RFC5009 日本語訳

5009 Private Header (P-Header) Extension to the Session InitiationProtocol (SIP) for Authorization of Early Media. R. Ejza. September 2007. (Format: TXT=36092 bytes) (Status: INFORMATIONAL)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                           R. Ejzak
Request for Comments: 5009                                Alcatel-Lucent
Category: Informational                                   September 2007

Network Working Group R. Ejzak Request for Comments: 5009 Alcatel-Lucent Category: Informational September 2007

                Private Header (P-Header) Extension to
the Session Initiation Protocol (SIP) for Authorization of Early Media

Private Header (P-Header) Extension to the Session Initiation Protocol (SIP) for Authorization of Early Media

Status of This Memo

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Abstract

Abstract

   This document describes a private Session Initiation Protocol (SIP)
   header field (P-header) to be used by the European Telecommunications
   Standards Institute (ETSI) Telecommunications and Internet-converged
   Services and Protocols for Advanced Networks (TISPAN) for the purpose
   of authorizing early media flows in Third Generation Partnership
   Project (3GPP) IP Multimedia Subsystems (IMS).  This header field is
   useful in any SIP network that is interconnected with other SIP
   networks and needs to control the flow of media in the early dialog
   state.

This document describes a private Session Initiation Protocol (SIP) header field (P-header) to be used by the European Telecommunications Standards Institute (ETSI) Telecommunications and Internet-converged Services and Protocols for Advanced Networks (TISPAN) for the purpose of authorizing early media flows in Third Generation Partnership Project (3GPP) IP Multimedia Subsystems (IMS). This header field is useful in any SIP network that is interconnected with other SIP networks and needs to control the flow of media in the early dialog state.

Ejzak                        Informational                      [Page 1]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 1] RFC 5009 P-Early-Media Header September 2007

Table of Contents

Table of Contents

   1. Introduction ....................................................2
   2. Applicability Statement .........................................3
   3. Conventions and Acronyms ........................................3
   4. Background on Early Media Authorization .........................4
      4.1. Backward Early Media .......................................5
      4.2. Forward Early Media ........................................5
   5. Applicability of RFC 3959 and RFC 3960 ..........................6
   6. Overview of Operation ...........................................6
   7. Limitations of the P-Early-Media Header Field ...................8
   8. The P-Early-Media Header Field ..................................8
      8.1. Procedures at the User Agent Client .......................10
      8.2. Procedures at the User Agent Server .......................10
      8.3. Procedures at the Proxy ...................................11
   9. Formal Syntax ..................................................11
   10. Security Considerations .......................................11
   11. IANA Considerations ...........................................12
      11.1. Registration of the "P-Early-Media" SIP Header Field .....12
   12. Acknowledgements ..............................................12
   13. References ....................................................12
      13.1. Normative References .....................................12
      13.2. Informative References ...................................13

1. Introduction ....................................................2 2. Applicability Statement .........................................3 3. Conventions and Acronyms ........................................3 4. Background on Early Media Authorization .........................4 4.1. Backward Early Media .......................................5 4.2. Forward Early Media ........................................5 5. Applicability of RFC 3959 and RFC 3960 ..........................6 6. Overview of Operation ...........................................6 7. Limitations of the P-Early-Media Header Field ...................8 8. The P-Early-Media Header Field ..................................8 8.1. Procedures at the User Agent Client .......................10 8.2. Procedures at the User Agent Server .......................10 8.3. Procedures at the Proxy ...................................11 9. Formal Syntax ..................................................11 10. Security Considerations .......................................11 11. IANA Considerations ...........................................12 11.1. Registration of the "P-Early-Media" SIP Header Field .....12 12. Acknowledgements ..............................................12 13. References ....................................................12 13.1. Normative References .....................................12 13.2. Informative References ...................................13

1.  Introduction

1. Introduction

   This document defines the use of the P-Early-Media header field for
   use within SIP [1] messages in certain SIP networks to authorize the
   cut-through of backward and/or forward early media when permitted by
   the early media policies of the networks involved.  The P-Early-Media
   header field is intended for use in a SIP network, such as a 3GPP IMS
   [13][14] that has the following characteristics: its early media
   policy prohibits the exchange of early media between end users; it is
   interconnected with other SIP networks that have unknown, untrusted,
   or different policies regarding early media; and it has the
   capability to "gate" (enable/disable) the flow of early media to/from
   user equipment.

This document defines the use of the P-Early-Media header field for use within SIP [1] messages in certain SIP networks to authorize the cut-through of backward and/or forward early media when permitted by the early media policies of the networks involved. The P-Early-Media header field is intended for use in a SIP network, such as a 3GPP IMS [13][14] that has the following characteristics: its early media policy prohibits the exchange of early media between end users; it is interconnected with other SIP networks that have unknown, untrusted, or different policies regarding early media; and it has the capability to "gate" (enable/disable) the flow of early media to/from user equipment.

   Within an isolated SIP network, it is possible to gate early media
   associated with all endpoints within the network to enforce a desired
   early media policy among network endpoints.  However, when a SIP
   network is interconnected with other SIP networks, only the boundary
   node connected to the external network can determine which early
   media policy to apply to a session established between endpoints on
   different sides of the boundary.  The P-Early-Media header field
   provides a means for this boundary node to communicate this early
   media policy decision to other nodes within the network.

Within an isolated SIP network, it is possible to gate early media associated with all endpoints within the network to enforce a desired early media policy among network endpoints. However, when a SIP network is interconnected with other SIP networks, only the boundary node connected to the external network can determine which early media policy to apply to a session established between endpoints on different sides of the boundary. The P-Early-Media header field provides a means for this boundary node to communicate this early media policy decision to other nodes within the network.

Ejzak                        Informational                      [Page 2]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 2] RFC 5009 P-Early-Media Header September 2007

2.  Applicability Statement

2. Applicability Statement

   The use of this extension is only applicable inside a "Trust Domain"
   as defined in RFC 3325 [6].  Nodes in such a Trust Domain are
   explicitly trusted by its users and end-systems to authorize early
   media requests only when allowed by early media policy within the
   Trust Domain.

The use of this extension is only applicable inside a "Trust Domain" as defined in RFC 3325 [6]. Nodes in such a Trust Domain are explicitly trusted by its users and end-systems to authorize early media requests only when allowed by early media policy within the Trust Domain.

   This document does NOT offer a general early media authorization
   model suitable for inter-domain use or use in the Internet at large.
   Furthermore, since the early media requests are not cryptographically
   certified, they are subject to forgery, replay, and falsification in
   any architecture that does not meet the requirements of the Trust
   Domain.

This document does NOT offer a general early media authorization model suitable for inter-domain use or use in the Internet at large. Furthermore, since the early media requests are not cryptographically certified, they are subject to forgery, replay, and falsification in any architecture that does not meet the requirements of the Trust Domain.

   An early media request also lacks an indication of who specifically
   is making or modifying the request, and so it must be assumed that
   the Trust Domain is making the request.  Therefore, the information
   is only meaningful when securely received from a node known to be a
   member of the Trust Domain.

An early media request also lacks an indication of who specifically is making or modifying the request, and so it must be assumed that the Trust Domain is making the request. Therefore, the information is only meaningful when securely received from a node known to be a member of the Trust Domain.

   Although this extension can be used with parallel forking, it does
   not improve on the known problems with early media and parallel
   forking, as described in RFC 3960 [4], unless one can assume the use
   of symmetric RTP.

Although this extension can be used with parallel forking, it does not improve on the known problems with early media and parallel forking, as described in RFC 3960 [4], unless one can assume the use of symmetric RTP.

   Despite these limitations, there are sufficiently useful specialized
   deployments that meet the assumptions described above, and can accept
   the limitations that result, to warrant publication of this
   mechanism.  An example deployment would be a closed network that
   emulates a traditional circuit switched telephone network.

Despite these limitations, there are sufficiently useful specialized deployments that meet the assumptions described above, and can accept the limitations that result, to warrant publication of this mechanism. An example deployment would be a closed network that emulates a traditional circuit switched telephone network.

3.  Conventions and Acronyms

3. Conventions and Acronyms

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [2].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

   The following acronyms are used in this document:

The following acronyms are used in this document:

      3GPP   - the Third Generation Partnership Project
      ABNF   - Augmented Backus-Naur Form [5]
      DTMF   - Dual Tone Multi-Frequency
      ETSI   - European Telecommunications Standards Institute
      IMS    - Internet Protocol Multimedia Subsystem [13][14]
      MIME   - Multipurpose Internet Mail Extensions
      NAT    - Network Address Translation
      PSTN   - Public Switched Telephone Network

3GPP - the Third Generation Partnership Project ABNF - Augmented Backus-Naur Form [5] DTMF - Dual Tone Multi-Frequency ETSI - European Telecommunications Standards Institute IMS - Internet Protocol Multimedia Subsystem [13][14] MIME - Multipurpose Internet Mail Extensions NAT - Network Address Translation PSTN - Public Switched Telephone Network

Ejzak                        Informational                      [Page 3]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 3] RFC 5009 P-Early-Media Header September 2007

      SDP    - Session Description Protocol [7]
      SIP    - Session Initiation Protocol [1]
      TISPAN - Telecommunications and Internet-converged Services and
               Protocols for Advanced Networks
      UA     - User Agent [1]
      UAC    - User Agent Client [1]
      UAS    - User Agent Server [1]

SDP - Session Description Protocol [7] SIP - Session Initiation Protocol [1] TISPAN - Telecommunications and Internet-converged Services and Protocols for Advanced Networks UA - User Agent [1] UAC - User Agent Client [1] UAS - User Agent Server [1]

4.  Background on Early Media Authorization

4. Background on Early Media Authorization

   PSTN networks typically provide call progress information as backward
   early media from the terminating switch towards the calling party.
   PSTN networks also use forward early media from the calling party
   towards the terminating switch under some circumstances for
   applications, such as digit collection for secondary dialing.  PSTN
   networks typically allow backward and/or forward early media since
   they are used for the purpose of progressing the call to the answer
   state and do not involve the exchange of data between endpoints.

PSTN networks typically provide call progress information as backward early media from the terminating switch towards the calling party. PSTN networks also use forward early media from the calling party towards the terminating switch under some circumstances for applications, such as digit collection for secondary dialing. PSTN networks typically allow backward and/or forward early media since they are used for the purpose of progressing the call to the answer state and do not involve the exchange of data between endpoints.

   In a SIP network, backward early media flows from the User Agent
   Server (UAS) towards the User Agent Client (UAC).  Forward early
   media flows from the UAC towards the UAS.  SIP networks by default
   allow both forms of early media, which may carry user data, once the
   media path is established.  Early media is typically desirable with a
   PSTN gateway as UAS, but not with SIP user equipment as UAS.

In a SIP network, backward early media flows from the User Agent Server (UAS) towards the User Agent Client (UAC). Forward early media flows from the UAC towards the UAS. SIP networks by default allow both forms of early media, which may carry user data, once the media path is established. Early media is typically desirable with a PSTN gateway as UAS, but not with SIP user equipment as UAS.

   To prevent the exchange of user data within early media while
   allowing early media via PSTN gateways, a SIP network may have a
   policy to prohibit backward early media from SIP user equipment and
   to prohibit forward media towards SIP user equipment, either of which
   may contain user data.  A SIP network containing both PSTN gateways
   and SIP end devices, for example, can maintain such an early media
   policy by gating "off" any early media with a SIP end device acting
   as UAS, gating "on" early media with a SIP end device acting as UAC,
   and gating "on" early media at each PSTN gateway.

To prevent the exchange of user data within early media while allowing early media via PSTN gateways, a SIP network may have a policy to prohibit backward early media from SIP user equipment and to prohibit forward media towards SIP user equipment, either of which may contain user data. A SIP network containing both PSTN gateways and SIP end devices, for example, can maintain such an early media policy by gating "off" any early media with a SIP end device acting as UAS, gating "on" early media with a SIP end device acting as UAC, and gating "on" early media at each PSTN gateway.

   Unfortunately, a SIP network interconnected with another SIP network
   may have no means of assuring that the interconnected network is
   implementing a compatible early media policy, thus allowing the
   exchange of user data within early media under some circumstances.
   For example, if a network "A" allows all early media with user
   equipment as UAC and an interconnected network "B" allows all early
   media with user equipment as UAS, any session established between
   user equipment as UAC in "A" and user equipment as UAS in "B" will
   allow bidirectional user data exchange as early media.  Other
   combinations of early media policies may also produce similar
   undesirable results.

Unfortunately, a SIP network interconnected with another SIP network may have no means of assuring that the interconnected network is implementing a compatible early media policy, thus allowing the exchange of user data within early media under some circumstances. For example, if a network "A" allows all early media with user equipment as UAC and an interconnected network "B" allows all early media with user equipment as UAS, any session established between user equipment as UAC in "A" and user equipment as UAS in "B" will allow bidirectional user data exchange as early media. Other combinations of early media policies may also produce similar undesirable results.

Ejzak                        Informational                      [Page 4]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 4] RFC 5009 P-Early-Media Header September 2007

   The purpose of the extension is to allow a SIP network interconnected
   to other SIP networks with different early media policies to
   correctly identify and enable authorized early media according to its
   policies.

The purpose of the extension is to allow a SIP network interconnected to other SIP networks with different early media policies to correctly identify and enable authorized early media according to its policies.

4.1.  Backward Early Media

4.1. Backward Early Media

   Backward early media in the PSTN typically comprises call progress
   information, such as ringing feedback ("ringback"), or announcements
   regarding special handling such as forwarding.  It may also include
   requests for further information, such as a credit card number to be
   entered as forward early media in the form of Dual Tone Multi-
   Frequency (DTMF) tones or speech.  Backward early media of this type
   provides information to the calling party strictly for the purpose of
   progressing the call and involves no exchange of data between end
   users.  The usual PSTN charging policy assumes that no data is
   exchanged between users until the call has been answered.

Backward early media in the PSTN typically comprises call progress information, such as ringing feedback ("ringback"), or announcements regarding special handling such as forwarding. It may also include requests for further information, such as a credit card number to be entered as forward early media in the form of Dual Tone Multi- Frequency (DTMF) tones or speech. Backward early media of this type provides information to the calling party strictly for the purpose of progressing the call and involves no exchange of data between end users. The usual PSTN charging policy assumes that no data is exchanged between users until the call has been answered.

   A terminating SIP User Agent (UA) outside of the SIP network, on the
   other hand, may provide any user data in a backward early media
   stream.  Thus, if the network implements the usual early media
   policy, the network equipment gating the backward early media flow
   for the originating UA must distinguish between authorized early
   media from a terminating SIP endpoint and unauthorized early media
   from another SIP device outside of the network.  Given the assumption
   of a transitive trust relationship between SIP servers in the
   network, this can be accomplished by including some information in a
   backward SIP message that identifies the presence of authorized
   backward early media.  Since it is necessary to verify that this
   indication comes from a trusted source, it is necessary for each
   server on the path back to the originating UA to be able to verify
   the trust relationship with the previous server and to remove such an
   indication when it cannot do so.  A server on the boundary to an
   untrusted SIP network can assure that no indication of authorized
   backward early media passes from an external UAS to a UAC within the
   network.  Thus, the use of a private header field that can be
   modified by SIP proxies is to be preferred over the use of a
   Multipurpose Internet Mail Extensions (MIME) attachment that cannot
   be modified in this way.

A terminating SIP User Agent (UA) outside of the SIP network, on the other hand, may provide any user data in a backward early media stream. Thus, if the network implements the usual early media policy, the network equipment gating the backward early media flow for the originating UA must distinguish between authorized early media from a terminating SIP endpoint and unauthorized early media from another SIP device outside of the network. Given the assumption of a transitive trust relationship between SIP servers in the network, this can be accomplished by including some information in a backward SIP message that identifies the presence of authorized backward early media. Since it is necessary to verify that this indication comes from a trusted source, it is necessary for each server on the path back to the originating UA to be able to verify the trust relationship with the previous server and to remove such an indication when it cannot do so. A server on the boundary to an untrusted SIP network can assure that no indication of authorized backward early media passes from an external UAS to a UAC within the network. Thus, the use of a private header field that can be modified by SIP proxies is to be preferred over the use of a Multipurpose Internet Mail Extensions (MIME) attachment that cannot be modified in this way.

4.2.  Forward Early Media

4.2. Forward Early Media

   Forward early media is less common than backward early media in the
   PSTN.  It is typically used to collect secondary dialed digits, to
   collect credit card numbers, or to collect other DTMF or speech
   responses for the purpose of further directing the call.  Forward
   early media in the PSTN is always directed toward a network server

Forward early media is less common than backward early media in the PSTN. It is typically used to collect secondary dialed digits, to collect credit card numbers, or to collect other DTMF or speech responses for the purpose of further directing the call. Forward early media in the PSTN is always directed toward a network server

Ejzak                        Informational                      [Page 5]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 5] RFC 5009 P-Early-Media Header September 2007

   for the purpose of progressing a call and involves no exchange of
   data between end users.

for the purpose of progressing a call and involves no exchange of data between end users.

   A terminating SIP UA outside of the SIP network, on the other hand,
   may receive any user data in a forward early media stream.  Thus, if
   the network implements the usual early media policy, the network
   equipment gating the forward early media flow for the originating UA
   must distinguish between a terminating endpoint that is authorized to
   receive forward early media, and another SIP device outside of the
   network that is not authorized to receive forward early media
   containing user data.  This authorization can be accomplished in the
   same manner as for backward early media by including some information
   in a backward SIP message that identifies that the terminating side
   is authorized to receive forward early media.

A terminating SIP UA outside of the SIP network, on the other hand, may receive any user data in a forward early media stream. Thus, if the network implements the usual early media policy, the network equipment gating the forward early media flow for the originating UA must distinguish between a terminating endpoint that is authorized to receive forward early media, and another SIP device outside of the network that is not authorized to receive forward early media containing user data. This authorization can be accomplished in the same manner as for backward early media by including some information in a backward SIP message that identifies that the terminating side is authorized to receive forward early media.

5.  Applicability of RFC 3959 and RFC 3960

5. Applicability of RFC 3959 and RFC 3960

   The private header extension defined in this document is applicable
   to the gateway model defined in RFC 3960 [4], since the PSTN gateway
   is the primary requestor of early media in an IMS.  For the same
   reason, neither the application server model of RFC 3960, nor the
   early-session disposition type defined in RFC 3959 [3] is applicable.

The private header extension defined in this document is applicable to the gateway model defined in RFC 3960 [4], since the PSTN gateway is the primary requestor of early media in an IMS. For the same reason, neither the application server model of RFC 3960, nor the early-session disposition type defined in RFC 3959 [3] is applicable.

   The gateway model of RFC 3960 [4] allows for individual networks to
   create local policy with respect to the handling of early media, but
   does not address the case where a network is interconnected with
   other networks with unknown, untrusted, or different early media
   policies.  Without the kind of information in the P-Early-Media
   header field, it is not possible for the network to determine whether
   cut-through of early media could lead to the transfer of data between
   end-users during session establishment.

The gateway model of RFC 3960 [4] allows for individual networks to create local policy with respect to the handling of early media, but does not address the case where a network is interconnected with other networks with unknown, untrusted, or different early media policies. Without the kind of information in the P-Early-Media header field, it is not possible for the network to determine whether cut-through of early media could lead to the transfer of data between end-users during session establishment.

   Thus, the private header extension in this document is a natural
   extension of the gateway model of RFC 3960 [4] that is applicable
   within a transitive trust domain.

Thus, the private header extension in this document is a natural extension of the gateway model of RFC 3960 [4] that is applicable within a transitive trust domain.

6.  Overview of Operation

6. Overview of Operation

   This document defines a new P-Early-Media header field for the
   purpose of requesting and authorizing requests for backward and/or
   forward early media.  A UAC capable of recognizing the P-Early-Media
   header field may include the header field in an INVITE request.  The
   P-Early-Media header field in an INVITE request contains the
   "supported" parameter.

This document defines a new P-Early-Media header field for the purpose of requesting and authorizing requests for backward and/or forward early media. A UAC capable of recognizing the P-Early-Media header field may include the header field in an INVITE request. The P-Early-Media header field in an INVITE request contains the "supported" parameter.

   As members of the Trust Domain, each proxy receiving an INVITE
   request must decide whether to insert or delete the P-Early-Media
   header field before forwarding.

As members of the Trust Domain, each proxy receiving an INVITE request must decide whether to insert or delete the P-Early-Media header field before forwarding.

Ejzak                        Informational                      [Page 6]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 6] RFC 5009 P-Early-Media Header September 2007

   A UAS receiving an INVITE request can use the presence of the P-
   Early-Media header field in the request to decide whether to request
   early media authorization in subsequent messages towards the UAC.
   After receiving an incoming INVITE request, the UAS requesting
   backward and/or forward early media will include the P-Early-Media
   header field in a message towards the UAC within the dialog,
   including direction parameter(s) that identify for each media line in
   the session whether the early media request is for backward media,
   forward media, both, or neither.  The UAS can change its request for
   early media by including a modified P-Early-Media header field in a
   subsequent message towards the UAC within the dialog.

A UAS receiving an INVITE request can use the presence of the P- Early-Media header field in the request to decide whether to request early media authorization in subsequent messages towards the UAC. After receiving an incoming INVITE request, the UAS requesting backward and/or forward early media will include the P-Early-Media header field in a message towards the UAC within the dialog, including direction parameter(s) that identify for each media line in the session whether the early media request is for backward media, forward media, both, or neither. The UAS can change its request for early media by including a modified P-Early-Media header field in a subsequent message towards the UAC within the dialog.

   Each proxy in the network receiving the P-Early-Media header field in
   a message towards the UAC has the responsibility for assuring that
   the early media request comes from an authorized source.  If a P-
   Early-Media header field arrives from either an untrusted source, a
   source not allowed to send backward early media, or a source not
   allowed to receive forward early media, then the proxy may remove the
   P-Early-Media header field or alter the direction parameter(s) of the
   P-Early-Media header field before forwarding the message, based on
   local policy.

Each proxy in the network receiving the P-Early-Media header field in a message towards the UAC has the responsibility for assuring that the early media request comes from an authorized source. If a P- Early-Media header field arrives from either an untrusted source, a source not allowed to send backward early media, or a source not allowed to receive forward early media, then the proxy may remove the P-Early-Media header field or alter the direction parameter(s) of the P-Early-Media header field before forwarding the message, based on local policy.

   A proxy in the network not receiving the P-Early-Media header field
   in a message towards the UAC may insert one based on local policy.

A proxy in the network not receiving the P-Early-Media header field in a message towards the UAC may insert one based on local policy.

   If the proxy also performs gating of early media, then it uses the
   parameter(s) of the P-Early-Media header field to decide whether to
   open or close the gates for backward and forward early media flow(s)
   between the UAs.  The proxy performing gating of early media may also
   add a "gated" parameter to the P-Early-Media header field before
   forwarding the message so that other gating proxies in the path can
   choose to leave open their gates.

If the proxy also performs gating of early media, then it uses the parameter(s) of the P-Early-Media header field to decide whether to open or close the gates for backward and forward early media flow(s) between the UAs. The proxy performing gating of early media may also add a "gated" parameter to the P-Early-Media header field before forwarding the message so that other gating proxies in the path can choose to leave open their gates.

   If the UAC is a trusted server within the network (e.g., a PSTN
   gateway), then the UAC may use the parameter(s) of the P-Early-Media
   header field in messages received from the UAS to decide whether to
   perform early media gating or cut-through and to decide whether or
   not to render backward early media in preference to generating
   ringback based on the receipt of a 180 Ringing response.

If the UAC is a trusted server within the network (e.g., a PSTN gateway), then the UAC may use the parameter(s) of the P-Early-Media header field in messages received from the UAS to decide whether to perform early media gating or cut-through and to decide whether or not to render backward early media in preference to generating ringback based on the receipt of a 180 Ringing response.

   If the UAC is associated with user equipment, then the network will
   have assigned a proxy the task of performing early media gating, so
   that the parameter(s) of the P-Early-Media header field received at
   such a UAC do not require that the UAC police the early media
   flow(s), but they do provide additional information that the UAC may
   use to render media.

If the UAC is associated with user equipment, then the network will have assigned a proxy the task of performing early media gating, so that the parameter(s) of the P-Early-Media header field received at such a UAC do not require that the UAC police the early media flow(s), but they do provide additional information that the UAC may use to render media.

Ejzak                        Informational                      [Page 7]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 7] RFC 5009 P-Early-Media Header September 2007

   The UAC and proxies in the network may also insert, delete, or modify
   the P-Early-Media header field in messages towards the UAS within the
   dialog according to local policy, but the interpretation of the
   header field when used in this way is a matter of local policy and
   not defined herein.  The use of direction parameter(s) in this header
   field could be used to inform the UAS of the final early media
   authorization status.

The UAC and proxies in the network may also insert, delete, or modify the P-Early-Media header field in messages towards the UAS within the dialog according to local policy, but the interpretation of the header field when used in this way is a matter of local policy and not defined herein. The use of direction parameter(s) in this header field could be used to inform the UAS of the final early media authorization status.

7.  Limitations of the P-Early-Media Header Field

7. Limitations of the P-Early-Media Header Field

   The P-Early-Media header field does not apply to any SDP with
   Content-Disposition: early-session [3].

The P-Early-Media header field does not apply to any SDP with Content-Disposition: early-session [3].

   When parallel forking occurs, there is no reliable way to correlate
   early media authorization in a dialog with the media from the
   corresponding endpoint unless one can assume the use of symmetric
   RTP, since the SDP messages do not identify the RTP source address of
   any media stream.  When a UAC or proxy receives multiple early
   dialogs and cannot accurately identify the source of each media
   stream, it SHOULD use the most restrictive early media authorization
   it receives on any of the dialogs to decide the policy to apply
   towards all received media.  When early media usage is desired for
   any reason and one cannot assume the use of symmetric RTP, it is
   advisable to disable parallel forking using callerprefs [9].

When parallel forking occurs, there is no reliable way to correlate early media authorization in a dialog with the media from the corresponding endpoint unless one can assume the use of symmetric RTP, since the SDP messages do not identify the RTP source address of any media stream. When a UAC or proxy receives multiple early dialogs and cannot accurately identify the source of each media stream, it SHOULD use the most restrictive early media authorization it receives on any of the dialogs to decide the policy to apply towards all received media. When early media usage is desired for any reason and one cannot assume the use of symmetric RTP, it is advisable to disable parallel forking using callerprefs [9].

   Although the implementation of media gating is outside the scope of
   this extension, note that media gating must be implemented carefully
   in the presence of NATs and protocols that aid in NAT traversal.
   Media gating may also introduce a potential for media clipping that
   is similar to that created during parallel forking or any other
   feature that may disable early media, such as custom ringback.

Although the implementation of media gating is outside the scope of this extension, note that media gating must be implemented carefully in the presence of NATs and protocols that aid in NAT traversal. Media gating may also introduce a potential for media clipping that is similar to that created during parallel forking or any other feature that may disable early media, such as custom ringback.

8.  The P-Early-Media Header Field

8. The P-Early-Media Header Field

   The P-Early-Media header field with the "supported" parameter MAY be
   included in an INVITE request to indicate that the UAC or a proxy on
   the path recognizes the header field.

The P-Early-Media header field with the "supported" parameter MAY be included in an INVITE request to indicate that the UAC or a proxy on the path recognizes the header field.

   A network entity MAY request the authorization of early media or
   change a request for authorization of early media by including the
   P-Early-Media header field in any message allowed by Table 1 within
   the dialog towards the sender of the INVITE request.  The P-Early-
   Media header field includes one or more direction parameters where
   each has one of the values: "sendrecv", "sendonly", "recvonly", or
   "inactive", following the convention used for Session Description
   Protocol (SDP) [7][8] stream directionality.  Each parameter applies,
   in order, to the media lines in the corresponding SDP messages
   establishing session media.  Unrecognized parameters SHALL be

A network entity MAY request the authorization of early media or change a request for authorization of early media by including the P-Early-Media header field in any message allowed by Table 1 within the dialog towards the sender of the INVITE request. The P-Early- Media header field includes one or more direction parameters where each has one of the values: "sendrecv", "sendonly", "recvonly", or "inactive", following the convention used for Session Description Protocol (SDP) [7][8] stream directionality. Each parameter applies, in order, to the media lines in the corresponding SDP messages establishing session media. Unrecognized parameters SHALL be

Ejzak                        Informational                      [Page 8]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 8] RFC 5009 P-Early-Media Header September 2007

   silently discarded.  Non-direction parameters are ignored for
   purposes of early media authorization.  If there are more direction
   parameters than media lines, the excess SHALL be silently discarded.
   If there are fewer direction parameters than media lines, the value
   of the last direction parameter SHALL apply to all remaining media
   lines.  A message directed towards the UAC containing a P-Early-Media
   header field with no recognized direction parameters SHALL NOT be
   interpreted as an early media authorization request.

silently discarded. Non-direction parameters are ignored for purposes of early media authorization. If there are more direction parameters than media lines, the excess SHALL be silently discarded. If there are fewer direction parameters than media lines, the value of the last direction parameter SHALL apply to all remaining media lines. A message directed towards the UAC containing a P-Early-Media header field with no recognized direction parameters SHALL NOT be interpreted as an early media authorization request.

   The parameter value "sendrecv" indicates a request for authorization
   of early media associated with the corresponding media line, both
   from the UAS towards the UAC and from the UAC towards the UAS (both
   backward and forward early media).  The value "sendonly" indicates a
   request for authorization of early media from the UAS towards the UAC
   (backward early media), and not in the other direction.  The value
   "recvonly" indicates a request for authorization of early media from
   the UAC towards the UAS (forward early media), and not in the other
   direction.  The value "inactive" indicates either a request that no
   early media associated with the corresponding media line be
   authorized, or a request for revocation of authorization of
   previously authorized early media.

The parameter value "sendrecv" indicates a request for authorization of early media associated with the corresponding media line, both from the UAS towards the UAC and from the UAC towards the UAS (both backward and forward early media). The value "sendonly" indicates a request for authorization of early media from the UAS towards the UAC (backward early media), and not in the other direction. The value "recvonly" indicates a request for authorization of early media from the UAC towards the UAS (forward early media), and not in the other direction. The value "inactive" indicates either a request that no early media associated with the corresponding media line be authorized, or a request for revocation of authorization of previously authorized early media.

   The P-Early-Media header field in any message within a dialog towards
   the sender of the INVITE request MAY also include the non-direction
   parameter "gated" to indicate that a network entity on the path
   towards the UAS is already gating the early media, according to the
   direction parameter(s).  When included in the P-Early-Media header
   field, the "gated" parameter SHALL come after all direction
   parameters in the parameter list.

The P-Early-Media header field in any message within a dialog towards the sender of the INVITE request MAY also include the non-direction parameter "gated" to indicate that a network entity on the path towards the UAS is already gating the early media, according to the direction parameter(s). When included in the P-Early-Media header field, the "gated" parameter SHALL come after all direction parameters in the parameter list.

   When receiving a message directed toward the UAC without the P-
   Early-Media header field and no previous early media authorization
   request has been received within the dialog, the default early media
   authorization depends on local policy and may depend on whether the
   header field was included in the INVITE request.  After an early
   media authorization request has been received within a dialog, and a
   subsequent message is received without the P-Early-Media header
   field, the previous early media authorization remains unchanged.

When receiving a message directed toward the UAC without the P- Early-Media header field and no previous early media authorization request has been received within the dialog, the default early media authorization depends on local policy and may depend on whether the header field was included in the INVITE request. After an early media authorization request has been received within a dialog, and a subsequent message is received without the P-Early-Media header field, the previous early media authorization remains unchanged.

   The P-Early-Media header field in any message within a dialog towards
   the UAS MAY be ignored or interpreted according to local policy.

The P-Early-Media header field in any message within a dialog towards the UAS MAY be ignored or interpreted according to local policy.

   The P-Early-Media header field does not interact with SDP
   offer/answer procedures in any way.  Early media authorization is not
   influenced by the state of the SDP offer/answer procedures (including
   preconditions and directionality) and does not influence the state of
   the SDP offer/answer procedures.  The P-Early-Media header field may
   or may not be present in messages containing SDP.  The most recently

The P-Early-Media header field does not interact with SDP offer/answer procedures in any way. Early media authorization is not influenced by the state of the SDP offer/answer procedures (including preconditions and directionality) and does not influence the state of the SDP offer/answer procedures. The P-Early-Media header field may or may not be present in messages containing SDP. The most recently

Ejzak                        Informational                      [Page 9]

RFC 5009                  P-Early-Media Header            September 2007

Ejzak Informational [Page 9] RFC 5009 P-Early-Media Header September 2007

   received early media authorization applies to the corresponding media
   line in the session established for the dialog until receipt of the
   200 OK response to the INVITE request, at which point all media lines
   in the session are implicitly authorized.  Early media flow in a
   particular direction requires that early media in that direction is
   authorized, that media flow in that direction is enabled by the SDP
   direction attribute for the stream, and that any applicable
   preconditions [11] are met.  Early media authorization does not
   override the SDP direction attribute or preconditions state, and the
   SDP direction attribute does not override early media authorization.

容認された早めのメディア承認は対話のためにセッションにおけるすべてのメディア系列がそのポイントでそれとなく認可されるINVITE要求への200OK応答の領収書まで確立されたセッションのときに対応するメディア系列に適用されます。 特定の方向の流れが必要とする早めのメディアがその方向にある早めのメディアが認可されて、そのメディア流動はストリームのためにSDP方向属性によってその方向に可能にされます、そして、どんな適切な前提条件[11]も満たされます。 早めのメディア承認は、SDP方向属性をくつがえさないか、または状態をあらかじめ調整します、そして、SDP方向属性は早めのメディア承認をくつがえしません。

   Table 1 is an extension of Tables 2 and 3 in RFC 3261 [1] for the P-
   Early-Media header field.  The column "PRA" is for the PRACK method
   [12].  The column "UPD" is for the UPDATE method [10].

テーブル1はP初期のメディアヘッダーフィールドのためのRFC3261[1]でのTables2と3の拡大です。 コラム"PRA"はPRACKメソッド[12]のためのものです。 コラム"UPD"はアップデートメソッド[10]のためのものです。

      Header field     where    proxy  ACK BYE CAN INV OPT REG PRA UPD
      ________________________________________________________________
      P-Early-Media      R       amr    -   -   -   o   -   -   o   o
      P-Early-Media     18x      amr    -   -   -   o   -   -   -   -
      P-Early-Media     2xx      amr    -   -   -   -   -   -   o   o

ヘッダーフィールドどこプロキシACK BYE CAN INV OPT REG PRA UPD________________________________________________________________ P早めのメディアR amr------o----o o P早めのメディア18x amr------o--------P早めのメディア2xx amr--、--、--、--、--、--、o o

                   Table 1: P-Early-Media Header Field

テーブル1: P早めのメディアヘッダーフィールド

8.1.  Procedures at the User Agent Client

8.1. ユーザエージェントのクライアントにおける手順

   A User Agent Client MAY include the P-Early-Media header field with
   the "supported" parameter in an INVITE request to indicate that it
   recognizes the header field.

UserエージェントClientはヘッダーフィールドを認識するのを示すというINVITE要求における「サポートしている」パラメタがあるP早めのメディアヘッダーフィールドを含むかもしれません。

   A User Agent Client receiving a P-Early-Media header field MAY use
   the parameter(s) of the header field to gate or cut-through early
   media, and to decide whether to render early media from the UAS to
   the UAC in preference to any locally generated ringback triggered by
   a 180 Ringing response.  If a proxy is providing the early media
   gating function for the User Agent Client, then the gateway model of
   RFC 3960 [4] for rendering of early media is applicable.  A User
   Agent Client without a proxy in the network performing early media
   gating that receives a P-Early-Media header field SHOULD perform
   gating or cut-through of early media according to the parameter(s) of
   the header field.

P早めのメディアヘッダーフィールドを受けるUserエージェントClientはゲートか通じてカットの早めのメディアにヘッダーフィールドのパラメタを使用するかもしれません、そして、何かに優先してUASからの早めのメディアをUACに提供するかどうか決めるのが局所的に180Ringing応答で引き起こされたringbackを生成しました。 プロキシがUserエージェントClientのために機能に外出を禁止する早めのメディアを提供しているなら、早めのメディアのレンダリングのためのRFC3960[4]のゲートウェイモデルは適切です。 ネットワークのプロキシがそれに外出を禁止する早めのメディアを実行することのないUserエージェントClientはヘッダーフィールドのヘッダー分野SHOULDが実行するP早めのメディアゲートかカット早めのメディアで突き抜けているパラメタによると、(s)を受けます。

8.2.  Procedures at the User Agent Server

8.2. ユーザエージェントサーバにおける手順

   A User Agent Server that is requesting authorization to send or
   receive early media MAY insert a P-Early-Media header field with
   appropriate parameters(s) in any message allowed in table 1 towards
   the UAC within the dialog.  A User Agent Server MAY request changes
   in early media authorization by inserting a P-Early-Media header

適切なパラメタがどんなメッセージにも対話の中にテーブル1にUACに向かって許容されたある状態で、早めのメディアを送るか、または受け取るよう承認に要求しているUserエージェントServerはP早めのメディアヘッダーフィールドを挿入するかもしれません。 UserエージェントServerは、P早めのメディアヘッダーを挿入することによって、早めのメディア承認における変化を要求するかもしれません。

Ejzak                        Informational                     [Page 10]

RFC 5009                  P-Early-Media Header            September 2007

[10ページ]RFC5009P早めのメディアヘッダー2007年9月の情報のEjzak

   field with appropriate parameter(s) in any subsequent message allowed
   in table 1 towards the UAC within the dialog.

適切なパラメタがどんなその後のメッセージにも対話の中にテーブル1にUACに向かって許容されたある状態で、さばきます。

   If the P-Early-Media header field is not present in the INVITE
   request, the User Agent Server MAY choose to suppress early media
   authorization requests and MAY choose to execute alternate early
   media procedures.

P早めのメディアヘッダーフィールドがINVITE要求に存在していないなら、UserエージェントServerは、早めのメディア承認要求を抑圧するのを選んで、代替の早めのメディア手順を実行するのを選ぶかもしれません。

8.3.  Procedures at the Proxy

8.3. プロキシにおける手順

   When forwarding an INVITE request, a proxy MAY add, retain, or delete
   the P-Early-Media header field, depending on local policy and the
   trust relationship with the sender and/or receiver of the request.

INVITE要求を転送するとき、プロキシは、P早めのメディアヘッダーフィールドを加えるか、保有するか、または削除するかもしれません、要求の送付者、そして/または、受信機でローカルの方針と信頼関係によって。

   When forwarding a message allowed in Table 1 towards the UAC, a proxy
   MAY add, modify, or delete a P-Early-Media header field, depending on
   local policy and the trust relationship with the sender and/or
   receiver of the message.  In addition, if the proxy controls the
   gating of early media for the User Agent Client, it SHOULD use the
   contents of the P-Early-Media header field to gate the early media,
   according to the definitions of the header field parameters defined
   in clause 8.

Table1にUACに向かって許容されたメッセージを転送するとき、プロキシは、P早めのメディアヘッダーフィールドを加えるか、変更するか、または削除するかもしれません、メッセージの送付者、そして/または、受信機でローカルの方針と信頼関係によって。 さらに、プロキシはUserエージェントClientのために早めのメディアのゲートを制御して、それはP早めのメディアヘッダーの内容が早めのメディアであって、ヘッダーフィールドパラメタの定義に従って節で8に定義されたゲートとしてさばくSHOULD使用です。

9.  Formal Syntax

9. 正式な構文

   The syntax of the P-Early-Media header field is described below in
   ABNF, according to RFC 4234 [5], as an extension to the ABNF for SIP
   in RFC 3261 [1].  Note that not all combinations of em-param elements
   are semantically valid.

P早めのメディアヘッダーフィールドの構文はABNFで以下で説明されます、RFC4234[5]によると、RFC3261[1]のSIPのためのABNFへの拡大として。 em-param要素のすべての組み合わせがどんな意味的に有効であるというわけではないことに注意してください。

         P-Early-Media = "P-Early-Media" HCOLON
                          [ em-param *(COMMA em-param) ]
         em-param      = "sendrecv" / "sendonly" / "recvonly"
                          / "inactive" / "gated" / "supported" / token

「P早めのメディア」HCOLON[em-param*(COMMA em-param)]P早めのメディア=em-paramは「sendonlyである」か「recvonlyである」か「不活発である」か「外出を禁止された」か"sendrecv"/「サポートしている」/トークンと等しいです。

10.  Security Considerations

10. セキュリティ問題

   The use of this extension is only applicable inside a "Trust Domain",
   as defined in RFC 3325 [6].  This document does NOT offer a general
   early media authorization model suitable for inter-domain use or use
   in the Internet at large.

この拡張子の使用はRFC3325[6]で定義されるように単に「信頼ドメイン」で適切です。 このドキュメントは全体のインターネットで相互ドメイン使用か使用に適した一般的な早めのメディア承認モデルを提供しません。

   There are no confidentiality concerns associated with the P-Early-
   Media header field.  It is desirable to maintain the integrity of the
   direction parameters in the header field across each hop between
   servers to avoid the potential for unauthorized use of early media.
   It is assumed that the P-Early-Media header field is used within the
   context of the 3GPP IMS trust domain or a similar trust domain,

P初期のメディアのヘッダーフィールドに関連しているどんな機密保持の懸念もありません。 早めのメディアの無断使用の可能性を避けるためにサーバの間の各ホップの向こう側にヘッダーフィールドにおける方向パラメタの保全を維持するのは望ましいです。 P早めのメディアヘッダーフィールドが3GPP IMS信頼ドメインか同様の信頼ドメインの文脈の中で使用されると思われます。

Ejzak                        Informational                     [Page 11]

RFC 5009                  P-Early-Media Header            September 2007

[11ページ]RFC5009P早めのメディアヘッダー2007年9月の情報のEjzak

   consisting of a collection of SIP servers maintaining pair wise
   security associations.

組を維持するSIPサーバの収集から成るのはセキュリティ協会を教えます。

   Within the trust domain of a network it is only necessary to police
   the use of the P-Early-Media header field at the boundary to user
   equipment served by the network and at the boundary to peer networks.
   It is assumed that boundary servers in the trust domain of a network
   will have local policy for the treatment of the P-Early-Media header
   field as it is sent to or received from any possible server external
   to the network.  Since boundary servers are free to modify or remove
   any P-Early-Media header field in SIP messages forwarded across the
   boundary, the integrity of the P-Early-Media header field can be
   verified to the extent that the connections to external servers are
   secured.  The authenticity of the P-Early-Media header field can only
   be assured to the extent that the external servers are trusted to
   police the authenticity of the header field.

ネットワークの信頼ドメインの中では、単にネットワークによって役立たれたユーザ設備への境界における境界におけるP早めのメディアヘッダーフィールドの使用を同輩ネットワークまで取り締まるのが必要です。 それがネットワークへの外部のどんな可能なサーバからも送るか、または受け取られているのでネットワークの信頼ドメインの境界サーバにはP早めのメディアヘッダーフィールドの処理のためのローカルの方針があると思われます。 境界の向こう側に転送されたSIPメッセージのどんなP早めのメディアヘッダーフィールドも変更するか、または境界サーバが無料で取り除くことができるので、P早めのメディアヘッダーフィールドの保全について外部のサーバとの接続を保証するという範囲まで確かめることができます。 P早めのメディアヘッダーフィールドの信憑性を外部のサーバがヘッダーフィールドの信憑性を取り締まると信じられるという範囲まで保証できるだけです。

11.  IANA Considerations

11. IANA問題

11.1.  Registration of the "P-Early-Media" SIP Header Field

11.1. 「P早めのメディア」一口ヘッダーフィールドの登録

   Name of Header field:    P-Early-Media

Header分野の名前: P早めのメディア

   Short form:              none

急に、形成してください: なし

   Registrant:              Richard Ejzak
                            ejzak@alcatel-lucent.com

記入者: リチャードEjzak ejzak@alcatel-lucent.com

   Normative description:   Section 8 of this document

標準の記述: セクション8 このドキュメントについて

12.  Acknowledgements

12. 承認

   The author would like to thank Miguel Garcia-Martin, Jan Holm,
   Sebastien Garcin, Akira Kurokawa, Erick Sasaki, James Calme, Greg
   Tevonian, Aki Niemi, Paul Kyzivat, Gonzalo Camarillo, Brett Tate, Jon
   Peterson, Alfred Hoenes, and David Black for their significant
   contributions made throughout the writing and reviewing of this
   document.

作者はこのドキュメントの書くことと論評の間中された彼らの重要な貢献についてミゲル・ガルシア-マーチン、ジャン・ホルム、セバスチアンGarcin、Akira黒川、エーリック・佐々木、ジェームスCalme、グレッグTevonian、アキNiemi、ポールKyzivat、ゴンサロ・キャマリロ、ブレット・テイト、ジョン・ピーターソン、アルフレッドHoenes、およびデヴィッドBlackに感謝したがっています。

13.  References

13. 参照

13.1.  Normative References

13.1. 引用規格

   [1]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, June 2002.

[1] ローゼンバーグ、J.、Schulzrinne、H.、キャマリロ、G.、ジョンストン、A.、ピーターソン、J.、スパークス、R.、ハンドレー、M.、およびE.学生は「以下をちびちび飲みます」。 「セッション開始プロトコル」、RFC3261、2002年6月。

Ejzak                        Informational                     [Page 12]

RFC 5009                  P-Early-Media Header            September 2007

[12ページ]RFC5009P早めのメディアヘッダー2007年9月の情報のEjzak

   [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

[2] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [3]  Camarillo, G., "The Early Session Disposition Type for the
        Session Initiation Protocol (SIP)", RFC 3959, December 2004.

2004年12月の[3] キャマリロ、G.、「セッション開始プロトコル(一口)のための前場の気質タイプ」RFC3959。

   [4]  Camarillo, G. and H. Schulzrinne, "Early Media and Ringing Tone
        Generation in the Session Initiation Protocol (SIP)", RFC 3960,
        December 2004.

[4] キャマリロ、G.、およびH.Schulzrinne、「早くメディアと鳴るのはセッション開始プロトコル(一口)における世代に調子を変えます」、RFC3960、2004年12月。

   [5]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
        Specifications: ABNF", RFC 4234, October 2005.

[5] クロッカー、D.、およびP.Overell、「構文仕様のための増大しているBNF:」 "ABNF"、2005年10月のRFC4234。

   [6]  Jennings, C., Peterson, J., and M. Watson, "Private Extensions
        to the Session Initiation Protocol (SIP) for Asserted Identity
        within Trusted Networks", RFC 3325, November 2002.

[6] ジョニングス、C.、ピーターソン、J.、およびM.ワトソン、「セッション開始への個人的な拡大は断言されたアイデンティティのために信じられたネットワークの中で(一口)について議定書の中で述べます」、RFC3325、2002年11月。

   [7]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
        Description Protocol", RFC 4566, July 2006.

[7] ハンドレー、M.、ジェーコブソン、V.、およびC.パーキンス、「SDP:」 「セッション記述プロトコル」、RFC4566、2006年7月。

   [8]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
        Session Description Protocol (SDP)", RFC 3264, June 2002.

[8] ローゼンバーグとJ.とH.Schulzrinne、「セッション記述プロトコル(SDP)がある申し出/答えモデル」、RFC3264、2002年6月。

   [9]  Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
        Preferences for the Session Initiation Protocol (SIP)", RFC
        3841, August 2004.

[9] ローゼンバーグ、J.、Schulzrinne、H.、およびP.Kyzivat、「セッション開始プロトコル(一口)のための訪問者好み」、RFC3841、2004年8月。

   [10] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
        Method", RFC 3311, October 2002.

[10] ローゼンバーグ、J.、「セッション開始プロトコル(一口)アップデートメソッド」、RFC3311、2002年10月。

   [11] Camarillo, G., Marshall, W., and J. Rosenberg, "Integration of
        Resource Management and Session Initiation Protocol (SIP)", RFC
        3312, October 2002.

[11] キャマリロ、G.、マーシャル、W.、およびJ.ローゼンバーグ、「資源管理とセッション開始プロトコル(一口)の統合」、RFC3312(2002年10月)。

   [12] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
        Responses in Session Initiation Protocol (SIP)", RFC 3262, June
        2002.

[12] ローゼンバーグとJ.とH.Schulzrinne、「セッション開始プロトコル(一口)の暫定的な応答の信頼性」、RFC3262、2002年6月。

13.2.  Informative References

13.2. 有益な参照

   [13] 3GPP "TS 23.228: IP Multimedia Subsystem (IMS); Stage 2 (Release
        7)", 3GPP 23.228, March 2007,
        ftp://ftp.3gpp.org/specs/archive/23_series/23.228/.

[13] 3GPP、「t23.228:」 IPマルチメディアサブシステム(IMS)。 「ステージ2(リリース7)」、3GPP23.228、2007年3月、 ftp://ftp.3gpp.org/specs/archive/23_series/23.228/ 。

   [14] 3GPP "TS 24.229: IP Multimedia Call Control Protocol based on
        SIP and SDP; Stage 3 (Release 7)", 3GPP 24.229, March 2007,
        ftp://ftp.3gpp.org/specs/archive/24_series/24.229/.

[14] 3GPP、「t24.229:」 SIPとSDPに基づくIP Multimedia Call Controlプロトコル。 「ステージ3(リリース7)」、3GPP24.229、2007年3月、 ftp://ftp.3gpp.org/specs/archive/24_series/24.229/ 。

Ejzak                        Informational                     [Page 13]

RFC 5009                  P-Early-Media Header            September 2007

[13ページ]RFC5009P早めのメディアヘッダー2007年9月の情報のEjzak

        ETSI documents can be downloaded from the ETSI Web server,
        "http://www.etsi.org/".  Any 3GPP document can be downloaded
        from the 3GPP Web server, "http://www.3gpp.org/". See
        specifications.

ETSIウェブサーバ、" http://www.etsi.org/ "からETSIドキュメントをダウンロードできます。 3GPPウェブサーバ、" http://www.3gpp.org/ "からどんな3GPPドキュメントもダウンロードできます。 仕様を見てください。

Authors Address

アドレスを書きます。

   Richard Ejzak
   Alcatel-Lucent
   1960 Lucent Lane
   Naperville, IL 60566
   USA

透明なリチャードEjzakアルカテル透明な1960Lane IL60566ナパービル(米国)

   Phone: +1 630 979 7036
   EMail: ejzak@alcatel-lucent.com

以下に電話をしてください。 +1 7036年の630 979メール: ejzak@alcatel-lucent.com

Ejzak                        Informational                     [Page 14]

RFC 5009                  P-Early-Media Header            September 2007

[14ページ]RFC5009P早めのメディアヘッダー2007年9月の情報のEjzak

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The IETF Trust (2007).

IETFが信じる著作権(C)(2007)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

このドキュメントはBCP78に含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとここに含まれた情報はその人が代理をするか、または(もしあれば)後援される組織、インターネットの振興発展を目的とする組織、「そのままで」という基礎と貢献者の上で提供していて、IETFはそして、インターネット・エンジニアリング・タスク・フォースがすべての保証を放棄すると信じます、急行である、または暗示していて、他を含んでいて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるということであるかいずれが市場性か特定目的への適合性の黙示的な保証です。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実装に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するどんな独立している取り組みも作りました。 BCP78とBCP79でRFCドキュメントの権利に関する手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

IETFはこの規格を実装するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf-ipr@ietf.org のIETFに情報を扱ってください。

Ejzak                        Informational                     [Page 15]

Ejzak情報です。[15ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

アデリーペンギン

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る