RFC4060 日本語訳

4060 RTP Payload Formats for European Telecommunications Standards Institute (ETSI) European Standard ES 202 050, ES 202 211, and ES 202212 Distributed Speech Recognition Encoding. Q. Xie, D. Pearce. May 2005. (Format: TXT=39654 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                             Q. Xie
Request for Comments: 4060                                     D. Pearce
Category: Standards Track                                       Motorola
                                                                May 2005

Network Working Group Q. Xie Request for Comments: 4060 D. Pearce Category: Standards Track Motorola May 2005

          RTP Payload Formats for European Telecommunications
              Standards Institute (ETSI) European Standard
                 ES 202 050, ES 202 211, and ES 202 212
                Distributed Speech Recognition Encoding

RTP Payload Formats for European Telecommunications Standards Institute (ETSI) European Standard ES 202 050, ES 202 211, and ES 202 212 Distributed Speech Recognition Encoding

Status of This Memo

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The Internet Society (2005).

Copyright (C) The Internet Society (2005).

Abstract

Abstract

   This document specifies RTP payload formats for encapsulating
   European Telecommunications Standards Institute (ETSI) European
   Standard ES 202 050 DSR Advanced Front-end (AFE), ES 202 211 DSR
   Extended Front-end (XFE), and ES 202 212 DSR Extended Advanced
   Front-end (XAFE) signal processing feature streams for distributed
   speech recognition (DSR) systems.

This document specifies RTP payload formats for encapsulating European Telecommunications Standards Institute (ETSI) European Standard ES 202 050 DSR Advanced Front-end (AFE), ES 202 211 DSR Extended Front-end (XFE), and ES 202 212 DSR Extended Advanced Front-end (XAFE) signal processing feature streams for distributed speech recognition (DSR) systems.

Xie & Pearce                Standards Track                     [Page 1]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 1] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

Table of Contents

Table of Contents

   1. Introduction ....................................................2
      1.1. Conventions and Acronyms ...................................3
   2. ETSI DSR Front-end Codecs .......................................4
      2.1. ES 202 050 Advanced DSR Front-end Codec ....................4
      2.2. ES 202 211 Extended DSR Front-end Codec ....................4
      2.3. ES 202 212 Extended Advanced DSR Front-end Codec ...........5
   3. DSR RTP Payload Formats .........................................6
      3.1. Common Considerations of the Three DSR RTP Payload
           Formats ....................................................6
           3.1.1. Number of FPs in Each RTP Packet ....................6
           3.1.2. Support for Discontinuous Transmission ..............6
           3.1.3. RTP Header Usage ....................................6
      3.2. Payload Format for ES 202 050 DSR ..........................7
           3.2.1. Frame Pair Formats ..................................7
      3.3. Payload Format for ES 202 211 DSR ..........................9
           3.3.1. Frame Pair Formats ..................................9
      3.4. Payload Format for ES 202 212 DSR .........................11
           3.4.1. Frame Pair Formats .................................12
   4. IANA Considerations ............................................14
      4.1. Mapping MIME Parameters into SDP ..........................15
      4.2. Usage in Offer/Answer .....................................16
      4.3. Congestion Control ........................................16
   5. Security Considerations ........................................16
   6. Acknowledgments ................................................16
   7. References .....................................................16
      7.1. Normative References ......................................16
      7.2. Informative References ....................................17

1. Introduction ....................................................2 1.1. Conventions and Acronyms ...................................3 2. ETSI DSR Front-end Codecs .......................................4 2.1. ES 202 050 Advanced DSR Front-end Codec ....................4 2.2. ES 202 211 Extended DSR Front-end Codec ....................4 2.3. ES 202 212 Extended Advanced DSR Front-end Codec ...........5 3. DSR RTP Payload Formats .........................................6 3.1. Common Considerations of the Three DSR RTP Payload Formats ....................................................6 3.1.1. Number of FPs in Each RTP Packet ....................6 3.1.2. Support for Discontinuous Transmission ..............6 3.1.3. RTP Header Usage ....................................6 3.2. Payload Format for ES 202 050 DSR ..........................7 3.2.1. Frame Pair Formats ..................................7 3.3. Payload Format for ES 202 211 DSR ..........................9 3.3.1. Frame Pair Formats ..................................9 3.4. Payload Format for ES 202 212 DSR .........................11 3.4.1. Frame Pair Formats .................................12 4. IANA Considerations ............................................14 4.1. Mapping MIME Parameters into SDP ..........................15 4.2. Usage in Offer/Answer .....................................16 4.3. Congestion Control ........................................16 5. Security Considerations ........................................16 6. Acknowledgments ................................................16 7. References .....................................................16 7.1. Normative References ......................................16 7.2. Informative References ....................................17

1.  Introduction

1. Introduction

   Distributed speech recognition (DSR) technology is intended for a
   remote device acting as a thin client (a.k.a. the front-end) to
   communicate with a speech recognition server (a.k.a. a speech
   engine), over a network connection to obtain speech recognition
   services.  More details on DSR over Internet can be found in RFC 3557
   [10].

Distributed speech recognition (DSR) technology is intended for a remote device acting as a thin client (a.k.a. the front-end) to communicate with a speech recognition server (a.k.a. a speech engine), over a network connection to obtain speech recognition services. More details on DSR over Internet can be found in RFC 3557 [10].

   To achieve interoperability with different client devices and speech
   engines, the first ETSI standard DSR front-end ES 201 108 was
   published in early 2000 [11].  An RTP packetization for ES 201 108
   frames is defined in RFC 3557 [10] by IETF.

To achieve interoperability with different client devices and speech engines, the first ETSI standard DSR front-end ES 201 108 was published in early 2000 [11]. An RTP packetization for ES 201 108 frames is defined in RFC 3557 [10] by IETF.

   In ES 202 050 [1], ETSI issues another standard for an Advanced DSR
   front-end that provides substantially improved recognition
   performance when background noise is present.  The codecs in ES 202

In ES 202 050 [1], ETSI issues another standard for an Advanced DSR front-end that provides substantially improved recognition performance when background noise is present. The codecs in ES 202

Xie & Pearce                Standards Track                     [Page 2]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 2] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

   050 use a slightly different frame format from that of ES 201 108 and
   thus the two do not inter-operate with each other.

050 use a slightly different frame format from that of ES 201 108 and thus the two do not inter-operate with each other.

   The RTP packetization for ES 202 050 front-end defined in this
   document uses the same RTP packet format layout as that defined in
   RFC 3557 [10].  The differences are in the DSR codec frame bit
   definition and the payload type MIME registration.

The RTP packetization for ES 202 050 front-end defined in this document uses the same RTP packet format layout as that defined in RFC 3557 [10]. The differences are in the DSR codec frame bit definition and the payload type MIME registration.

   The two further standards, ES 202 211 and ES 202 212, provide
   extensions to each of the DSR front-end standards.  The extensions
   allow the speech waveform to be reconstructed for human audition and
   can also be used to improve recognition performance for tonal
   languages.  This is done by sending additional pitch and voicing
   information for each frame along with the recognition features.

The two further standards, ES 202 211 and ES 202 212, provide extensions to each of the DSR front-end standards. The extensions allow the speech waveform to be reconstructed for human audition and can also be used to improve recognition performance for tonal languages. This is done by sending additional pitch and voicing information for each frame along with the recognition features.

   The RTP packet format for these extended standards is also defined in
   this document.

The RTP packet format for these extended standards is also defined in this document.

   It is worthwhile to note that the performance of most speech
   recognizers are extremely sensitive to consecutive frame losses and
   DSR speech recognizers are no exception.  If a DSR over RTP session
   is expected to endure high packet loss ratio between the front-end
   and the speech engine, one should consider limiting the maximum
   number of DSR frames allowed in a packet, or employing other loss
   management techniques, such as FEC or interleaving, to minimize the
   chance of losing consecutive frames.

It is worthwhile to note that the performance of most speech recognizers are extremely sensitive to consecutive frame losses and DSR speech recognizers are no exception. If a DSR over RTP session is expected to endure high packet loss ratio between the front-end and the speech engine, one should consider limiting the maximum number of DSR frames allowed in a packet, or employing other loss management techniques, such as FEC or interleaving, to minimize the chance of losing consecutive frames.

1.1.  Conventions and Acronyms

1.1. Conventions and Acronyms

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
   they appear in this document, are to be interpreted as described in
   RFC 2119 [4].

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [4].

   The following acronyms are used in this document:

The following acronyms are used in this document:

      DSR  - Distributed Speech Recognition
      ETSI - the European Telecommunications Standards Institute
      FP   - Frame Pair
      DTX  - Discontinuous Transmission
      VAD  - Voice Activity Detection

DSR - Distributed Speech Recognition ETSI - the European Telecommunications Standards Institute FP - Frame Pair DTX - Discontinuous Transmission VAD - Voice Activity Detection

Xie & Pearce                Standards Track                     [Page 3]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 3] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

2.  ETSI DSR Front-end Codecs

2. ETSI DSR Front-end Codecs

   Some relevant characteristics of ES 202 050 Advanced, ES 202 211
   Extended, and ES 202 212 Extended Advanced DSR front-end codecs are
   summarized below.

Some relevant characteristics of ES 202 050 Advanced, ES 202 211 Extended, and ES 202 212 Extended Advanced DSR front-end codecs are summarized below.

2.1.  ES 202 050 Advanced DSR Front-end Codec

2.1. ES 202 050 Advanced DSR Front-end Codec

   The front-end calculation is a frame-based scheme that produces an
   output vector every 10 ms.  In the front-end feature extraction,
   noise reduction by two stages of Wiener filtering is performed first.
   Then, waveform processing is applied to the de-noised signal and
   mel-cepstral features are calculated.  At the end, blind equalization
   is applied to the cepstral features.  The front-end algorithm
   produces at its output a mel-cepstral representation in the same
   format as ES 210 108, i.e., 12 cepstral coefficients [C1 - C12], C0
   and log Energy.  Voice activity detection (VAD) for the
   classification of each frame as speech or non-speech is also
   implemented in Feature Extraction.  The VAD information is included
   in the payload format for each frame pair to be sent to the remote
   recognition engine as part of the payload.  This information may
   optionally be used by the receiving recognition engine to drop
   non-speech frames.  The front-end supports three raw sampling rates:
   8 kHz, 11 kHz, and 16 kHz (Note that unlike some other speech codecs,
   the feature frame size of DSR presented to RTP packetization is not
   dependent on the number of speech samples used in each 10 ms sample
   frame.  This will become more evident in the following sections).

The front-end calculation is a frame-based scheme that produces an output vector every 10 ms. In the front-end feature extraction, noise reduction by two stages of Wiener filtering is performed first. Then, waveform processing is applied to the de-noised signal and mel-cepstral features are calculated. At the end, blind equalization is applied to the cepstral features. The front-end algorithm produces at its output a mel-cepstral representation in the same format as ES 210 108, i.e., 12 cepstral coefficients [C1 - C12], C0 and log Energy. Voice activity detection (VAD) for the classification of each frame as speech or non-speech is also implemented in Feature Extraction. The VAD information is included in the payload format for each frame pair to be sent to the remote recognition engine as part of the payload. This information may optionally be used by the receiving recognition engine to drop non-speech frames. The front-end supports three raw sampling rates: 8 kHz, 11 kHz, and 16 kHz (Note that unlike some other speech codecs, the feature frame size of DSR presented to RTP packetization is not dependent on the number of speech samples used in each 10 ms sample frame. This will become more evident in the following sections).

   After calculation of the mel-cepstral representation, the
   representation is first quantized via split-vector quantization to
   reduce the data rate of the encoded stream.  Then, the quantized
   vectors from two consecutive frames are put into a FP, as described
   in more detail in Section 3.2.

After calculation of the mel-cepstral representation, the representation is first quantized via split-vector quantization to reduce the data rate of the encoded stream. Then, the quantized vectors from two consecutive frames are put into a FP, as described in more detail in Section 3.2.

2.2.  ES 202 211 Extended DSR Front-end Codec

2.2. ES 202 211 Extended DSR Front-end Codec

   Some relevant characteristics of ES 202 211 Extended DSR front-end
   codec are summarized below.

Some relevant characteristics of ES 202 211 Extended DSR front-end codec are summarized below.

   ES 202 211 is an extension of the mel-cepstrum DSR Front-end standard
   ES 201 108 [11].  The mel-cepstrum front-end provides the features
   for speech recognition but these are not available for human
   listening.  The purpose of the extension is allow the reconstruction
   of the speech waveform from these features so that they can be
   replayed.  The front-end feature extraction part of the processing is
   exactly the same as for ES 201 108.  To allow speech reconstruction
   additional fundamental frequency (perceived as pitch) and voicing
   class (e.g., non-speech, voiced, unvoiced and mixed) information is

ES 202 211 is an extension of the mel-cepstrum DSR Front-end standard ES 201 108 [11]. The mel-cepstrum front-end provides the features for speech recognition but these are not available for human listening. The purpose of the extension is allow the reconstruction of the speech waveform from these features so that they can be replayed. The front-end feature extraction part of the processing is exactly the same as for ES 201 108. To allow speech reconstruction additional fundamental frequency (perceived as pitch) and voicing class (e.g., non-speech, voiced, unvoiced and mixed) information is

Xie & Pearce                Standards Track                     [Page 4]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 4] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

   needed.  This extra information is provided by the extended front-end
   processing algorithms at the device side.  It is compressed and
   transmitted along with the front-end features to the server.  This
   extra information may also be useful for improved speech recognition
   performance with tonal languages such as Mandarin, Cantonese and
   Thai.

needed. This extra information is provided by the extended front-end processing algorithms at the device side. It is compressed and transmitted along with the front-end features to the server. This extra information may also be useful for improved speech recognition performance with tonal languages such as Mandarin, Cantonese and Thai.

   Full information about the client side signal processing algorithms
   used in the standard are described in the specification ES 202 211
   [2].

Full information about the client side signal processing algorithms used in the standard are described in the specification ES 202 211 [2].

   The additional fundamental frequency and voicing class information is
   compressed for each frame pair.  The pitch for the first frame of the
   FP is quantized to 7 bits and the second frame is differentially
   quantized to 7 bits.  The voicing class is indicated with one bit for
   each frame.  The total for the extension information for a frame pair
   therefore consists of 14 bits plus an additional 2 bits of CRC error
   protection computed over these extension bits only.

The additional fundamental frequency and voicing class information is compressed for each frame pair. The pitch for the first frame of the FP is quantized to 7 bits and the second frame is differentially quantized to 7 bits. The voicing class is indicated with one bit for each frame. The total for the extension information for a frame pair therefore consists of 14 bits plus an additional 2 bits of CRC error protection computed over these extension bits only.

   The total information for the frame pair is made up of 92 bits for
   the two compressed front-end feature frames (including 4 bits for
   their CRC) plus 16 bits for the extension (including 2 bits for their
   CRC) and 4 bits of null padding to give a total of 14 octets per
   frame pair.  As for ES 201 208 the extended frame pair also
   corresponds to 20ms of speech.  The extended front-end supports three
   raw sampling rates: 8 kHz, 11 kHz, and 16 kHz.

The total information for the frame pair is made up of 92 bits for the two compressed front-end feature frames (including 4 bits for their CRC) plus 16 bits for the extension (including 2 bits for their CRC) and 4 bits of null padding to give a total of 14 octets per frame pair. As for ES 201 208 the extended frame pair also corresponds to 20ms of speech. The extended front-end supports three raw sampling rates: 8 kHz, 11 kHz, and 16 kHz.

   The quantized vectors from two consecutive frames are put into an FP,
   as described in more detail in Section 3.3 below.

The quantized vectors from two consecutive frames are put into an FP, as described in more detail in Section 3.3 below.

   The parameters received at the remote server from the RTP extended
   DSR payload specified here can be used to synthesize an intelligible
   speech waveform for replay.  The algorithms to do this are described
   in the specification ES 202 211 [2].

The parameters received at the remote server from the RTP extended DSR payload specified here can be used to synthesize an intelligible speech waveform for replay. The algorithms to do this are described in the specification ES 202 211 [2].

2.3.  ES 202 212 Extended Advanced DSR Front-end Codec

2.3. ES 202 212 Extended Advanced DSR Front-end Codec

   ES 202 212 is the extension for the DSR Advanced Front-end ES 202 050
   [1].  It provides the same capabilities as the extended mel-cepstrum
   front-end described in Section 2.2 but for the DSR Advanced
   Front-end.

ES 202 212 is the extension for the DSR Advanced Front-end ES 202 050 [1]. It provides the same capabilities as the extended mel-cepstrum front-end described in Section 2.2 but for the DSR Advanced Front-end.

Xie & Pearce                Standards Track                     [Page 5]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 5] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

3.  DSR RTP Payload Formats

3. DSR RTP Payload Formats

3.1.  Common Considerations of the Three DSR RTP Payload Formats

3.1. Common Considerations of the Three DSR RTP Payload Formats

   The three DSR RTP payload formats defined in this document share the
   following consideration or behaviours.

The three DSR RTP payload formats defined in this document share the following consideration or behaviours.

3.1.1.  Number of FPs in Each RTP Packet

3.1.1. Number of FPs in Each RTP Packet

   Any number of FPs MAY be aggregate together in an RTP payload and
   they MUST be consecutive in time.  However, one SHOULD always keep
   the RTP payload size smaller than the MTU in order to avoid IP
   fragmentation and SHOULD follow the recommendations given in Section
   3.1 in RFC 3557 [10] when determining the proper number of FPs in an
   RTP payload.

Any number of FPs MAY be aggregate together in an RTP payload and they MUST be consecutive in time. However, one SHOULD always keep the RTP payload size smaller than the MTU in order to avoid IP fragmentation and SHOULD follow the recommendations given in Section 3.1 in RFC 3557 [10] when determining the proper number of FPs in an RTP payload.

3.1.2.  Support for Discontinuous Transmission

3.1.2. Support for Discontinuous Transmission

   Same considerations described in Section 3.2 of RFC 3557 [10] apply
   to all the three DSR RTP payloads defined in this document.

Same considerations described in Section 3.2 of RFC 3557 [10] apply to all the three DSR RTP payloads defined in this document.

3.1.3.  RTP Header Usage

3.1.3. RTP Header Usage

   The format of the RTP header is specified in RFC 3550 [8].  The three
   payload formats defined here use the fields of the header in a manner
   consistent with that specification.

The format of the RTP header is specified in RFC 3550 [8]. The three payload formats defined here use the fields of the header in a manner consistent with that specification.

   The RTP timestamp corresponds to the sampling instant of the first
   sample encoded for the first FP in the packet.  The timestamp clock
   frequency is the same as the sampling frequency, so the timestamp
   unit is in samples.

The RTP timestamp corresponds to the sampling instant of the first sample encoded for the first FP in the packet. The timestamp clock frequency is the same as the sampling frequency, so the timestamp unit is in samples.

   As defined by all three front-end codecs, the duration of one FP is
   20 ms, corresponding to 160, 220, or 320 encoded samples with a
   sampling rate of 8, 11, or 16 kHz being used at the front-end,
   respectively.  Thus, the timestamp is increased by 160, 220, or 320
   for each consecutive FP, respectively.

As defined by all three front-end codecs, the duration of one FP is 20 ms, corresponding to 160, 220, or 320 encoded samples with a sampling rate of 8, 11, or 16 kHz being used at the front-end, respectively. Thus, the timestamp is increased by 160, 220, or 320 for each consecutive FP, respectively.

   The DSR payload for all three front-end codecs is always an integral
   number of octets.  If additional padding is required for some other
   purpose, then the P bit in the RTP header may be set and padding
   appended as specified in RFC 3550 [8].

The DSR payload for all three front-end codecs is always an integral number of octets. If additional padding is required for some other purpose, then the P bit in the RTP header may be set and padding appended as specified in RFC 3550 [8].

   The RTP header marker bit (M) MUST be set following the general rules
   for audio codecs, as defined in Section 4.1 in RFC 3551 [9].

The RTP header marker bit (M) MUST be set following the general rules for audio codecs, as defined in Section 4.1 in RFC 3551 [9].

Xie & Pearce                Standards Track                     [Page 6]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 6] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

   This document does not specify the assignment of an RTP payload type
   for these three new packet formats.  It is expected that the RTP
   profile under which any of these payload formats is being used will
   assign a payload type for this encoding or will specify that the
   payload type is to be bound dynamically.

This document does not specify the assignment of an RTP payload type for these three new packet formats. It is expected that the RTP profile under which any of these payload formats is being used will assign a payload type for this encoding or will specify that the payload type is to be bound dynamically.

3.2.  Payload Format for ES 202 050 DSR

3.2. Payload Format for ES 202 050 DSR

   An ES 202 050 DSR RTP payload datagram uses exactly the same layout
   as defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
   followed by a DSR payload containing a series of DSR FPs.

An ES 202 050 DSR RTP payload datagram uses exactly the same layout as defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.

   The size of each ES 202 050 FP remains 96 bits or 12 octets, as
   defined in the following sections.  This ensures that a DSR RTP
   payload will always end on an octet boundary.

The size of each ES 202 050 FP remains 96 bits or 12 octets, as defined in the following sections. This ensures that a DSR RTP payload will always end on an octet boundary.

3.2.1.  Frame Pair Formats

3.2.1. Frame Pair Formats

3.2.1.1.  Format of Speech and Non-speech FPs

3.2.1.1. Format of Speech and Non-speech FPs

   The following mel-cepstral frame MUST be used, as defined in [1]:

The following mel-cepstral frame MUST be used, as defined in [1]:

   Pairs of the quantized 10ms mel-cepstral frames MUST be grouped
   together and protected with a 4-bit CRC forming a 92-bit long FP.  At
   the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the
   last octet in order to make the FP aligned to the octet boundary.

Pairs of the quantized 10ms mel-cepstral frames MUST be grouped together and protected with a 4-bit CRC forming a 92-bit long FP. At the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary.

   The following diagram shows a complete ES 202 050 FP:

The following diagram shows a complete ES 202 050 FP:

     Frame #1 in FP:
     ===============
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :  idx(2,3) |            idx(0,1)               |    Octet 1
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |             idx(6,7)              |idx(4,5)(cont)  Octet 3
       +-----+-----+-----+-----+-----+-----+-----+-----+
   idx(10,11)| VAD |              idx(8,9)             |    Octet 4
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
       +-----+-----+-----+-----+-----+-----+-----+-----+
                               |   idx(12,13) (cont)   :    Octet 6/1
                               +-----+-----+-----+-----+

Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11)| VAD | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+

Xie & Pearce                Standards Track                     [Page 7]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 7] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

    Frame #2 in FP:
    ===============
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+
       :        idx(0,1)       |                            Octet 6/2
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |              idx(2,3)             |idx(0,1)(cont)  Octet 7
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :  idx(6,7) |              idx(4,5)             |    Octet 8
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |          idx(10,11)         | VAD |idx(8,9)(cont)  Octet 10
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |                   idx(12,13)                  |    Octet 11
       +-----+-----+-----+-----+-----+-----+-----+-----+

Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) | VAD |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+

    CRC for Frame #1 and Frame #2 and padding in FP:
    ================================================
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |  0  |  0  |  0  |  0  |          CRC          |    Octet 12
       +-----+-----+-----+-----+-----+-----+-----+-----+

CRC for Frame #1 and Frame #2 and padding in FP: ================================================ (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | CRC | Octet 12 +-----+-----+-----+-----+-----+-----+-----+-----+

   The 4-bit CRC in the FP MUST be calculated using the formula
   (including the bit-order rules) defined in 7.2 in [1].

The 4-bit CRC in the FP MUST be calculated using the formula (including the bit-order rules) defined in 7.2 in [1].

   Therefore, each FP represents 20ms of original speech.  Note that
   each FP MUST be padded with 4 zeros to the MSB 4 bits of the last
   octet in order to make the FP aligned to the octet boundary, as shown
   above.  This makes the total size of an FP 96 bits, or 12 octets.
   Note that this padding is separate from padding indicated by the P
   bit in the RTP header.

Therefore, each FP represents 20ms of original speech. Note that each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary, as shown above. This makes the total size of an FP 96 bits, or 12 octets. Note that this padding is separate from padding indicated by the P bit in the RTP header.

   The definition of the indices and 'VAD' flag are described in [1] and
   their value is only set and examined by the codecs in the front-end
   client and the recognizer.

The definition of the indices and 'VAD' flag are described in [1] and their value is only set and examined by the codecs in the front-end client and the recognizer.

3.2.1.2.  Format of Null FP

3.2.1.2. Format of Null FP

   Null FPs are sent to mark the end of a transmission segment.  Details
   on transmission segment and the use of Null FPs can be found in RFC
   3557 [10].

Null FPs are sent to mark the end of a transmission segment. Details on transmission segment and the use of Null FPs can be found in RFC 3557 [10].

Xie & Pearce                Standards Track                     [Page 8]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 8] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

   A Null FP for the ES 202 050 front-end codec is defined by setting
   the content of the first and second frame in the FP to null (i.e.,
   filling the first 88 bits of the FP with zeros).  The 4-bit CRC MUST
   be calculated the same way as described in Section 7.2.4 of [1], and
   4 zeros MUST be padded to the end of the Null FP in order to make it
   aligned to the octet boundary.

A Null FP for the ES 202 050 front-end codec is defined by setting the content of the first and second frame in the FP to null (i.e., filling the first 88 bits of the FP with zeros). The 4-bit CRC MUST be calculated the same way as described in Section 7.2.4 of [1], and 4 zeros MUST be padded to the end of the Null FP in order to make it aligned to the octet boundary.

3.3.  Payload Format for ES 202 211 DSR

3.3. Payload Format for ES 202 211 DSR

   An ES 202 211 DSR RTP payload datagram is very similar to that
   defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
   followed by a DSR payload containing a series of DSR FPs.

An ES 202 211 DSR RTP payload datagram is very similar to that defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.

   The size of each ES 202 211 FP is 112 bits or 14 octets, as defined
   in the following sections.  This ensures that a DSR RTP payload will
   always end on an octet boundary.

The size of each ES 202 211 FP is 112 bits or 14 octets, as defined in the following sections. This ensures that a DSR RTP payload will always end on an octet boundary.

3.3.1.  Frame Pair Formats

3.3.1. Frame Pair Formats

3.3.1.1.  Format of Speech and Non-speech FPs

3.3.1.1. Format of Speech and Non-speech FPs

   The following mel-cepstral frame MUST be used, as defined in Section
   6.2.4 in [2]:

The following mel-cepstral frame MUST be used, as defined in Section 6.2.4 in [2]:

   Immediately following two frames (Frame #1 and Frame #2) worth of
   codebook indices (or 88 bits), there is a 4-bit CRC calculated on
   these 88 bits.  The pitch indices of the first frame (Pidx1: 7 bits)
   and the second frame (Pidx2: 5 bits) of the frame pair then follow.
   The class indices of the two frames in the frame pair worth 1 bit
   each (Cidx1 and Cidx2) next follow.  Finally, a 2-bit CRC calculated
   on the pitch and class bits (total: 14 bits) of the frame pair is
   included (PC-CRC).  The total number of bits in a frame pair packet
   is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108.  At the end, each
   FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in
   order to make the FP aligned to the octet boundary.

Immediately following two frames (Frame #1 and Frame #2) worth of codebook indices (or 88 bits), there is a 4-bit CRC calculated on these 88 bits. The pitch indices of the first frame (Pidx1: 7 bits) and the second frame (Pidx2: 5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth 1 bit each (Cidx1 and Cidx2) next follow. Finally, a 2-bit CRC calculated on the pitch and class bits (total: 14 bits) of the frame pair is included (PC-CRC). The total number of bits in a frame pair packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108. At the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary.

Xie & Pearce                Standards Track                     [Page 9]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 9] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

   The following diagram shows a complete ES 202 211 FP:

The following diagram shows a complete ES 202 211 FP:

     Frame #1 in FP:
     ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(2,3) |            idx(0,1)               |    Octet 1
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |             idx(6,7)              |idx(4,5)(cont)  Octet 3
      +-----+-----+-----+-----+-----+-----+-----+-----+
       idx(10,11) |              idx(8,9)             |    Octet 4
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
      +-----+-----+-----+-----+-----+-----+-----+-----+
                              |   idx(12,13) (cont)   :    Octet 6/1
                              +-----+-----+-----+-----+

Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11) | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+

    Frame #2 in FP:
    ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+
      :        idx(0,1)       |                            Octet 6/2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |              idx(2,3)             |idx(0,1)(cont)  Octet 7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(6,7) |              idx(4,5)             |    Octet 8
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |          idx(10,11)               |idx(8,9)(cont)  Octet 10
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |                   idx(12,13)                  |    Octet 11
      +-----+-----+-----+-----+-----+-----+-----+-----+

Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+

    CRC for Frame #1 and Frame #2 in FP:
    ====================================
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
                              +-----+-----+-----+-----+
                              |          CRC          |    Octet 12/1
                              +-----+-----+-----+-----+

CRC for Frame #1 and Frame #2 in FP: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC | Octet 12/1 +-----+-----+-----+-----+

Xie & Pearce                Standards Track                    [Page 10]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

Xie & Pearce Standards Track [Page 10] RFC 4060 RTP Payloads for ETSI DSR Codecs May 2005

    Extension information and padding in FP:
    ========================================
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+
      :       Pidx1           |                            Octet 12/2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |            Pidx2            |   Pidx1 (cont)  :    Octet 13
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |  0  |  0  |  0  |  0  |  PC-CRC   |Cidx2|Cidx1|    Octet 14
      +-----+-----+-----+-----+-----+-----+-----+-----+

Extension information and padding in FP: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1 | Octet 12/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2 | Pidx1 (cont) : Octet 13 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC |Cidx2|Cidx1| Octet 14 +-----+-----+-----+-----+-----+-----+-----+-----+

   The 4-bit CRC and the 2-bit PC-CRC in the FP MUST be calculated using
   the formula (including the bit-order rules) defined in 6.2.4 in [2].

The 4-bit CRC and the 2-bit PC-CRC in the FP MUST be calculated using the formula (including the bit-order rules) defined in 6.2.4 in [2].

   Therefore, each FP represents 20ms of original speech.  Note, as
   shown above, each FP MUST be padded with 4 zeros to the MSB 4 bits of
   the last octet in order to make the FP aligned to the octet boundary.
   This makes the total size of an FP 112 bits, or 14 octets.  Note,
   this padding is separate from padding indicated by the P bit in the
   RTP header.

Therefore, each FP represents 20ms of original speech. Note, as shown above, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary. This makes the total size of an FP 112 bits, or 14 octets. Note, this padding is separate from padding indicated by the P bit in the RTP header.

3.3.1.2.  Format of Null FP

3.3.1.2. Format of Null FP

   A Null FP for the ES 202 211 front-end codec is defined by setting
   all the 112 bits of the FP with zeros.  Null FPs are sent to mark the
   end of a transmission segment.  Details on transmission segment and
   the use of Null FPs can be found in RFC 3557 [10].

A Null FP for the ES 202 211 front-end codec is defined by setting all the 112 bits of the FP with zeros. Null FPs are sent to mark the end of a transmission segment. Details on transmission segment and the use of Null FPs can be found in RFC 3557 [10].

3.4.  Payload Format for ES 202 212 DSR

3.4. Payload Format for ES 202 212 DSR

   Similar to other ETSI DSR front-end encoding schemes, the encoded DSR
   feature stream of ES 202 212 is transmitted in a sequence of FPs,
   where each FP represents two consecutive original voice frames.

Similar to other ETSI DSR front-end encoding schemes, the encoded DSR feature stream of ES 202 212 is transmitted in a sequence of FPs, where each FP represents two consecutive original voice frames.

   An ES 202 212 DSR RTP payload datagram is very similar to that
   defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
   followed by a DSR payload containing a series of DSR FPs.

An ES 202 212 DSR RTP payload datagram is very similar to that defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.

   The size of each ES 202 212 FP is 112 bits or 14 octets, as defined
   in the following sections.  This ensures that an ES 202 212 DSR RTP
   payload will always end on an octet boundary.

The size of each ES 202 212 FP is 112 bits or 14 octets, as defined in the following sections. This ensures that an ES 202 212 DSR RTP payload will always end on an octet boundary.

Xie & Pearce                Standards Track                    [Page 11]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[11ページ]。

3.4.1.  Frame Pair Formats

3.4.1. フレーム組形式

3.4.1.1.  Format of Speech and Non-speech FPs

3.4.1.1. スピーチと非スピーチFPsの形式

   The following mel-cepstral frame MUST be used, as defined in Section
   7.2.4 of [3]:

以下のmel-cepstralフレームはセクション7.2.4で定義されるように[3]で使用されているに違いありません:

   Immediately following two frames (Frame #1 and Frame #2) worth of
   codebook indices (or 88 bits), there is a 4-bit CRC calculated on
   these 88 bits.  The pitch indices of the first frame (Pidx1: 7 bits)
   and the second frame (Pidx2: 5 bits) of the frame pair then follow.
   The class indices of the two frames in the frame pair worth 1 bit
   each next follow (Cidx1 and Cidx2).  Finally, a 2-bit CRC (PC-CRC)
   calculated on the pitch and class bits (total: 14 bits) of the frame
   pair is included.  The total number of bits in frame pair packet is
   therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108.  At the end, each FP
   MUST be padded with 4 zeros to the MSB 4 bits of the last octet in
   order to make the FP aligned to the octet boundary.  The padding
   brings the total size of a FP to 112 bits, or 14 octets.  Note that
   this padding is separate from padding indicated by the P bit in the
   RTP header.

すぐに2に続くと、符号表インデックスリスト(88ビット)の価値は縁どられて(フレーム#1とFrame#2)、これらの88ビット当てにされた4ビットのCRCがあります。 そして、最初のフレームのピッチインデックスリスト(Pidx1: 7ビット)とフレーム組の2番目のフレーム(Pidx2: 5ビット)は従います。 それぞれ次の1ビットの価値があるフレーム組における2個のフレームのクラスインデックスリストは(Cidx1とCidx2)に続きます。 最終的に、2ビットのCRC(PC-CRC)はピッチを当てにしました、そして、フレーム組のクラスビット(合計: 14ビット)は含まれています。 したがって、フレーム組パケットのビットの総数は44+44+4+7+5+1+1+2 = 108です。 終わり、各FP MUST、4つのゼロで、八重奏境界に並べられたFPを作るために最後の八重奏のMSB4ビットにそっと歩いてください。 詰め物は112ビット、または14の八重奏にFPの総サイズをもたらします。 この詰め物がRTPヘッダーでPビットによって示された詰め物から別々であることに注意してください。

   The following diagram shows a complete ES 202 212 FP:

以下のダイヤグラムは完全なES202 212FPを示しています:

     Frame #1 in FP:
     ===============
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :  idx(2,3) |            idx(0,1)               |    Octet 1
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |             idx(6,7)              |idx(4,5)(cont)  Octet 3
       +-----+-----+-----+-----+-----+-----+-----+-----+
   idx(10,11)| VAD |              idx(8,9)             |    Octet 4
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
       +-----+-----+-----+-----+-----+-----+-----+-----+
                               |   idx(12,13) (cont)   :    Octet 6/1
                               +-----+-----+-----+-----+

fpにおける#1、を縁どってください: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2、3)| idx(0、1)| 八重奏1+-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4、5)| idx(2、3)(cont): 八重奏2+-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6、7)|idx(4、5)(cont)八重奏3+-----+-----+-----+-----+-----+-----+-----+-----+ idx(10、11)| バート| idx(8、9)| 八重奏4+-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12、13)| idx(10、11)(cont): 八重奏5+-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12、13)(cont): 八重奏6/1+-----+-----+-----+-----+

Xie & Pearce                Standards Track                    [Page 12]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[12ページ]。

    Frame #2 in FP:
    ===============
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+
       :        idx(0,1)       |                            Octet 6/2
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |              idx(2,3)             |idx(0,1)(cont)  Octet 7
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :  idx(6,7) |              idx(4,5)             |    Octet 8
       +-----+-----+-----+-----+-----+-----+-----+-----+
       :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |          idx(10,11)         | VAD |idx(8,9)(cont)  Octet 10
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |                   idx(12,13)                  |    Octet 11
       +-----+-----+-----+-----+-----+-----+-----+-----+

fpにおける#2、を縁どってください: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0、1)| 八重奏6/2+-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2、3)|idx(0、1)(cont)八重奏7+-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6、7)| idx(4、5)| 八重奏8+-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8、9)| idx(6、7)(cont): 八重奏9+-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10、11)| バート|idx(8、9)(cont)八重奏10+-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12、13)| 八重奏11+-----+-----+-----+-----+-----+-----+-----+-----+

    CRC for Frame #1 and Frame #2 in FP:
    ====================================
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
                               +-----+-----+-----+-----+
                               |          CRC          |    Octet 12/1
                               +-----+-----+-----+-----+

fpにおけるフレーム#1とフレーム#2のためのCRC: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC| 八重奏12/1+-----+-----+-----+-----+

    Extension information and padding in FP:
    ========================================
        (MSB)                                     (LSB)
          0     1     2     3     4     5     6     7
       +-----+-----+-----+-----+
       :       Pidx1           |                            Octet 12/2
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |            Pidx2            |   Pidx1 (cont)  :    Octet 13
       +-----+-----+-----+-----+-----+-----+-----+-----+
       |  0  |  0  |  0  |  0  |  PC-CRC   |Cidx2|Cidx1|    Octet 14
       +-----+-----+-----+-----+-----+-----+-----+-----+

FPの拡大情報と詰め物: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1| 八重奏12/2+-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2| Pidx1(cont): 八重奏13+-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC|Cidx2|Cidx1| 八重奏14+-----+-----+-----+-----+-----+-----+-----+-----+

   The codebook indices, VAD flag, pitch index, and class index are
   specified in Section 6 of [3].  The 4-bit CRC and the 2-bit PC-CRC in
   the FP MUST be calculated using the formula (including the bit-order
   rules) defined in 7.2.4 in [3].

符号表インデックスリスト、VAD旗、ピッチインデックス、およびクラスインデックスは[3]のセクション6で指定されます。 4ビットのCRCとFP MUSTの2ビットのPC-CRC、中で定義された公式(ビットオーダー規則を含んでいる)を使用することで計算されてください、7.2、.4、[3]で。

Xie & Pearce                Standards Track                    [Page 13]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[13ページ]。

3.4.1.2.  Format of Null FP

3.4.1.2. ヌルfpの形式

   A Null FP for the ES 202 212 front-end codec is defined by setting
   all 112 bits of the FP with zeros.  Null FPs are sent to mark the end
   of a transmission segment.  Details on transmission segments and the
   use of Null FPs can be found in RFC 3557 [10].

ES202 212フロントエンドコーデックのためのNull FPは、ゼロでFPのすべての112ビットを設定することによって、定義されます。 トランスミッションセグメントの終わりを示すためにヌルFPsを送ります。 RFC3557[10]でトランスミッションセグメントに関する詳細とNull FPsの使用を見つけることができます。

4.  IANA Considerations

4. IANA問題

   For each of the three ETSI DSR front-end codecs covered in this
   document, a new MIME subtype registration has been registered by the
   IANA for the corresponding payload type, as described below.

本書では覆われたそれぞれの3つのETSI DSRフロントエンドコーデックに関しては、新しいMIME「副-タイプ」登録は対応するペイロードタイプのためにIANAによって登録されました、以下で説明されるように。

   Media Type name: audio

メディアTypeは以下を命名します。 オーディオ

   Media subtype names:

メディア「副-タイプ」名:

         dsr-es202050 (for ES 202 050 front-end)

dsr-es202050(ES202 050フロントエンドのための)

         dsr-es202211 (for ES 202 211 front-end)

dsr-es202211(ES202 211フロントエンドのための)

         dsr-es202212 (for ES 202 212 front-end)

dsr-es202212(ES202 212フロントエンドのための)

   Required parameters: none

必要なパラメタ: なし

   Optional parameters:

任意のパラメタ:

   rate: Indicates the sample rate of the speech.  Valid values include:
      8000, 11000, and 16000.  If this parameter is not present, 8000
      sample rate is assumed.

以下を評価してください。 スピーチの見本郵送料率を示します。 有効値は: 8000、11000、および16000。 このパラメタが存在していないなら、8000見本郵送料率は想定されます。

   maxptime: see RFC 3267 [7].  If this parameter is not present,
      maxptime is assumed to be 80ms.

maxptime: RFC3267[7]を見てください。 このパラメタが存在していないなら、maxptimeは80ms.であると思われます。

      Note, since the performance of most speech recognizers are
      extremely sensitive to consecutive FP losses, if the user of the
      payload format expects a high packet loss ratio for the session,
      it MAY consider to explicitly choose a maxptime value for the
      session that is shorter than the default value.

ほとんどのスピーチ認識器の性能が連続したFPの損失に非常に敏感であるので、ペイロード形式のユーザが、セッションのための高いパケット損害率に、それがデフォルト値より短いセッションのために明らかにmaxptime値を選ぶと考えるかもしれないと予想するかどうかに注意してください。

   ptime: see RFC 2327 [5].

ptime: RFC2327[5]を見てください。

   Encoding considerations: These types are defined for transfer via RTP
      [8] as described in Section 3 of RFC 4060.

問題をコード化します: これらのタイプは転送のためにRFC4060のセクション3で説明されるRTP[8]を通して定義されます。

   Security considerations: See Section 5 of RFC 4060.

セキュリティ問題: RFC4060のセクション5を見てください。

Xie & Pearce                Standards Track                    [Page 14]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[14ページ]。

   Person & email address to contact for further information:
      Qiaobing.Xie@motorola.com

詳細のために連絡する人とEメールアドレス: Qiaobing.Xie@motorola.com

   Intended usage: COMMON.  It is expected that many VoIP applications
      (as well as mobile applications) will use this type.

意図している用法: 一般的。 多くのVoIPアプリケーション(モバイルアプリケーションと同様に)がこのタイプを使用すると予想されます。

   Author: Qiaobing.Xie@motorola.com

以下を書いてください。 Qiaobing.Xie@motorola.com

   Change controller: IETF Audio/Video transport working group

コントローラを変えてください: IETF Audio/ビデオ輸送ワーキンググループ

4.1.  Mapping MIME Parameters into SDP

4.1. MIMEパラメタをSDPに写像します。

   The information carried in the MIME media type specification has a
   specific mapping to fields in the Session Description Protocol (SDP)
   [5], which is commonly used to describe RTP sessions.  When SDP is
   used to specify sessions employing ES 202 050, ES 202 211, or ES 202
   212 DSR codec, the mapping is as follows:

タイプ仕様が特定のマッピングを持っているMIMEメディアで運ばれた情報はSession記述プロトコル(SDP)で[5]をさばきます。([5]は、RTPセッションについて説明するのに一般的に使用されます)。 SDPがES202 050を使うセッション、ES202 211、またはES202 212DSRコーデックを指定するのに使用されるとき、マッピングは以下の通りです:

   o  The MIME type ("audio") goes in SDP "m=" as the media name.

o MIMEの種類(「オーディオ」)はメディア名としてSDP「m=」に行きます。

   o  The MIME subtype ("dsr-es202050", "dsr-es202211", or
      "dsr-es202212") goes in SDP "a=rtpmap" as the encoding name.

o MIME「副-タイプ」("dsr-es202050"、"dsr-es202211"、または"dsr-es202212")はコード化名としてSDP"a=rtpmap"に入ります。

   o  The optional parameter "rate" also goes in "a=rtpmap" as clock
      rate.  If no rate is given, then the default value (i.e., 8000) is
      used in SDP.

o また、「レート」という任意のパラメタはクロックレートとして"a=rtpmap"に入ります。 レートを全く与えないなら、SDPでデフォルト値(すなわち、8000)を使用します。

   o  The optional parameters "ptime" and "maxptime" go in the SDP
      "a=ptime" and "a=maxptime" attributes, respectively.

o 任意のパラメタの"ptime"と"maxptime"はそれぞれSDP"a=ptime"と"a=maxptime"属性に入ります。

   Example of usage of ES 202 050 DSR:

ES202 050DSRの使用法に関する例:

     m=audio 49120 RTP/AVP 101
     a=rtpmap:101 dsr-es202050/8000
     a=maxptime:40

オーディオの49120RTP/AVP101m=a=rtpmap: 101dsr-es202050/8000 a=maxptime: 40

   Example of usage of ES 202 211 DSR:

ES202 211DSRの使用法に関する例:

     m=audio 49120 RTP/AVP 101
     a=rtpmap:101 dsr-es202211/8000
     a=maxptime:40

オーディオの49120RTP/AVP101m=a=rtpmap: 101dsr-es202211/8000 a=maxptime: 40

   Example of usage of ES 202 212 DSR:

ES202 212DSRの使用法に関する例:

     m=audio 49120 RTP/AVP 101
     a=rtpmap:101 dsr-es202212/8000
     a=maxptime:40

オーディオの49120RTP/AVP101m=a=rtpmap: 101dsr-es202212/8000 a=maxptime: 40

Xie & Pearce                Standards Track                    [Page 15]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[15ページ]。

4.2.  Usage in Offer/Answer

4.2. 申し出/答えにおける用法

   All SDP parameters in this payload format are declarative, and all
   reasonable values are expected to be supported.  Thus, the standard
   usage of Offer/Answer as described in RFC 3264 [6] should be
   followed.

このペイロード形式のすべてのSDPパラメタが叙述的です、そして、すべての適正価値が支持されると予想されます。 したがって、RFC3264[6]で説明されるOffer/答えの標準的用法は従われるべきです。

4.3.  Congestion Control

4.3. 輻輳制御

   Congestion control for RTP MUST be used in accordance with RFC 3550
   [8], and in any applicable RTP profile, e.g., RFC 3551 [9].

RTP MUSTのために混雑を制御します。RFC3550[8]、およびあらゆる適切なRTPプロフィール(例えば、RFC3551[9])で使用されてください。

5.  Security Considerations

5. セキュリティ問題

   Implementations using the payload defined in this specification are
   subject to the security considerations discussed in the RTP
   specification RFC 3550 [8] and any RTP profile, e.g., RFC 3551 [9].
   This payload does not specify any different security services.

この仕様に基づき定義されたペイロードを使用する実現はRTP仕様RFC3550[8]で議論したセキュリティ問題とどんなRTPプロフィール(例えば、RFC3551[9])も受けることがあります。 このペイロードは少しの異なったセキュリティー・サービスも指定しません。

6.  Acknowledgments

6. 承認

   The design presented here is based on that of RFC 3557 [10].  The
   authors wish to thank Magnus Westerlund and others for their reviews
   and comments.

ここに提示されたデザインはRFC3557[10]のものに基づいています。 作者は彼らのレビューとコメントについてマグヌスWesterlundと他のものに感謝したがっています。

7.  References

7. 参照

7.1.  Normative References

7.1. 引用規格

   [1]   European Telecommunications Standards Institute (ETSI) Standard
         ES 202 050, "Speech Processing, Transmission and Quality
         Aspects (STQ); Distributed Speech Recognition; Advanced Front-
         end Feature Extraction Algorithm; Compression Algorithms",
         http://pda.etsi.org/pda/.

[1] ヨーロッパのテレコミュニケーション規格は(ETSI)標準のES202 050と、「スピーチ処理、トランスミッション、および品質局面の(STQ)」を設けます。 音声認識を分配します。 高度なFrontはFeature Extraction Algorithmを終わらせます。 「圧縮アルゴリズム」、 http://pda.etsi.org/pda/ 。

   [2]   European Telecommunications Standards Institute (ETSI) Standard
         ES 202 211, "Speech Processing, Transmission and Quality
         Aspects (STQ); Distributed Speech Recognition; Extended front-
         end feature extraction algorithm; Compression algorithms; Back-
         end speech reconstruction algorithm", http://pda.etsi.org/pda/.

[2] ヨーロッパのテレコミュニケーション規格は(ETSI)標準のES202 211と、「スピーチ処理、トランスミッション、および品質局面の(STQ)」を設けます。 音声認識を分配します。 拡張前部終わりの特徴抽出アルゴリズム。 圧縮アルゴリズム。 「逆終わりのスピーチ再建アルゴリズム」、 http://pda.etsi.org/pda/ 。

   [3]   European Telecommunications Standards Institute (ETSI) Standard
         ES 202 212, "Speech Processing, Transmission and Quality
         aspects (STQ); Distributed speech recognition; Extended
         advanced front-end feature extraction algorithm; Compression
         algorithms; Back-end speech reconstruction algorithm",
         http://pda.etsi.org/pda/.

[3] ヨーロッパのTelecommunications Standards Institute(ETSI)の標準のES202 212と、「スピーチProcessing、Transmission、およびQuality局面(STQ)」。 音声認識を分配します。 拡張高度なフロントエンド特徴抽出アルゴリズム。 圧縮アルゴリズム。 「バックエンドスピーチ再建アルゴリズム」、 http://pda.etsi.org/pda/ 。

Xie & Pearce                Standards Track                    [Page 16]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[16ページ]。

   [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

[4] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [5]   Handley, M. and V. Jacobson, "SDP: Session Description
         Protocol", RFC 2327, April 1998.

[5] ハンドレー、M.、およびV.ジェーコブソン、「SDP:」 「セッション記述プロトコル」、RFC2327、1998年4月。

   [6]   Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
         the Session Description Protocol (SDP)", RFC 3264, June 2002.

[6] ローゼンバーグとJ.とH.Schulzrinne、「セッション記述プロトコル(SDP)がある申し出/答えモデル」、RFC3264、2002年6月。

   [7]   Sjoberg, J., Westerlund, M., Lakaniemi, A., and Q. Xie,
         "Real-Time Transport Protocol (RTP) Payload Format and File
         Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive
         Multi-Rate Wideband (AMR-WB) Audio Codecs", RFC 3267,
         June 2002.

[7] シェーベリ、J.、Westerlund、M.、Lakaniemi、A.、およびQ.シェ、「リアルタイムのトランスポート・プロトコル(RTP)有効搭載量形式とファイル記憶装置は適応型のマルチレート(AMR)の、そして、適応型のマルチレート広帯域(AMR-WB)にオーディオコーデックをフォーマットします」、RFC3267、2002年6月。

   [8]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
         "RTP: A Transport Protocol for Real-Time Applications", STD 64,
         RFC 3550, July 2003.

[8]Schulzrinne、H.、Casner、S.、フレディリック、R.、およびV.ジェーコブソン、「RTP:」 「リアルタイムのアプリケーションのためのトランスポート・プロトコル」、STD64、RFC3550、2003年7月。

   [9]   Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
         Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

[9] Schulzrinne、H.、およびS.Casner、「オーディオのためのRTPプロフィールと最小量があるテレビ会議システムは制御します」、STD65、RFC3551、2003年7月。

   [10]  Xie, Q., "RTP Payload Format for European Telecommunications
         Standards Institute (ETSI) European Standard ES 201 108
         Distributed Speech Recognition Encoding", RFC 3557, July 2003.

[10] シェ、Q.、「ヨーロッパのテレコミュニケーション規格が(ETSI)ヨーロッパの標準のES201 108を設けるので、RTP有効搭載量形式は音声認識コード化を分配しました」、RFC3557、2003年7月。

7.2.  Informative References

7.2. 有益な参照

   [11]  European Telecommunications Standards Institute (ETSI) Standard
         ES 201 108, "Speech Processing, Transmission and Quality
         Aspects (STQ); Distributed Speech Recognition; Front-end
         Feature Extraction Algorithm; Compression Algorithms",
         http://pda.etsi.org/pda/.

[11] ヨーロッパのテレコミュニケーション規格は(ETSI)標準のES201 108と、「スピーチ処理、トランスミッション、および品質局面の(STQ)」を設けます。 音声認識を分配します。 フロントエンド特徴抽出アルゴリズム。 「圧縮アルゴリズム」、 http://pda.etsi.org/pda/ 。

Xie & Pearce                Standards Track                    [Page 17]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[17ページ]。

Authors' Addresses

作者のアドレス

   Qiaobing Xie
   Motorola, Inc.
   1501 W. Shure Drive, 2-F9
   Arlington Heights, IL  60004
   US

シェモトローラ1501W.シュアーのドライブ、2-F9アーリントンハイツ、IL60004米国をQiaobingします。

   Phone: +1-847-632-3028
   EMail: qxie1@email.mot.com

以下に電話をしてください。 +1-847-632-3028 メールしてください: qxie1@email.mot.com

   David Pearce
   Motorola Labs
   UK Research Laboratory
   Jays Close
   Viables Industrial Estate
   Basingstoke, HANTS  RG22 4PD
   UK

デヴィッドピアスモトローラ研究室イギリスの研究所JaysはViables Industrial Estateベイジングストーク、HANTS RG22 4PDイギリスを閉じます。

   Phone: +44 (0)1256 484 436
   EMail: bdp003@motorola.com

以下に電話をしてください。 +44(0) 1256 484 436はメールされます: bdp003@motorola.com

Xie & Pearce                Standards Track                    [Page 18]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005

シェとピアスStandardsはコーデック2005年5月にETSI DSRのためにRFC4060RTP有効搭載量を追跡します[18ページ]。

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The Internet Society (2005).

Copyright(C)インターネット協会(2005)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

このドキュメントはBCP78に含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントと「そのままで」という基礎と貢献者、その人が代表する組織で提供するか、または後援されて、インターネット協会とインターネット・エンジニアリング・タスク・フォースはすべての保証を放棄します、と急行ORが含意したということであり、他を含んでいて、ここに含まれて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるという情報か市場性か特定目的への適合性のどんな黙示的な保証。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実現に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するためのどんな独立している努力もしました。 BCP78とBCP79でRFCドキュメントの権利に関する手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

IETFはこの規格を実行するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf ipr@ietf.org のIETFに情報を記述してください。

Acknowledgement

承認

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。

Xie & Pearce                Standards Track                    [Page 19]

シェとピアス標準化過程[19ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

関数・メソッドの存在を調べる方法

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る