "Camellia". As with AES key wrap, the check value is 0xA6A6A6A6A6A6A6A6.

   The algorithm is the same regardless of the size of the Camellia key
   used in wrapping (called the key encrypting key or KEK).  The
   implementation of Camellia is OPTIONAL.  However, if it is supported,
   the same implementation guidelines of which combinations of KEK size
   and wrapped key size should be required to be supported and which are
   optional to be supported should be followed as for AES.  That is to
   say, if Camellia key wrap is supported, then wrapping 128-bit keys
   with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK are
   REQUIRED and all other combinations are OPTIONAL.

The algorithm is the same regardless of the size of the Camellia key used in wrapping (called the key encrypting key or KEK). The implementation of Camellia is OPTIONAL. However, if it is supported, the same implementation guidelines of which combinations of KEK size and wrapped key size should be required to be supported and which are optional to be supported should be followed as for AES. That is to say, if Camellia key wrap is supported, then wrapping 128-bit keys with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK are REQUIRED and all other combinations are OPTIONAL.

   An example of use is:

An example of use is:

   <EncryptionMethod
      Algorithm=
      "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" />

<EncryptionMethod Algorithm= "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" />

2.6.4.  PSEC-KEM

2.6.4. PSEC-KEM

   Identifier:
      http://www.w3.org/2001/04/xmldsig-more#psec-kem

Identifier: http://www.w3.org/2001/04/xmldsig-more#psec-kem

   The PSEC-KEM algorithm, specified in [ISO/IEC-18033-2], is a key
   encapsulation mechanism using elliptic curve encryption.

The PSEC-KEM algorithm, specified in [ISO/IEC-18033-2], is a key encapsulation mechanism using elliptic curve encryption.

   An example of use is:

An example of use is:

   <EncryptionMethod
      Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem">
      <ECParameters>
         <Version>version</Version>
         <FieldID>id</FieldID>
         <Curve>curve</Curve>
         <Base>base</Base>
         <Order>order</Order>
         <Cofactor>cofactor</Cofactor>
      </ECParameters>

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem"> <ECParameters> <Version>version</Version> <FieldID>id</FieldID> <Curve>curve</Curve> <Base>base</Base> <Order>order</Order> <Cofactor>cofactor</Cofactor> </ECParameters>

Eastlake 3rd                Standards Track                    [Page 11]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 11] RFC 4051 Additional XML Security URIs April 2005

   </EncryptionMethod>

</EncryptionMethod>

   See [ISO/IEC-18033-2] for information on the parameters above.

See [ISO/IEC-18033-2] for information on the parameters above.

3.  KeyInfo

3. KeyInfo

   In section 3.1 a new KeyInfo element child is specified, while in
   section 3.2 additional KeyInfo Type values for use in RetrievalMethod
   are specified.

In section 3.1 a new KeyInfo element child is specified, while in section 3.2 additional KeyInfo Type values for use in RetrievalMethod are specified.

3.1.  PKCS #7 Bag of Certificates and CRLs

3.1. PKCS #7 Bag of Certificates and CRLs

   A PKCS #7 [RFC2315] "signedData" can also be used as a bag of
   certificates and/or certificate revocation lists (CRLs).  The
   PKCS7signedData element is defined to accommodate such structures
   within KeyInfo.  The binary PKCS #7 structure is base64 [RFC2405]
   encoded.  Any signer information present is ignored.  The following
   is an example, eliding the base64 data [RFC3092]:

A PKCS #7 [RFC2315] "signedData" can also be used as a bag of certificates and/or certificate revocation lists (CRLs). The PKCS7signedData element is defined to accommodate such structures within KeyInfo. The binary PKCS #7 structure is base64 [RFC2405] encoded. Any signer information present is ignored. The following is an example, eliding the base64 data [RFC3092]:

   <foo:PKCS7signedData
      xmlns:foo="http://www.w3.org/2001/04/xmldsig-more">
      ...
   </foo:PKCS7signedData>

<foo:PKCS7signedData xmlns:foo="http://www.w3.org/2001/04/xmldsig-more"> ... </foo:PKCS7signedData>

3.2.  Additional RetrievalMethod Type Values

3.2. Additional RetrievalMethod Type Values

   The Type attribute of RetrievalMethod is an optional identifier for
   the type of data to be retrieved.  The result of dereferencing a
   RetrievalMethod reference for all KeyInfo types with an XML structure
   is an XML element or document with that element as the root.  The
   various "raw" key information types return a binary value.  Thus,
   they require a Type attribute because they are not unambiguously
   parseable.

The Type attribute of RetrievalMethod is an optional identifier for the type of data to be retrieved. The result of dereferencing a RetrievalMethod reference for all KeyInfo types with an XML structure is an XML element or document with that element as the root. The various "raw" key information types return a binary value. Thus, they require a Type attribute because they are not unambiguously parseable.

   Identifiers:
      http://www.w3.org/2001/04/xmldsig-more#KeyValue
      http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod
      http://www.w3.org/2001/04/xmldsig-more#KeyName
      http://www.w3.org/2001/04/xmldsig-more#rawX509CRL
      http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket
      http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp
      http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData
      http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData

Identifiers: http://www.w3.org/2001/04/xmldsig-more#KeyValue http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod http://www.w3.org/2001/04/xmldsig-more#KeyName http://www.w3.org/2001/04/xmldsig-more#rawX509CRL http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData

Eastlake 3rd                Standards Track                    [Page 12]

RFC 4051              Additional XML Security URIs            April 2005

Eastlake 3rd Standards Track [Page 12] RFC 4051 Additional XML Security URIs April 2005

4.  IANA Considerations

4. IANA Considerations

   As it is easy for people to construct their own unique URIs [RFC2396]
   and possibly obtain a URI from the W3C if appropriate, it is not
   intended that any additional "http://www.w3.org/2001/04/xmldsig-
   more#" URIs be created beyond those enumerated in this document.
   (W3C Namespace stability rules prohibit the creation of new URIs
   under "http://www.w3.org/2000/09/xmldsig#".)

As it is easy for people to construct their own unique URIs [RFC2396] and possibly obtain a URI from the W3C if appropriate, it is not intended that any additional "http://www.w3.org/2001/04/xmldsig- more#" URIs be created beyond those enumerated in this document. (W3C Namespace stability rules prohibit the creation of new URIs under "http://www.w3.org/2000/09/xmldsig#".)

5.  Security Considerations

5. Security Considerations

   Due to computer speed and cryptographic advances, the use of MD5 as a
   DigestMethod and the use of MD5 in the RSA-MD5 SignatureMethod is NOT
   RECOMMENDED.  The concerned cryptographic advances do not effect the
   security of HMAC-MD5; however, there is little reason not to use one
   of the SHA series of algorithms.

コンピュータ速度と暗号の進歩のために、DigestMethodとしてのMD5の使用とRSA-MD5 SignatureMethodにおけるMD5の使用はNOT RECOMMENDEDです。 関係がある暗号の進歩はHMAC-MD5のセキュリティに作用しません。 しかしながら、アルゴリズムのSHAシリーズの1つを使用しない理由がほとんどありません。

Acknowledgements

承認

   Glenn Adams, Merlin Hughs, Gregor Karlinger, Brian LaMachia, Shiho
   Moriai, Joseph Reagle, Russ Housley, and Joel Halpern.

グレン・アダムス、マーリン・ヒュー、グレガーKarlinger、ブライアンLaMachia、Shiho Moriai、ジョゼフReagle、ラスHousley、およびジョエル・アルペルン。

Normative References

引用規格

   [Camellia]         "Camellia: A 128-bit Block Cipher Suitable for
                      Multiple Platforms - Design and Analysis -", K.
                      Aoki, T. Ichikawa, M. Matsui, S. Moriai, J.
                      Nakajima, T. Tokita, In Selected Areas in
                      Cryptography, 7th Annual International Workshop,
                      SAC 2000, August 2000, Proceedings, Lecture Notes
                      in Computer Science 2012, pp. 39-56, Springer-
                      Verlag, 2001.

[ツバキ]、「ツバキ:」 「Multiple Platforms(デザインとAnalysis)のための128ビットのBlock Cipher Suitable」、K.青木、T.市川、M.松井、S.Moriai、J.Nakajima、T.Tokita、CryptographyのIn Selected Areas、第7Annualの国際Workshop、SAC2000、2000年8月、Proceedings、コンピュータScience2012のLecture Notes、ページ 39-56 追出石Verlag、2001。

   [ECDSA]            Blake-Wilson, S., Karlinger, G., Kobayashi, T.,
                      and Y. Wang, "Using the Elliptic Curve Signature
                      Algorithm (ECDSA) for XML Digital Signatures", RFC
                      4050, April 2005.

[ECDSA]ブレーク-ウィルソン、S.、Karlinger、G.、小林、T.、およびY.ワング、「XMLデジタル署名に、楕円曲線署名アルゴリズム(ECDSA)を使用します」、RFC4050(2005年4月)。

   [FIPS-180-2]       "Secure Hash Standard", (SHA-1/256/384/512) US
                      Federal Information Processing Standard, 1 August
                      2002.

[FIPS-180-2]「安全なハッシュ規格」、(SHA-1/256/384/512)米国の連邦情報処理基準、2002年8月1日。

   [FIPS-180-2change] "FIPS 180-2, Secure Hash Standard Change Notice
                      1", adds SHA-224 to [FIPS 180-2], 25 February
                      2004.

[FIPS-180-2change] 「FIPS180-2(安全なハッシュ標準の変更通知1インチ)は[FIPS180-2]、2004年2月25日にSHA-224を加えます」。

   [FIPS-186-2]       "Digital Signature Standard", National Institute
                      of Standards and Technology, 2000.

[FIPS-186-2]「デジタル署名基準」、米国商務省標準技術局、2000。

Eastlake 3rd                Standards Track                    [Page 13]

RFC 4051              Additional XML Security URIs            April 2005

XMLセキュリティURI2005年4月に追加しているイーストレーク第3標準化過程[13ページ]RFC4051

   [IEEE-P1363a]      "Standard Specifications for Public Key
                      Cryptography:  Additional Techniques", October
                      2002.

[IEEE-P1363a]、「公開鍵暗号のための標準の仕様:」 2002年10月の「追加テクニック。」

   [ISO/IEC-18033-2]  "Information technology -- Security techniques --
                      Encryption algorithms -- Part 3: Asymmetric
                      ciphers", CD, October 2002.

[IEC ISO/18033-2] 「情報技術--セキュリティのテクニック--暗号化アルゴリズム--3を分けてください」 「非対称の暗号」、CD、2002年10月。

   [RFC1321]          Rivest, R., "The MD5 Message-Digest Algorithm ",
                      RFC 1321, April 1992.

[RFC1321] Rivest、R.、「MD5メッセージダイジェストアルゴリズム」、RFC1321、1992年4月。

   [RFC2104]          Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
                      Keyed-Hashing for Message Authentication", RFC
                      2104, February 1997.

[RFC2104] Krawczyk、H.、Bellare、M.、およびR.カネッティ、「HMAC:」 「通報認証のための合わせられた論じ尽くす」RFC2104、1997年2月。

   [RFC2119]          Bradner, S., "Key words for use in RFCs to
                      Indicate Requirement Levels", BCP 14, RFC 2119,
                      March 1997.

[RFC2119] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [RFC2396]          Berners-Lee, T., Fielding, R., and L. Masinter,
                      "Uniform Resource Identifiers (URI): Generic
                      Syntax", RFC 2396, August 1998.

[RFC2396] バーナーズ・リー、T.、フィールディング、R.、およびL.Masinter、「Uniform Resource Identifier(URI):」 「ジェネリック構文」、RFC2396、1998年8月。

   [RFC2405]          Madson, C. and N. Doraswamy, "The ESP DES-CBC
                      Cipher Algorithm With Explicit IV", RFC 2405,
                      November 1998.

[RFC2405] マドソンとC.とN.Doraswamy、「明白なIVがある超能力DES-CBC暗号アルゴリズム」、RFC2405、1998年11月。

   [RFC2315]          Kaliski, B., "PKCS #7: Cryptographic Message
                      Syntax Version 1.5", RFC 2315, March 1998.

[RFC2315]Kaliski、B.、「PKCS#7:」 暗号のメッセージ構文バージョン1.5インチ、RFC2315、1998年3月。

   [RFC3075]          Eastlake 3rd, D., Reagle, J., and D. Solo, "XML-
                      Signature Syntax and Processing", RFC 3075, March
                      2001. (RFC 3075 was obsoleted by RFC 3275 but is
                      referenced in this document for its description of
                      Minimal Canonicalization which was dropped in RFC
                      3275.)

[RFC3075]イーストレーク3番目、D.、Reagle、J.、およびD.は独奏して、「XML署名構文と処理」(RFC3075)は2001を行進させます。 (RFC3075はRFC3275によって時代遅れにされましたが、本書ではRFC3275で下げられたMinimal Canonicalizationの記述のために参照をつけられます。)

   [RFC3275]          Eastlake 3rd, D., Reagle, J., and D. Solo,
                      "(Extensible Markup Language) XML-Signature Syntax
                      and Processing", RFC 3275, March 2002.

[RFC3275]イーストレーク3番目、D.、Reagle、J.、およびD.は独奏して、「(拡張マークアップ言語)XML-署名構文と処理」(RFC3275)は2002を行進させます。

   [RFC3394]          Schaad, J. and R. Housley, "Advanced Encryption
                      Standard (AES) Key Wrap Algorithm", RFC 3394,
                      September 2002.

[RFC3394] SchaadとJ.とR.Housley、「エー・イー・エス(AES)の主要な包装アルゴリズム」、RFC3394、2002年9月。

Eastlake 3rd                Standards Track                    [Page 14]

RFC 4051              Additional XML Security URIs            April 2005

XMLセキュリティURI2005年4月に追加しているイーストレーク第3標準化過程[14ページ]RFC4051

   [RFC3447]          Jonsson, J. and B. Kaliski, "Public-Key
                      Cryptography Standards (PKCS) #1: RSA Cryptography
                      Specifications Version 2.1", RFC 3447, February
                      2003.

[RFC3447] イェンソン、J.、およびB.Kaliski、「公開鍵暗号化標準(PKCS)#1:」 RSA暗号仕様バージョン2.1インチ、RFC3447、2月2003日

   [RFC3713]          Matsui, M., Nakajima, J., and S. Moriai, "A
                      Description of the Camellia Encryption Algorithm",
                      RFC 3713, April 2004.

[RFC3713] 松井、M.、Nakajima、J.、およびS.Moriai、「ツバキ暗号化アルゴリズムの記述」、RFC3713、2004年4月。

   [RFC3874]          Housley, R., "A 224-bit One-way Hash Function:
                      SHA-224", RFC 3874, September 2004.

[RFC3874]Housley、R.、「224ビットの一方向ハッシュは機能します」。 "SHA-224"、2004年9月のRFC3874。

   [RIPEMD-160]       ISO/IEC 10118-3:1998, "Information Technology -
                      Security techniques - Hash-functions - Part3:
                      Dedicated hash- functions", ISO, 1998.

[RIPEMD-160]ISO/IEC10118-3:1998、「情報Technology--セキュリティのテクニック--ハッシュ関数--Part3:、」 「ひたむきなハッシュ機能」、ISO、1998。

   [X9.62]            X9.62-200X, "Public Key Cryptography for the
                      Financial Services Industry: The Elliptic Curve
                      Digital Signature Algorithm (ECDSA)", Accredited
                      Standards Committee X9, American National
                      Standards Institute.

[X9.62]X9.62-200X、「財政的のための公開鍵暗号は産業にサービスを提供します」。 「楕円曲線デジタル署名アルゴリズム(ECDSA)」は規格委員会のX9、American National Standards Institutを信任しました。

   [XMLDSIG]          "XML-Signature Syntax and Processing", D. Eastlake
                      3rd, J. Reagle, & D. Solo, 12 February 2002.
                      <http://www.w3.org/TR/xmldsig-core/>

[XMLDSIG] 「XML-署名構文と処理」、D.イーストレーク3番目、J.Reagle、およびD.独奏、2002年2月12日。 <xmldsig http://www.w3.org/TR/コア/>。

   [XMLENC]           "XML Encryption Syntax and Processing", J. Reagle,
                      D.  Eastlake, December 2002.
                      <http://www.w3.org/TR/2001/RED-xmlenc-core-
                      20021210/>

[XMLENC] 「XML暗号化構文と処理」、J.Reagle、D.イーストレーク、12月2002日 <http://www.w3.org/TR/2001/赤xmlencコア-20021210/>。

   [XPointer]         "XML Pointer Language (XPointer) Version 1.0", W3C
                      working draft, Steve DeRose, Eve Maler, Ron Daniel
                      Jr., January 2001.
                      <http://www.w3.org/TR/2001/WD-xptr-20010108>

[XPointer] 「XML指針言語(XPointer)バージョン1インチ、W3C概要版、スティーブDeRose、イブMaler、ロンダニエルJr.、2001年1月。」 <http://www.w3.org/TR/2001/WD-xptr-20010108>。

Informative References

有益な参照

   [CANON]            "Canonical XML Version 1.0", John Boyer.
                      <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

[キヤノン] 「1インチ、正準なXMLバージョンジョン・ボワイエ。」 <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>。

   [EXCANON]          "Exclusive XML Canonicalization Version 1.0", D.
                      Eastlake, J. Reagle, 18 July 2002.
                      <http://www.w3.org/TR/REC-xml-enc-c14n-20020718/>.

[EXCANON]、「排他的なXML Canonicalization、バージョン1インチ、D.イーストレーク、J.Reagle、2002年7月18日、」 <http://www.w3.org/TR/REC-xml-enc-c14n-20020718/>。

   [RFC3076]          Boyer, J., "Canonical XML Version 1.0", RFC 3076,
                      March 2001.

[RFC3076]ボワイエ、J.、「正準なXML、バージョン1インチ、RFC3076、2001インチ年3月。

Eastlake 3rd                Standards Track                    [Page 15]

RFC 4051              Additional XML Security URIs            April 2005

XMLセキュリティURI2005年4月に追加しているイーストレーク第3標準化過程[15ページ]RFC4051

   [RFC3092]          Eastlake 3rd, D., Manros, C., and E. Raymond,
                      "Etymology of "Foo"", RFC 3092, 2001.

[RFC3092]イーストレーク3番目、D.とManros、C.とE.レイモンド、「"Foo"の語源」RFC3092、2001。

   [RFC3741]          Boyer, J., Eastlake 3rd, D., and J. Reagle,
                      "Exclusive XML Canonicalization, Version 1.0", RFC
                      3741, March 2004.

[RFC3741] ボワイエとJ.とイーストレーク3番目、D.とJ.Reagle、「排他的なXML Canonicalization、バージョン1インチ、RFC3741、2004年3月。」

Author's Address

作者のアドレス

   Donald E. Eastlake 3rd
   Motorola Laboratories
   155 Beaver Street
   Milford, MA 01757 USA

ドナルドE.イーストレーク第3モトローラ研究所155ビーバー通りMA01757ミルフォード(米国)

   Phone: +1-508-786-7554 (w)
          +1-508-634-2066 (h)
   EMail: Donald.Eastlake@motorola.com

以下に電話をしてください。 +1-508-786-7554 (w) +1-508-634-2066 (h) メールしてください: Donald.Eastlake@motorola.com

Eastlake 3rd                Standards Track                    [Page 16]

RFC 4051              Additional XML Security URIs            April 2005

XMLセキュリティURI2005年4月に追加しているイーストレーク第3標準化過程[16ページ]RFC4051

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The Internet Society (2005).

Copyright(C)インターネット協会(2005)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

このドキュメントはBCP78に含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントと「そのままで」という基礎と貢献者、その人が代表する組織で提供するか、または後援されて、インターネット協会とインターネット・エンジニアリング・タスク・フォースはすべての保証を放棄します、と急行ORが含意したということであり、他を含んでいて、ここに含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実装に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するどんな独立している取り組みも作りました。 BCP78とBCP79でRFCドキュメントの権利に関する手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

IETFはこの規格を実装するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf ipr@ietf.org のIETFに情報を扱ってください。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Eastlake 3rd                Standards Track                    [Page 17]

イーストレーク第3標準化過程[17ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

/演算子 割り算

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る