RFC5306 日本語訳

5306 Restart Signaling for IS-IS. M. Shand, L. Ginsberg. October 2008. (Format: TXT=51234 bytes) (Obsoletes RFC3847) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
RFC一覧
英語原文

Network Working Group                                           M. Shand
Request for Comments: 5306                                   L. Ginsberg
Obsoletes: 3847                                            Cisco Systems
Category: Standards Track                                   October 2008

Network Working Group M. Shand Request for Comments: 5306 L. Ginsberg Obsoletes: 3847 Cisco Systems Category: Standards Track October 2008

                      Restart Signaling for IS-IS

Restart Signaling for IS-IS

Status of This Memo

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

Abstract

   This document describes a mechanism for a restarting router to signal
   to its neighbors that it is restarting, allowing them to reestablish
   their adjacencies without cycling through the down state, while still
   correctly initiating database synchronization.

This document describes a mechanism for a restarting router to signal to its neighbors that it is restarting, allowing them to reestablish their adjacencies without cycling through the down state, while still correctly initiating database synchronization.

   This document additionally describes a mechanism for a restarting
   router to determine when it has achieved Link State Protocol Data
   Unit (LSP) database synchronization with its neighbors and a
   mechanism to optimize LSP database synchronization, while minimizing
   transient routing disruption when a router starts.  This document
   obsoletes RFC 3847.

This document additionally describes a mechanism for a restarting router to determine when it has achieved Link State Protocol Data Unit (LSP) database synchronization with its neighbors and a mechanism to optimize LSP database synchronization, while minimizing transient routing disruption when a router starts. This document obsoletes RFC 3847.

Shand & Ginsberg            Standards Track                     [Page 1]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 1] RFC 5306 Restart Signaling for IS-IS October 2008

Table of Contents

Table of Contents

   1.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Conventions Used in This Document  . . . . . . . . . . . . . .  4
   3.  Approach . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
     3.1.  Timers . . . . . . . . . . . . . . . . . . . . . . . . . .  4
     3.2.  Restart TLV  . . . . . . . . . . . . . . . . . . . . . . .  5
       3.2.1.  Use of RR and RA Bits  . . . . . . . . . . . . . . . .  6
       3.2.2.  Use of the SA Bit  . . . . . . . . . . . . . . . . . .  8
     3.3.  Adjacency (Re)Acquisition  . . . . . . . . . . . . . . . .  8
       3.3.1.  Adjacency Reacquisition during Restart . . . . . . . .  9
       3.3.2.  Adjacency Acquisition during Start . . . . . . . . . . 11
       3.3.3.  Multiple Levels  . . . . . . . . . . . . . . . . . . . 12
     3.4.  Database Synchronization . . . . . . . . . . . . . . . . . 13
       3.4.1.  LSP Generation and Flooding and SPF Computation  . . . 14
         3.4.1.1.  Restarting . . . . . . . . . . . . . . . . . . . . 14
         3.4.1.2.  Starting . . . . . . . . . . . . . . . . . . . . . 16
   4.  State Tables . . . . . . . . . . . . . . . . . . . . . . . . . 16
     4.1.  Running Router . . . . . . . . . . . . . . . . . . . . . . 17
     4.2.  Restarting Router  . . . . . . . . . . . . . . . . . . . . 18
     4.3.  Starting Router  . . . . . . . . . . . . . . . . . . . . . 19
   5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 19
   6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 20
   7.  Manageability Considerations . . . . . . . . . . . . . . . . . 20
   8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 20
   9.  Normative References . . . . . . . . . . . . . . . . . . . . . 21

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions Used in This Document . . . . . . . . . . . . . . 4 3. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2. Restart TLV . . . . . . . . . . . . . . . . . . . . . . . 5 3.2.1. Use of RR and RA Bits . . . . . . . . . . . . . . . . 6 3.2.2. Use of the SA Bit . . . . . . . . . . . . . . . . . . 8 3.3. Adjacency (Re)Acquisition . . . . . . . . . . . . . . . . 8 3.3.1. Adjacency Reacquisition during Restart . . . . . . . . 9 3.3.2. Adjacency Acquisition during Start . . . . . . . . . . 11 3.3.3. Multiple Levels . . . . . . . . . . . . . . . . . . . 12 3.4. Database Synchronization . . . . . . . . . . . . . . . . . 13 3.4.1. LSP Generation and Flooding and SPF Computation . . . 14 3.4.1.1. Restarting . . . . . . . . . . . . . . . . . . . . 14 3.4.1.2. Starting . . . . . . . . . . . . . . . . . . . . . 16 4. State Tables . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1. Running Router . . . . . . . . . . . . . . . . . . . . . . 17 4.2. Restarting Router . . . . . . . . . . . . . . . . . . . . 18 4.3. Starting Router . . . . . . . . . . . . . . . . . . . . . 19 5. Security Considerations . . . . . . . . . . . . . . . . . . . 19 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 20 7. Manageability Considerations . . . . . . . . . . . . . . . . . 20 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 20 9. Normative References . . . . . . . . . . . . . . . . . . . . . 21

Shand & Ginsberg            Standards Track                     [Page 2]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 2] RFC 5306 Restart Signaling for IS-IS October 2008

1.  Overview

1. Overview

   The Intermediate System to Intermediate System (IS-IS) routing
   protocol [RFC1195] [ISO10589] is a link state intra-domain routing
   protocol.  Normally, when an IS-IS router is restarted, temporary
   disruption of routing occurs due to events in both the restarting
   router and the neighbors of the restarting router.

The Intermediate System to Intermediate System (IS-IS) routing protocol [RFC1195] [ISO10589] is a link state intra-domain routing protocol. Normally, when an IS-IS router is restarted, temporary disruption of routing occurs due to events in both the restarting router and the neighbors of the restarting router.

   The router that has been restarted computes its own routes before
   achieving database synchronization with its neighbors.  The results
   of this computation are likely to be non-convergent with the routes
   computed by other routers in the area/domain.

The router that has been restarted computes its own routes before achieving database synchronization with its neighbors. The results of this computation are likely to be non-convergent with the routes computed by other routers in the area/domain.

   Neighbors of the restarting router detect the restart event and cycle
   their adjacencies with the restarting router through the down state.
   The cycling of the adjacency state causes the neighbors to regenerate
   their LSPs describing the adjacency concerned.  This in turn causes a
   temporary disruption of routes passing through the restarting router.

Neighbors of the restarting router detect the restart event and cycle their adjacencies with the restarting router through the down state. The cycling of the adjacency state causes the neighbors to regenerate their LSPs describing the adjacency concerned. This in turn causes a temporary disruption of routes passing through the restarting router.

   In certain scenarios, the temporary disruption of the routes is
   highly undesirable.  This document describes mechanisms to avoid or
   minimize the disruption due to both of these causes.

In certain scenarios, the temporary disruption of the routes is highly undesirable. This document describes mechanisms to avoid or minimize the disruption due to both of these causes.

   When an adjacency is reinitialized as a result of a neighbor
   restarting, a router does three things:

When an adjacency is reinitialized as a result of a neighbor restarting, a router does three things:

   1.  It causes its own LSP(s) to be regenerated, thus triggering SPF
       runs throughout the area (or in the case of Level 2, throughout
       the domain).

1. It causes its own LSP(s) to be regenerated, thus triggering SPF runs throughout the area (or in the case of Level 2, throughout the domain).

   2.  It sets SRMflags on its own LSP database on the adjacency
       concerned.

2. It sets SRMflags on its own LSP database on the adjacency concerned.

   3.  In the case of a Point-to-Point link, it transmits a complete set
       of Complete Sequence Number PDUs (CSNPs), over the adjacency.

3. In the case of a Point-to-Point link, it transmits a complete set of Complete Sequence Number PDUs (CSNPs), over the adjacency.

   In the case of a restarting router process, the first of these is
   highly undesirable, but the second is essential in order to ensure
   synchronization of the LSP database.

In the case of a restarting router process, the first of these is highly undesirable, but the second is essential in order to ensure synchronization of the LSP database.

   The third action above minimizes the number of LSPs that must be
   exchanged and, if made reliable, provides a means of determining when
   the LSP databases of the neighboring routers have been synchronized.
   This is desirable whether or not the router is being restarted (so
   that the overload bit can be cleared in the router's own LSP, for
   example).

The third action above minimizes the number of LSPs that must be exchanged and, if made reliable, provides a means of determining when the LSP databases of the neighboring routers have been synchronized. This is desirable whether or not the router is being restarted (so that the overload bit can be cleared in the router's own LSP, for example).

Shand & Ginsberg            Standards Track                     [Page 3]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 3] RFC 5306 Restart Signaling for IS-IS October 2008

   This document describes a mechanism for a restarting router to signal
   that it is restarting to its neighbors, and allow them to reestablish
   their adjacencies without cycling through the down state, while still
   correctly initiating database synchronization.

This document describes a mechanism for a restarting router to signal that it is restarting to its neighbors, and allow them to reestablish their adjacencies without cycling through the down state, while still correctly initiating database synchronization.

   This document additionally describes a mechanism for a restarting
   router to determine when it has achieved LSP database synchronization
   with its neighbors and a mechanism to optimize LSP database
   synchronization and minimize transient routing disruption when a
   router starts.

This document additionally describes a mechanism for a restarting router to determine when it has achieved LSP database synchronization with its neighbors and a mechanism to optimize LSP database synchronization and minimize transient routing disruption when a router starts.

   It is assumed that the three-way handshake [RFC5303] is being used on
   Point-to-Point circuits.

It is assumed that the three-way handshake [RFC5303] is being used on Point-to-Point circuits.

2.  Conventions Used in This Document

2. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, [RFC2119].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, [RFC2119].

   If the control and forwarding functions in a router can be maintained
   independently, it is possible for the forwarding function state to be
   maintained across a resumption of control function operations.  This
   functionality is assumed when the terms "restart/restarting" are used
   in this document.

If the control and forwarding functions in a router can be maintained independently, it is possible for the forwarding function state to be maintained across a resumption of control function operations. This functionality is assumed when the terms "restart/restarting" are used in this document.

   The terms "start/starting" are used to refer to a router in which the
   control function has either commenced operations for the first time
   or has resumed operations, but the forwarding functions have not been
   maintained in a prior state.

The terms "start/starting" are used to refer to a router in which the control function has either commenced operations for the first time or has resumed operations, but the forwarding functions have not been maintained in a prior state.

   The terms "(re)start/(re)starting" are used when the text is
   applicable to both a "starting" and a "restarting" router.

The terms "(re)start/(re)starting" are used when the text is applicable to both a "starting" and a "restarting" router.

3.  Approach

3. Approach

3.1.  Timers

3.1. Timers

   Three additional timers, T1, T2, and T3, are required to support the
   functionality defined in this document.

Three additional timers, T1, T2, and T3, are required to support the functionality defined in this document.

   An instance of the timer T1 is maintained per interface, and
   indicates the time after which an unacknowledged (re)start attempt
   will be repeated.  A typical value might be 3 seconds.

An instance of the timer T1 is maintained per interface, and indicates the time after which an unacknowledged (re)start attempt will be repeated. A typical value might be 3 seconds.

Shand & Ginsberg            Standards Track                     [Page 4]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 4] RFC 5306 Restart Signaling for IS-IS October 2008

   An instance of the timer T2 is maintained for each LSP database
   (LSPDB) present in the system, i.e., for a Level 1/2 system, there
   will be an instance of the timer T2 for Level 1 and an instance for
   Level 2.  This is the maximum time that the system will wait for
   LSPDB synchronization.  A typical value might be 60 seconds.

An instance of the timer T2 is maintained for each LSP database (LSPDB) present in the system, i.e., for a Level 1/2 system, there will be an instance of the timer T2 for Level 1 and an instance for Level 2. This is the maximum time that the system will wait for LSPDB synchronization. A typical value might be 60 seconds.

   A single instance of the timer T3 is maintained for the entire
   system.  It indicates the time after which the router will declare
   that it has failed to achieve database synchronization (by setting
   the overload bit in its own LSP).  This is initialized to 65535
   seconds, but is set to the minimum of the remaining times of received
   IS-IS Hellos (IIHs) containing a restart TLV with the Restart
   Acknowledgement (RA) set and an indication that the neighbor has an
   adjacency in the "UP" state to the restarting router.

A single instance of the timer T3 is maintained for the entire system. It indicates the time after which the router will declare that it has failed to achieve database synchronization (by setting the overload bit in its own LSP). This is initialized to 65535 seconds, but is set to the minimum of the remaining times of received IS-IS Hellos (IIHs) containing a restart TLV with the Restart Acknowledgement (RA) set and an indication that the neighbor has an adjacency in the "UP" state to the restarting router.

   NOTE: The timer T3 is only used by a restarting router.

NOTE: The timer T3 is only used by a restarting router.

3.2.  Restart TLV

3.2. Restart TLV

   A new TLV is defined to be included in IIH PDUs.  The presence of
   this TLV indicates that the sender supports the functionality defined
   in this document and it carries flags that are used to convey
   information during a (re)start.  All IIHs transmitted by a router
   that supports this capability MUST include this TLV.

A new TLV is defined to be included in IIH PDUs. The presence of this TLV indicates that the sender supports the functionality defined in this document and it carries flags that are used to convey information during a (re)start. All IIHs transmitted by a router that supports this capability MUST include this TLV.

   Type 211

Type 211

      Length: Number of octets in the Value field (1 to (3 + ID Length))
      Value

Length: Number of octets in the Value field (1 to (3 + ID Length)) Value

                                       No. of octets
        +-----------------------+
        |   Flags               |     1
        +-----------------------+
        | Remaining Time        |     2
        +-----------------------+
        | Restarting Neighbor ID|     ID Length
        +-----------------------+

No. of octets +-----------------------+ | Flags | 1 +-----------------------+ | Remaining Time | 2 +-----------------------+ | Restarting Neighbor ID| ID Length +-----------------------+

Shand & Ginsberg            Standards Track                     [Page 5]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 5] RFC 5306 Restart Signaling for IS-IS October 2008

      Flags (1 octet)

Flags (1 octet)

         0  1  2  3  4  5  6  7
        +--+--+--+--+--+--+--+--+
        |  Reserved    |SA|RA|RR|
        +--+--+--+--+--+--+--+--+

0 1 2 3 4 5 6 7 +--+--+--+--+--+--+--+--+ | Reserved |SA|RA|RR| +--+--+--+--+--+--+--+--+

        RR - Restart Request
        RA - Restart Acknowledgement
        SA - Suppress adjacency advertisement

RR - Restart Request RA - Restart Acknowledgement SA - Suppress adjacency advertisement

   (Note: Remaining fields are required when the RA bit is set.)

(Note: Remaining fields are required when the RA bit is set.)

      Remaining Time (2 octets)

Remaining Time (2 octets)

        Remaining holding time (in seconds)

Remaining holding time (in seconds)

      Restarting Neighbor System ID (ID Length octets)

Restarting Neighbor System ID (ID Length octets)

   The System ID of the neighbor to which an RA refers.  Note:
   Implementations based on earlier versions of this document may not
   include this field in the TLV when the RA is set.  In this case, a
   router that is expecting an RA on a LAN circuit SHOULD assume that
   the acknowledgement is directed at the local system.

The System ID of the neighbor to which an RA refers. Note: Implementations based on earlier versions of this document may not include this field in the TLV when the RA is set. In this case, a router that is expecting an RA on a LAN circuit SHOULD assume that the acknowledgement is directed at the local system.

3.2.1.  Use of RR and RA Bits

3.2.1. Use of RR and RA Bits

   The RR bit is used by a (re)starting router to signal to its
   neighbors that a (re)start is in progress, that an existing adjacency
   SHOULD be maintained even under circumstances when the normal
   operation of the adjacency state machine would require the adjacency
   to be reinitialized, to request a set of CSNPs, and to request
   setting of the SRMflags.

The RR bit is used by a (re)starting router to signal to its neighbors that a (re)start is in progress, that an existing adjacency SHOULD be maintained even under circumstances when the normal operation of the adjacency state machine would require the adjacency to be reinitialized, to request a set of CSNPs, and to request setting of the SRMflags.

   The RA bit is sent by the neighbor of a (re)starting router to
   acknowledge the receipt of a restart TLV with the RR bit set.

The RA bit is sent by the neighbor of a (re)starting router to acknowledge the receipt of a restart TLV with the RR bit set.

   When the neighbor of a (re)starting router receives an IIH with the
   restart TLV having the RR bit set, if there exists on this interface
   an adjacency in state "UP" with the same System ID, and in the case
   of a LAN circuit, with the same source LAN address, then,
   irrespective of the other contents of the "Intermediate System
   Neighbors" option (LAN circuits) or the "Point-to-Point Three-Way
   Adjacency" option (Point-to-Point circuits):

When the neighbor of a (re)starting router receives an IIH with the restart TLV having the RR bit set, if there exists on this interface an adjacency in state "UP" with the same System ID, and in the case of a LAN circuit, with the same source LAN address, then, irrespective of the other contents of the "Intermediate System Neighbors" option (LAN circuits) or the "Point-to-Point Three-Way Adjacency" option (Point-to-Point circuits):

   a.  the state of the adjacency is not changed.  If this is the first
       IIH with the RR bit set that this system has received associated
       with this adjacency, then the adjacency is marked as being in

a. the state of the adjacency is not changed. If this is the first IIH with the RR bit set that this system has received associated with this adjacency, then the adjacency is marked as being in

Shand & Ginsberg            Standards Track                     [Page 6]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 6] RFC 5306 Restart Signaling for IS-IS October 2008

       "Restart mode" and the adjacency holding time is refreshed --
       otherwise, the holding time is not refreshed.  The "remaining
       time" transmitted according to (b) below MUST reflect the actual
       time after which the adjacency will now expire.  Receipt of a
       normal IIH with the RR bit reset will clear the "Restart mode"
       state.  This procedure allows the restarting router to cause the
       neighbor to maintain the adjacency long enough for restart to
       successfully complete, while also preventing repetitive restarts
       from maintaining an adjacency indefinitely.  Whether or not an
       adjacency is marked as being in "Restart mode" has no effect on
       adjacency state transitions.

"Restart mode" and the adjacency holding time is refreshed -- otherwise, the holding time is not refreshed. The "remaining time" transmitted according to (b) below MUST reflect the actual time after which the adjacency will now expire. Receipt of a normal IIH with the RR bit reset will clear the "Restart mode" state. This procedure allows the restarting router to cause the neighbor to maintain the adjacency long enough for restart to successfully complete, while also preventing repetitive restarts from maintaining an adjacency indefinitely. Whether or not an adjacency is marked as being in "Restart mode" has no effect on adjacency state transitions.

   b.  immediately (i.e., without waiting for any currently running
       timer interval to expire, but with a small random delay of a few
       tens of milliseconds on LANs to avoid "storms") transmit over the
       corresponding interface an IIH including the restart TLV with the
       RR bit clear and the RA bit set, in the case of Point-to-Point
       adjacencies having updated the "Point-to-Point Three-Way
       Adjacency" option to reflect any new values received from the
       (re)starting router.  (This allows a restarting router to quickly
       acquire the correct information to place in its hellos.)  The
       "Remaining Time" MUST be set to the current time (in seconds)
       before the holding timer on this adjacency is due to expire.  If
       the corresponding interface is a LAN interface, then the
       Restarting Neighbor System ID SHOULD be set to the System ID of
       the router from which the IIH with the RR bit set was received.
       This is required to correctly associate the acknowledgement and
       holding time in the case where multiple systems on a LAN restart
       at approximately the same time.  This IIH SHOULD be transmitted
       before any LSPs or SNPs are transmitted as a result of the
       receipt of the original IIH.

b. immediately (i.e., without waiting for any currently running timer interval to expire, but with a small random delay of a few tens of milliseconds on LANs to avoid "storms") transmit over the corresponding interface an IIH including the restart TLV with the RR bit clear and the RA bit set, in the case of Point-to-Point adjacencies having updated the "Point-to-Point Three-Way Adjacency" option to reflect any new values received from the (re)starting router. (This allows a restarting router to quickly acquire the correct information to place in its hellos.) The "Remaining Time" MUST be set to the current time (in seconds) before the holding timer on this adjacency is due to expire. If the corresponding interface is a LAN interface, then the Restarting Neighbor System ID SHOULD be set to the System ID of the router from which the IIH with the RR bit set was received. This is required to correctly associate the acknowledgement and holding time in the case where multiple systems on a LAN restart at approximately the same time. This IIH SHOULD be transmitted before any LSPs or SNPs are transmitted as a result of the receipt of the original IIH.

   c.  if the corresponding interface is a Point-to-Point interface, or
       if the receiving router has the highest LnRouterPriority (with
       the highest source MAC (Media Access Control) address breaking
       ties) among those routers to which the receiving router has an
       adjacency in state "UP" on this interface whose IIHs contain the
       restart TLV, excluding adjacencies to all routers which are
       considered in "Restart mode" (note the actual DIS is NOT changed
       by this process), initiate the transmission over the
       corresponding interface of a complete set of CSNPs, and set
       SRMflags on the corresponding interface for all LSPs in the local
       LSP database.

c. if the corresponding interface is a Point-to-Point interface, or if the receiving router has the highest LnRouterPriority (with the highest source MAC (Media Access Control) address breaking ties) among those routers to which the receiving router has an adjacency in state "UP" on this interface whose IIHs contain the restart TLV, excluding adjacencies to all routers which are considered in "Restart mode" (note the actual DIS is NOT changed by this process), initiate the transmission over the corresponding interface of a complete set of CSNPs, and set SRMflags on the corresponding interface for all LSPs in the local LSP database.

   Otherwise (i.e., if there was no adjacency in the "UP" state to the
   System ID in question), process the IIH as normal by reinitializing
   the adjacency and setting the RA bit in the returned IIH.

Otherwise (i.e., if there was no adjacency in the "UP" state to the System ID in question), process the IIH as normal by reinitializing the adjacency and setting the RA bit in the returned IIH.

Shand & Ginsberg            Standards Track                     [Page 7]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 7] RFC 5306 Restart Signaling for IS-IS October 2008

3.2.2.  Use of the SA Bit

3.2.2. Use of the SA Bit

   The SA bit is used by a starting router to request that its neighbor
   suppress advertisement of the adjacency to the starting router in the
   neighbor's LSPs.

The SA bit is used by a starting router to request that its neighbor suppress advertisement of the adjacency to the starting router in the neighbor's LSPs.

   A router that is starting has no maintained forwarding function
   state.  This may or may not be the first time the router has started.
   If this is not the first time the router has started, copies of LSPs
   generated by this router in its previous incarnation may exist in the
   LSP databases of other routers in the network.  These copies are
   likely to appear "newer" than LSPs initially generated by the
   starting router due to the reinitialization of LSP fragment sequence
   numbers by the starting router.  This may cause temporary blackholes
   to occur until the normal operation of the update process causes the
   starting router to regenerate and flood copies of its own LSPs with
   higher sequence numbers.  The temporary blackholes can be avoided if
   the starting router's neighbors suppress advertising an adjacency to
   the starting router until the starting router has been able to
   propagate newer versions of LSPs generated by previous incarnations.

A router that is starting has no maintained forwarding function state. This may or may not be the first time the router has started. If this is not the first time the router has started, copies of LSPs generated by this router in its previous incarnation may exist in the LSP databases of other routers in the network. These copies are likely to appear "newer" than LSPs initially generated by the starting router due to the reinitialization of LSP fragment sequence numbers by the starting router. This may cause temporary blackholes to occur until the normal operation of the update process causes the starting router to regenerate and flood copies of its own LSPs with higher sequence numbers. The temporary blackholes can be avoided if the starting router's neighbors suppress advertising an adjacency to the starting router until the starting router has been able to propagate newer versions of LSPs generated by previous incarnations.

   When a router receives an IIH with the restart TLV having the SA bit
   set, if there exists on this interface an adjacency in state "UP"
   with the same System ID, and in the case of a LAN circuit, with the
   same source LAN address, then the router MUST suppress advertisement
   of the adjacency to the neighbor in its own LSPs.  Until an IIH with
   the SA bit clear has been received, the neighbor advertisement MUST
   continue to be suppressed.  If the adjacency transitions to the "UP"
   state, the new adjacency MUST NOT be advertised until an IIH with the
   SA bit clear has been received.

When a router receives an IIH with the restart TLV having the SA bit set, if there exists on this interface an adjacency in state "UP" with the same System ID, and in the case of a LAN circuit, with the same source LAN address, then the router MUST suppress advertisement of the adjacency to the neighbor in its own LSPs. Until an IIH with the SA bit clear has been received, the neighbor advertisement MUST continue to be suppressed. If the adjacency transitions to the "UP" state, the new adjacency MUST NOT be advertised until an IIH with the SA bit clear has been received.

   Note that a router that suppresses advertisement of an adjacency MUST
   NOT use this adjacency when performing its SPF calculation.  In
   particular, if an implementation follows the example guidelines
   presented in [ISO10589], Annex C.2.5, Step 0:b) "pre-load TENT with
   the local adjacency database", the suppressed adjacency MUST NOT be
   loaded into TENT.

Note that a router that suppresses advertisement of an adjacency MUST NOT use this adjacency when performing its SPF calculation. In particular, if an implementation follows the example guidelines presented in [ISO10589], Annex C.2.5, Step 0:b) "pre-load TENT with the local adjacency database", the suppressed adjacency MUST NOT be loaded into TENT.

3.3.  Adjacency (Re)Acquisition

3.3. Adjacency (Re)Acquisition

   Adjacency (re)acquisition is the first step in (re)initialization.
   Restarting and starting routers will make use of the RR bit in the
   restart TLV, though each will use it at different stages of the
   (re)start procedure.

Adjacency (re)acquisition is the first step in (re)initialization. Restarting and starting routers will make use of the RR bit in the restart TLV, though each will use it at different stages of the (re)start procedure.

Shand & Ginsberg            Standards Track                     [Page 8]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 8] RFC 5306 Restart Signaling for IS-IS October 2008

3.3.1.  Adjacency Reacquisition during Restart

3.3.1. Adjacency Reacquisition during Restart

   The restarting router explicitly notifies its neighbor that the
   adjacency is being reacquired, and hence that it SHOULD NOT
   reinitialize the adjacency.  This is achieved by setting the RR bit
   in the restart TLV.  When the neighbor of a restarting router
   receives an IIH with the restart TLV having the RR bit set, if there
   exists on this interface an adjacency in state "UP" with the same
   System ID, and in the case of a LAN circuit, with the same source LAN
   address, then the procedures described in Section 3.2.1 are followed.

The restarting router explicitly notifies its neighbor that the adjacency is being reacquired, and hence that it SHOULD NOT reinitialize the adjacency. This is achieved by setting the RR bit in the restart TLV. When the neighbor of a restarting router receives an IIH with the restart TLV having the RR bit set, if there exists on this interface an adjacency in state "UP" with the same System ID, and in the case of a LAN circuit, with the same source LAN address, then the procedures described in Section 3.2.1 are followed.

   A router that does not support the restart capability will ignore the
   restart TLV and reinitialize the adjacency as normal, returning an
   IIH without the restart TLV.

A router that does not support the restart capability will ignore the restart TLV and reinitialize the adjacency as normal, returning an IIH without the restart TLV.

   On restarting, a router initializes the timer T3, starts the timer T2
   for each LSPDB, and for each interface (and in the case of a LAN
   circuit, for each level) starts the timer T1 and transmits an IIH
   containing the restart TLV with the RR bit set.

On restarting, a router initializes the timer T3, starts the timer T2 for each LSPDB, and for each interface (and in the case of a LAN circuit, for each level) starts the timer T1 and transmits an IIH containing the restart TLV with the RR bit set.

   On a Point-to-Point circuit, the restarting router SHOULD set the
   "Adjacency Three-Way State" to "Init", because the receipt of the
   acknowledging IIH (with RA set) MUST cause the adjacency to enter the
   "UP" state immediately.

On a Point-to-Point circuit, the restarting router SHOULD set the "Adjacency Three-Way State" to "Init", because the receipt of the acknowledging IIH (with RA set) MUST cause the adjacency to enter the "UP" state immediately.

   On a LAN circuit, the LAN-ID assigned to the circuit SHOULD be the
   same as that used prior to the restart.  In particular, for any
   circuits for which the restarting router was previously DIS, the use
   of a different LAN-ID would necessitate the generation of a new set
   of pseudonode LSPs, and corresponding changes in all the LSPs
   referencing them from other routers on the LAN.  By preserving the
   LAN-ID across the restart, this churn can be prevented.  To enable a
   restarting router to learn the LAN-ID used prior to restart, the
   LAN-ID specified in an IIH with RR set MUST be ignored.

On a LAN circuit, the LAN-ID assigned to the circuit SHOULD be the same as that used prior to the restart. In particular, for any circuits for which the restarting router was previously DIS, the use of a different LAN-ID would necessitate the generation of a new set of pseudonode LSPs, and corresponding changes in all the LSPs referencing them from other routers on the LAN. By preserving the LAN-ID across the restart, this churn can be prevented. To enable a restarting router to learn the LAN-ID used prior to restart, the LAN-ID specified in an IIH with RR set MUST be ignored.

   Transmission of "normal" IIHs is inhibited until the conditions
   described below are met (in order to avoid causing an unnecessary
   adjacency initialization).  Upon expiry of the timer T1, it is
   restarted and the IIH is retransmitted as above.

Transmission of "normal" IIHs is inhibited until the conditions described below are met (in order to avoid causing an unnecessary adjacency initialization). Upon expiry of the timer T1, it is restarted and the IIH is retransmitted as above.

   When a restarting router receives an IIH a local adjacency is
   established as usual, and if the IIH contains a restart TLV with the
   RA bit set (and on LAN circuits with a Restart Neighbor System ID
   that matches that of the local system), the receipt of the
   acknowledgement over that interface is noted.  When the RA bit is set
   and the state of the remote adjacency is "UP", then the timer T3 is
   set to the minimum of its current value and the value of the
   "Remaining Time" field in the received IIH.

When a restarting router receives an IIH a local adjacency is established as usual, and if the IIH contains a restart TLV with the RA bit set (and on LAN circuits with a Restart Neighbor System ID that matches that of the local system), the receipt of the acknowledgement over that interface is noted. When the RA bit is set and the state of the remote adjacency is "UP", then the timer T3 is set to the minimum of its current value and the value of the "Remaining Time" field in the received IIH.

Shand & Ginsberg            Standards Track                     [Page 9]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 9] RFC 5306 Restart Signaling for IS-IS October 2008

   On a Point-to-Point link, receipt of an IIH not containing the
   restart TLV is also treated as an acknowledgement, since it indicates
   that the neighbor is not restart capable.  However, since no CSNP is
   guaranteed to be received over this interface, the timer T1 is
   cancelled immediately without waiting for a complete set of CSNPs.
   Synchronization may therefore be deemed complete even though there
   are some LSPs which are held (only) by this neighbor (see
   Section 3.4).  In this case, we also want to be certain that the
   neighbor will reinitialize the adjacency in order to guarantee that
   the SRMflags have been set on its database, thus ensuring eventual
   LSPDB synchronization.  This is guaranteed to happen except in the
   case where the Adjacency Three-Way State in the received IIH is "UP"
   and the Neighbor Extended Local Circuit ID matches the extended local
   circuit ID assigned by the restarting router.  In this case, the
   restarting router MUST force the adjacency to reinitialize by setting
   the local Adjacency Three-Way State to "DOWN" and sending a normal
   IIH.

On a Point-to-Point link, receipt of an IIH not containing the restart TLV is also treated as an acknowledgement, since it indicates that the neighbor is not restart capable. However, since no CSNP is guaranteed to be received over this interface, the timer T1 is cancelled immediately without waiting for a complete set of CSNPs. Synchronization may therefore be deemed complete even though there are some LSPs which are held (only) by this neighbor (see Section 3.4). In this case, we also want to be certain that the neighbor will reinitialize the adjacency in order to guarantee that the SRMflags have been set on its database, thus ensuring eventual LSPDB synchronization. This is guaranteed to happen except in the case where the Adjacency Three-Way State in the received IIH is "UP" and the Neighbor Extended Local Circuit ID matches the extended local circuit ID assigned by the restarting router. In this case, the restarting router MUST force the adjacency to reinitialize by setting the local Adjacency Three-Way State to "DOWN" and sending a normal IIH.

   In the case of a LAN interface, receipt of an IIH not containing the
   restart TLV is unremarkable since synchronization can still occur so
   long as at least one of the non-restarting neighboring routers on the
   LAN supports restart.  Therefore, T1 continues to run in this case.
   If none of the neighbors on the LAN are restart capable, T1 will
   eventually expire after the locally defined number of retries.

In the case of a LAN interface, receipt of an IIH not containing the restart TLV is unremarkable since synchronization can still occur so long as at least one of the non-restarting neighboring routers on the LAN supports restart. Therefore, T1 continues to run in this case. If none of the neighbors on the LAN are restart capable, T1 will eventually expire after the locally defined number of retries.

   In the case of a Point-to-Point circuit, the "LocalCircuitID" and
   "Extended Local Circuit ID" information contained in the IIH can be
   used immediately to generate an IIH containing the correct three-way
   handshake information.  The presence of "Neighbor Extended Local
   Circuit ID" information that does not match the value currently in
   use by the local system is ignored (since the IIH may have been
   transmitted before the neighbor had received the new value from the
   restarting router), but the adjacency remains in the initializing
   state until the correct information is received.

In the case of a Point-to-Point circuit, the "LocalCircuitID" and "Extended Local Circuit ID" information contained in the IIH can be used immediately to generate an IIH containing the correct three-way handshake information. The presence of "Neighbor Extended Local Circuit ID" information that does not match the value currently in use by the local system is ignored (since the IIH may have been transmitted before the neighbor had received the new value from the restarting router), but the adjacency remains in the initializing state until the correct information is received.

   In the case of a LAN circuit, the source neighbor information (e.g.,
   SNPAAddress) is recorded and used for adjacency establishment and
   maintenance as normal.

In the case of a LAN circuit, the source neighbor information (e.g., SNPAAddress) is recorded and used for adjacency establishment and maintenance as normal.

   When BOTH a complete set of CSNPs (for each active level, in the case
   of a Point-to-Point circuit) and an acknowledgement have been
   received over the interface, the timer T1 is cancelled.

When BOTH a complete set of CSNPs (for each active level, in the case of a Point-to-Point circuit) and an acknowledgement have been received over the interface, the timer T1 is cancelled.

   Once the timer T1 has been cancelled, subsequent IIHs are transmitted
   according to the normal algorithms, but including the restart TLV
   with both RR and RA clear.

Once the timer T1 has been cancelled, subsequent IIHs are transmitted according to the normal algorithms, but including the restart TLV with both RR and RA clear.

Shand & Ginsberg            Standards Track                    [Page 10]

RFC 5306              Restart Signaling for IS-IS           October 2008

Shand & Ginsberg Standards Track [Page 10] RFC 5306 Restart Signaling for IS-IS October 2008

   If a LAN contains a mixture of systems, only some of which support
   the new algorithm, database synchronization is still guaranteed, but
   the "old" systems will have reinitialized their adjacencies.

If a LAN contains a mixture of systems, only some of which support the new algorithm, database synchronization is still guaranteed, but the "old" systems will have reinitialized their adjacencies.

   If an interface is active, but does not have any neighboring router
   reachable over that interface, the timer T1 would never be cancelled,
   and according to Section 3.4.1.1, the SPF would never be run.
   Therefore, timer T1 is cancelled after some predetermined number of
   expirations (which MAY be 1).

If an interface is active, but does not have any neighboring router reachable over that interface, the timer T1 would never be cancelled, and according to Section 3.4.1.1, the SPF would never be run. Therefore, timer T1 is cancelled after some predetermined number of expirations (which MAY be 1).

3.3.2.  Adjacency Acquisition during Start

3.3.2. Adjacency Acquisition during Start

   The starting router wants to ensure that in the event that a
   neighboring router has an adjacency to the starting router in the
   "UP" state (from a previous incarnation of the starting router), this
   adjacency is reinitialized.  The starting router also wants
   neighboring routers to suppress advertisement of an adjacency to the
   starting router until LSP database synchronization is achieved.  This
   is achieved by sending IIHs with the RR bit clear and the SA bit set
   in the restart TLV.  The RR bit remains clear and the SA bit remains
   set in subsequent transmissions of IIHs until the adjacency has
   reached the "UP" state and the initial T1 timer interval (see below)
   has expired.

隣接しているルータが“UP"状態(始めのルータの前の肉体化からの)に始めのルータに隣接番組を持っている場合、この隣接番組が再初期化されるのを保証する始めのルータ必需品。 また、始めのルータは、LSPデータベース同期が達成されるまで始めのルータに隣接番組の広告を抑圧するために隣接しているルータを必要とします。 これは、RRビットが明確であり、SAビットが再開TLVで設定されている状態でIIHsを送ることによって、達成されます。 RRビットは明確なままで残っています、そして、隣接番組が“UP"状態に達して、初期のT1タイマ間隔(以下を見る)が期限が切れるまで、SAビットはIIHsのその後のトランスミッションで設定されたままで残っています。

   Receipt of an IIH with the RR bit clear will result in the
   neighboring router utilizing normal operation of the adjacency state
   machine.  This will ensure that any old adjacency on the neighboring
   router will be reinitialized.

RRビットが明確のIIHの領収書は隣接番組州のマシンの通常の操作を利用する隣接しているルータをもたらすでしょう。 これは、隣接しているルータに関するどんな古い隣接番組も再初期化されるのを確実にするでしょう。

   Upon receipt of an IIH with the SA bit set, the behavior described in
   Section 3.2.2 is followed.

SAビットがセットしたことでのIIHを受け取り次第、セクション3.2.2で説明された振舞いは続かれています。

   Upon starting, a router starts timer T2 for each LSPDB.

始めに、ルータは各LSPDBのためにタイマT2を始動します。

   For each interface (and in the case of a LAN circuit, for each
   level), when an adjacency reaches the "UP" state, the starting router
   starts a timer T1 and transmits an IIH containing the restart TLV
   with the RR bit clear and SA bit set.  Upon expiry of the timer T1,
   it is restarted and the IIH is retransmitted with both RR and SA bits
   set (only the RR bit has changed state from earlier IIHs).

各インタフェース(そして各レベルのためのLANサーキットの場合で)に関しては、隣接番組が“UP"状態に達すると、始めのルータは、タイマT1を始動して、RRビットが明確であり、SAが噛み付かれているTLVが設定する再開を含むIIHを伝えます。 タイマT1の満期に、それは再開されます、そして、IIHはRRとSAビットが設定する両方で再送されます(RRビットだけが以前のIIHsから状態を変えました)。

   Upon receipt of an IIH with the RR bit set (regardless of whether or
   not the SA bit is set), the behavior described in Section 3.2.1 is
   followed.

RRビットがセットしたことでの(SAビットが設定されるかどうかにかかわらず)IIHを受け取り次第、セクション3.2.1で説明された振舞いは続かれています。

Shand & Ginsberg            Standards Track                    [Page 11]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[11ページ]RFC5306がシグナリングを再開する、-、2008年10月

   When an IIH is received by the starting router and the IIH contains a
   restart TLV with the RA bit set (and on LAN circuits with a Restart
   Neighbor System ID that matches that of the local system), the
   receipt of the acknowledgement over that interface is noted.

始めのルータでIIHを受け取って、IIHがRAビットがセットしたことでの(そしてローカルシステムのものに合っているRestart Neighbor System IDがあるLANサーキットの上に)再開TLVを含むとき、そのインタフェースの上の承認の領収書は注意されます。

   On a Point-to-Point link, receipt of an IIH not containing the
   restart TLV is also treated as an acknowledgement, since it indicates
   that the neighbor is not restart capable.  Since the neighbor will
   have reinitialized the adjacency, this guarantees that SRMflags have
   been set on its database, thus ensuring eventual LSPDB
   synchronization.  However, since no CSNP is guaranteed to be received
   over this interface, the timer T1 is cancelled immediately without
   waiting for a complete set of CSNPs.  Synchronization may therefore
   be deemed complete even though there are some LSPs that are held
   (only) by this neighbor (see Section 3.4).

また、Pointからポイントへのリンクの上では、再開TLVを含まないIIHの領収書は承認として扱われます、隣人が再開できないのを示すので。 隣人が隣接番組を再初期化してしまうだろうので、これは、SRMflagsがデータベースで用意ができていたのを保証します、その結果、最後のLSPDB同期を確実にします。 しかしながら、CSNPが全くこのインタフェースの上に受け取るために保証されないので、すぐCSNPsの完全なセットを待たないで、タイマT1は取り消されます。 (単に)この隣人によって持たれているいくつかのLSPsがありますが(セクション3.4を見てください)、したがって、同期は完全であると考えられるかもしれません。

   In the case of a LAN interface, receipt of an IIH not containing the
   restart TLV is unremarkable since synchronization can still occur so
   long as at least one of the non-restarting neighboring routers on the
   LAN supports restart.  Therefore, T1 continues to run in this case.
   If none of the neighbors on the LAN are restart capable, T1 will
   eventually expire after the locally defined number of retries.  The
   usual operation of the update process will ensure that
   synchronization is eventually achieved.

LANインタフェースの場合では、少なくともLANの非再開の隣接しているルータのひとりが再開を支持する限り、同期がまだ起こることができるので、再開TLVを含まないIIHの領収書は目立たないです。 したがって、T1は、本件に立候補し続けています。 LANの隣人のだれ一人再開できないと、T1は再試行の局所的に定義された数の後に結局、期限が切れるでしょう。 更新処理の普通の操作は、同期が結局達成されるのを確実にするでしょう。

   When BOTH a complete set of CSNPs (for each active level, in the case
   of a Point-to-Point circuit) and an acknowledgement have been
   received over the interface, the timer T1 is cancelled.  Subsequent
   IIHs sent by the starting router have the RR and RA bits clear and
   the SA bit set in the restart TLV.

BOTHであるときに、CSNPs(Pointからポイントへのサーキットの場合におけるそれぞれのアクティブなレベルのための)の完全なセットと承認をインタフェースの上に受けて、タイマT1を取り消します。 始めのルータによって送られたその後のIIHsでRRとRAビットは明確になります、そして、SAビットは再開TLVでセットしました。

   Timer T1 is cancelled after some predetermined number of expirations
   (which MAY be 1).

或るものが満期(1であるかもしれない)の数を予定した後にタイマT1は取り消されます。

   When the T2 timer(s) are cancelled or expire, transmission of
   "normal" IIHs (with RR, RA, and SA bits clear) will begin.

T2タイマが取り消されるか、または期限が切れると、「正常な」IIHs(ビットがきれいにするRR、RA、およびSAと)のトランスミッションは始まるでしょう。

3.3.3.  Multiple Levels

3.3.3. 複数のレベル

   A router that is operating as both a Level 1 and a Level 2 router on
   a particular interface MUST perform the above operations for each
   level.

Level1とLevelの両方として特定のインタフェースで2ルータを操作しているルータは各レベルのための上の操作を実行しなければなりません。

   On a LAN interface, it MUST send and receive both Level 1 and Level 2
   IIHs and perform the CSNP synchronizations independently for each
   level.

LANインタフェースに、それは、各レベルのために独自に発信して、Level1とLevel2IIHsの両方を受けて、CSNP連動を実行しなければなりません。

Shand & Ginsberg            Standards Track                    [Page 12]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[12ページ]RFC5306がシグナリングを再開する、-、2008年10月

   On a Point-to-Point interface, only a single IIH (indicating support
   for both levels) is required, but it MUST perform the CSNP
   synchronizations independently for each level.

Pointからポイントへのインタフェースでは、独身のIIH(両方のレベルのサポートを示す)だけが必要ですが、それは各レベルのために独自にCSNP連動を実行しなければなりません。

3.4.  Database Synchronization

3.4. データベース同期

   When a router is started or restarted, it can expect to receive a
   complete set of CSNPs over each interface.  The arrival of the
   CSNP(s) is now guaranteed, since an IIH with the RR bit set will be
   retransmitted until the CSNP(s) are correctly received.

ルータが始められるか、または再開されるとき、それは、CSNPsの完全なセットを各インタフェースにわたって受け取ると予想できます。 CSNP(s)の到着は現在保証されます、RRビットがセットしたことでのIIHが正しくCSNP(s)を受け取るまで再送されるので。

   The CSNPs describe the set of LSPs that are currently held by each
   neighbor.  Synchronization will be complete when all these LSPs have
   been received.

CSNPsは現在各隣人によって持たれているLSPsのセットについて説明します。 これらのすべてのLSPsを受け取ったとき、同期は完全になるでしょう。

   When (re)starting, a router starts an instance of timer T2 for each
   LSPDB as described in Section 3.3.1 or Section 3.3.2.  In addition to
   normal processing of the CSNPs, the set of LSPIDs contained in the
   first complete set of CSNPs received over each interface is recorded,
   together with their remaining lifetime.  In the case of a LAN
   interface, a complete set of CSNPs MUST consist of CSNPs received
   from neighbors that are not restarting.  If there are multiple
   interfaces on the (re)starting router, the recorded set of LSPIDs is
   the union of those received over each interface.  LSPs with a
   remaining lifetime of zero are NOT so recorded.

始まるとき(re)、ルータは各LSPDBのためにセクション3.3.1かセクション3.3.2で説明されるようにタイマT2の例を始めます。 CSNPsの正常処理に加えて、各インタフェースにわたって受け取られたCSNPsの最初の完全なセットに含まれたLSPIDsのセットは記録されています、彼らの残っている生涯と共に。 LANインタフェースの場合では、CSNPsの完全なセットは再開していない隣人から受け取られたCSNPsから成らなければなりません。 複数のインタフェースが(re)始めのルータにあれば、LSPIDsの記録されたセットは各インタフェースにわたって受け取られたものの組合です。 ゼロの残っている生涯があるLSPsは非常に記録されません。

   As LSPs are received (by the normal operation of the update process)
   over any interface, the corresponding LSPID entry is removed (it is
   also removed if an LSP arrives before the CSNP containing the
   reference).  When an LSPID has been held in the list for its
   indicated remaining lifetime, it is removed from the list.  When the
   list of LSPIDs is empty and the timer T1 has been cancelled for all
   the interfaces that have an adjacency at this level, the timer T2 is
   cancelled.

どんなインタフェースにわたってもLSPsを受け取るとき(更新処理の通常操作で)、対応するLSPIDエントリーを取り除きます(また、参照を含んでいて、LSPがCSNPの前で到着するなら、それを取り除きます)。 リストで示された残っている生涯にLSPIDを持っていたとき、リストからそれを取り除きます。 LSPIDsのリストが空であり、タイマT1がこのレベルにおける隣接番組を持っているすべてのインタフェースに取り消されたとき、タイマT2は取り消されます。

   At this point, the local database is guaranteed to contain all the
   LSP(s) (either the same sequence number or a more recent sequence
   number) that were present in the neighbors' databases at the time of
   (re)starting.  LSPs that arrived in a neighbor's database after the
   time of (re)starting may or may not be present, but the normal
   operation of the update process will guarantee that they will
   eventually be received.  At this point, the local database is deemed
   to be "synchronized".

ここに、ローカルのデータベースは、すべての(re)始め時点で隣人のデータベースに存在しているLSP(s)(同じ一連番号か、より最近の一連番号のどちらか)を含むように保証されます。 (re)始めの時の後に隣人のデータベースに到着したLSPsは存在しているかもしれませんが、更新処理の通常操作は、彼らが結局受け取られるのを保証するでしょう。 ここに、ローカルのデータベースが「連動する」と考えられます。

Shand & Ginsberg            Standards Track                    [Page 13]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[13ページ]RFC5306がシグナリングを再開する、-、2008年10月

   Since LSPs mentioned in the CSNP(s) with a zero remaining lifetime
   are not recorded, and those with a short remaining lifetime are
   deleted from the list when the lifetime expires, cancellation of the
   timer T2 will not be prevented by waiting for an LSP that will never
   arrive.

生涯残っているゼロでCSNP(s)で言及されたLSPsが記録されていなくて、寿命が期限が切れるとき短い残っている生涯があるそれらがリストから削除されるので、タイマT2のキャンセルは決して到着しないLSPを待つことによって、防がれないでしょう。

3.4.1.  LSP Generation and Flooding and SPF Computation

3.4.1. LSP世代、氾濫、およびSPF計算

   The operation of a router starting, as opposed to restarting, is
   somewhat different.  These two cases are dealt with separately below.

再開と対照的に始まるルータの操作はいくらか異なっています。 これらの2つのケースが別々に以下で対処されています。

3.4.1.1.  Restarting

3.4.1.1. 再開します。

   In order to avoid causing unnecessary routing churn in other routers,
   it is highly desirable that the router's own LSPs generated by the
   restarting system are the same as those previously present in the
   network (assuming no other changes have taken place).  It is
   important therefore not to regenerate and flood the LSPs until all
   the adjacencies have been re-established and any information required
   for propagation into the local LSPs is fully available.  Ideally, the
   information is loaded into the LSPs in a deterministic way, such that
   the same information occurs in the same place in the same LSP (and
   hence the LSPs are identical to their previous versions).  If this
   can be achieved, the new versions may not even cause SPF to be run in
   other systems.  However, provided the same information is included in
   the set of LSPs (albeit in a different order, and possibly different
   LSPs), the result of running the SPF will be the same and will not
   cause churn to the forwarding tables.

他のルータで不要なルーティング攪乳器を引き起こすのを避けるために、再開システムで発生するルータの自身のLSPsがネットワークで以前に出席しているそれらと同じであることは(他の変化が全く起こっていないと仮定して)、非常に望ましいです。 したがって、すべての隣接番組が復職して、どんな情報も伝播に地方のLSPsに必要になるまで、LSPsを作り直して、完全なあふれさせるというわけではないのが利用可能であることは、重要です。 理想的に、情報は決定論的な方法でLSPsにロードされます、同じ情報が同じLSPに同じ箇所に現れる(したがって、LSPsは彼らの旧バージョンと同じである)ように。 これを達成できるなら、新しいバージョンは、SPFが他のシステムに立候補することであることを引き起こしてさえいないかもしれません。同じ情報がLSPs(それにしても、異なった注文と、ことによると異なったLSPs)のセットに含まれているなら、しかしながら、SPFを走らせるという結果は、同じであり、推進テーブルに攪乳器を引き起こさないでしょう。

   In the case of a restarting router, none of the router's own LSPs are
   transmitted, nor are the router's own forwarding tables updated while
   the timer T3 is running.

再開ルータの場合では、ルータの自身のLSPsのいずれも伝えません、そして、タイマT3が走っている間、ルータの自身の推進テーブルをアップデートしません。

   Redistribution of inter-level information MUST be regenerated before
   this router's LSP is flooded to other nodes.  Therefore, the Level-n
   non-pseudonode LSP(s) MUST NOT be flooded until the other level's T2
   timer has expired and its SPF has been run.  This ensures that any
   inter-level information that is to be propagated can be included in
   the Level-n LSP(s).

このルータのLSPが他のノードへあふれる前に相互レベル情報の再分配を作り直さなければなりません。 したがって、もう片方のレベルのT2タイマが期限が切れて、SPFが走るまで、Level-n非pseudonode LSP(s)は水につかっているはずがありません。 これは、Level-n LSP(s)に伝播されることになっているどんな相互レベル情報も含むことができるのを確実にします。

   During this period, if one of the router's own (including
   pseudonodes) LSPs is received, which the local router does not
   currently have in its own database, it is NOT purged.  Under normal
   operation, such an LSP would be purged, since the LSP clearly should
   not be present in the global LSP database.  However, in the present
   circumstances, this would be highly undesirable, because it could
   cause premature removal of a router's own LSP -- and hence churn in
   remote routers.  Even if the local system has one or more of the

この期間、ルータのものでは、1であるなら(含んでいるpseudonodes)を所有してください。(ローカルルータは現在、それ自身のデータベースにLSPsを持っていません)。受け取られたLSPs、それは掃除されません。 通常の操作で、そのようなLSPは掃除されるでしょう、LSPがグローバルなLSPデータベースに明確に存在しているべきでないので。 しかしながら、現在の状況では、これは非常に望ましくないでしょう、ルータの自身のLSPの時期尚早な解任を引き起こす場合があったので--そして、したがって、リモートルータでかきまぜます。 ローカルシステムには、1つ以上があります。

Shand & Ginsberg            Standards Track                    [Page 14]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[14ページ]RFC5306がシグナリングを再開する、-、2008年10月

   router's own LSPs (which it has generated, but not yet transmitted),
   it is still not valid to compare the received LSP against this set,
   since it may be that as a result of propagation between Level 1 and
   Level 2 (or vice versa), a further router's own LSP will need to be
   generated when the LSP databases have synchronized.

ルータの自身のLSPs(発生しますが、それがまだ伝えていない)、このセットに対して容認されたLSPを比較するのはまだ有効ではありません、さらなるルータの自身のLSPが、Level1とLevel2(逆もまた同様に)の間の伝播の結果、多分LSPデータベースが同期したとき、発生する必要があるので。

   During this period, a restarting router SHOULD send CSNPs as it
   normally would.  Information about the router's own LSPs MAY be
   included, but if it is included it MUST be based on LSPs that have
   been received, not on versions that have been generated (but not yet
   transmitted).  This restriction is necessary to prevent premature
   removal of an LSP from the global LSP database.

この期間、通常、SHOULDがそれとしてCSNPsを送る再開ルータはそうするでしょう。 ルータの自身のLSPsに関する情報は含まれたかもしれませんが、それが含まれているなら、バージョンではなく、受け取られたLSPsに基づいて、発生するに違いなくなってください(しかし、まだ伝えられていません)。 この制限が、グローバルなLSPデータベースからLSPの時期尚早な解任を防ぐのに必要です。

   When the timer T2 expires or is cancelled indicating that
   synchronization for that level is complete, the SPF for that level is
   run in order to derive any information that is required to be
   propagated to another level, but the forwarding tables are not yet
   updated.

そのレベルのための同期が完全であることを示しながら、タイマT2が期限が切れるか、または取り消されるとき、そのレベルのためのSPFは別のレベルに伝播されるのに必要である情報を引き出す命令に立候補することですが、まだ推進テーブルをアップデートしていません。

   Once the other level's SPF has run and any inter-level propagation
   has been resolved, the router's own LSPs can be generated and
   flooded.  Any own LSPs that were previously ignored, but that are not
   part of the current set of own LSPs (including pseudonodes), MUST
   then be purged.  Note that it is possible that a Designated Router
   change may have taken place, and consequently the router SHOULD purge
   those pseudonode LSPs that it previously owned, but that are now no
   longer part of its set of pseudonode LSPs.

いったんもう片方のレベルのSPFが走って、何か相互レベル伝播が決議されると、ルータの自身のLSPsは発生して、あふれさせることができます。 そして、以前に、無視されましたが、自身のLSPs(pseudonodesを含んでいる)の現在のセットの一部でないどんな自身のLSPsも掃除しなければなりません。 Designated Router変化が起こったかもしれなくて、その結果、ルータSHOULDが以前に、所有していましたが、現在もうpseudonode LSPsのセットの一部でないそれらのpseudonode LSPsを掃除するのが、可能であることに注意してください。

   When all the T2 timers have expired or been cancelled, the timer T3
   is cancelled and the local forwarding tables are updated.

すべてのT2タイマを吐き出すか、または取り消したとき、タイマT3を取り消します、そして、地方の推進テーブルをアップデートします。

   If the timer T3 expires before all the T2 timers have expired or been
   cancelled, this indicates that the synchronization process is taking
   longer than the minimum holding time of the neighbors.  The router's
   own LSP(s) for levels that have not yet completed their first SPF
   computation are then flooded with the overload bit set to indicate
   that the router's LSPDB is not yet synchronized (and therefore other
   routers MUST NOT compute routes through this router).  Normal
   operation of the update process resumes, and the local forwarding
   tables are updated.  In order to prevent the neighbor's adjacencies
   from expiring, IIHs with the normal interface value for the holding
   time are transmitted over all interfaces with neither RR nor RA set
   in the restart TLV.  This will cause the neighbors to refresh their
   adjacencies.  The router's own LSP(s) will continue to have the
   overload bit set until timer T2 has expired or been cancelled.

すべてのT2タイマが吐き出されるか、または取り消される前にタイマT3が期限が切れるなら、これは、同期の過程が隣人の最小の把持時間より長い間かかっているのを示します。 まだ彼らの最初のSPF計算を終了していないレベルのためのルータの自身のLSP(s)はその時、ルータのLSPDBがまだ連動していないのを示すように設定されたオーバーロードビットで水につかっています(したがって、他のルータはこのルータを通してルートを計算してはいけません)。 更新処理の通常の操作は再開します、そして、地方の推進テーブルをアップデートします。 隣人の隣接番組が期限が切れるのを防ぐために、把持時間の正常なインタフェース値があるIIHsはRRも再開TLVで用意ができていないRAもすべてのインタフェースにわたって伝えられます。 これで、隣人は彼らの隣接番組をリフレッシュするでしょう。 ルータの自身のLSP(s)は、タイマT2が吐き出されるか、または取り消されるまでオーバーロードビットを設定させ続けるでしょう。

Shand & Ginsberg            Standards Track                    [Page 15]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[15ページ]RFC5306がシグナリングを再開する、-、2008年10月

3.4.1.2.  Starting

3.4.1.2. 始まります。

   In the case of a starting router, as soon as each adjacency is
   established, and before any CSNP exchanges, the router's own zeroth
   LSP is transmitted with the overload bit set.  This prevents other
   routers from computing routes through the router until it has
   reliably acquired the complete set of LSPs.  The overload bit remains
   set in subsequent transmissions of the zeroth LSP (such as will occur
   if a previous copy of the router's own zeroth LSP is still present in
   the network) while any timer T2 is running.

始めのルータに関するケースと、各隣接番組が確立されるとすぐに、そして、どんなCSNP交換の前にも、オーバーロードビットがセットした状態で、ルータの自身のzeroth LSPは伝えられます。 それがLSPsの完全なセットを確かに買収したとき、これはルートを計算するのからルータまで他のルータを防ぎます。 オーバーロードビットはどんなタイマT2も走っている間、zeroth LSP(ルータの自身のzeroth LSPの前のコピーがネットワークでまだ存在していると、起こる)のその後のトランスミッションで設定されたままで残っています。

   When all the T2 timers have been cancelled, the router's own LSP(s)
   MAY be regenerated with the overload bit clear (assuming the router
   is not in fact overloaded, and there is no other reason, such as
   incomplete BGP convergence, to keep the overload bit set) and flooded
   as normal.

すべてのT2タイマが取り消されたとき、ルータの自身のLSP(s)はオーバーロードビットが明確な状態で(事実上、ルータが積みすぎられないで、またオーバーロードビットを設定し続けるために不完全なBGP集合などの他の理由が全くないと仮定します)作り直されて、標準としてあふれるかもしれません。

   Other LSPs owned by this router (including pseudonodes) are generated
   and flooded as normal, irrespective of the timer T2.  The SPF is also
   run as normal and the Routing Information Base (RIB) and Forwarding
   Information Base (FIB) updated as routes become available.

このルータ(pseudonodesを含んでいる)によって所有されていた他のLSPsはタイマT2で正常で、関係ないとして発生して、あふれます。 また、ルートとしてアップデートされた標準、経路情報基地(RIB)、およびForwarding Information基地(FIB)が利用可能になるのに応じて、SPFは走ります。

   To avoid the possible formation of temporary blackholes, the starting
   router sets the SA bit in the restart TLV (as described in
   Section 3.3.2) in all IIHs that it sends.

一時的なblackholesの可能な構成を避けるために、始めのルータはそれが送るすべてのIIHsで再開TLV(セクション3.3.2で説明されるように)にSAビットをはめ込みます。

   When all T2 timers have been cancelled, the starting router MUST
   transmit IIHs with the SA bit clear.

すべてのT2タイマが取り消されたとき、SAビットが明確な状態で始めのルータはIIHsを伝えなければなりません。

4.  State Tables

4. ステートテーブル

   This section presents state tables that summarize the behaviors
   described in this document.  Other behaviors, in particular adjacency
   state transitions and LSP database update operation, are NOT included
   in the state tables except where this document modifies the behaviors
   described in [ISO10589] and [RFC5303].

このセクションは本書では説明された振舞いをまとめるステートテーブルを贈ります。 このドキュメントが[ISO10589]と[RFC5303]で説明された振舞いを変更するところ以外に、他の振舞い(特に隣接番組状態遷移とLSPデータベース更新操作)は、ステートテーブルに含まれていません。

   The states named in the columns of the tables below are a mixture of
   states that are specific to a single adjacency (ADJ suppressed, ADJ
   Seen RA, ADJ Seen CSNP) and states that are indicative of the state
   of the protocol instance (Running, Restarting, Starting, SPF Wait).

以下のテーブルに関するコラムで指定された州はただ一つの隣接番組(抑圧されたADJ、ADJ Seen RA、ADJ Seen CSNP)に特定の州とプロトコル例(走行、Restarting、Starting、SPF Wait)の状態を暗示した州の混合物です。

   Three state tables are presented from the point of view of a running
   router, a restarting router, and a starting router.

走行ルータ、再開しているルータ、および始めのルータの観点から3個のステートテーブルを贈ります。

Shand & Ginsberg            Standards Track                    [Page 16]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[16ページ]RFC5306がシグナリングを再開する、-、2008年10月

4.1.  Running Router

4.1. 走行ルータ

    Event       | Running              | ADJ suppressed
   ==============================================================
    RX RR       | Maintain ADJ State   |
                | Send RA              |
                | Set SRM,send CSNP    |
                |  (Note 1)            |
                | Update Hold Time,    |
                |  set Restart Mode    |
                |  (Note 2)            |
   -------------+----------------------+-------------------------
    RX RR clr   | Clr Restart mode     |
   -------------+----------------------+-------------------------
    RX SA       | Suppress IS neighbor |
                |   TLV in LSP(s)      |
                | Goto ADJ Suppressed  |
   -------------+----------------------+-------------------------
    RX SA clr   |                      |Unsuppress IS neighbor
                |                      |   TLV in LSP(s)
                |                      |Goto Running
   ==============================================================

出来事| 走行| 抑圧されたADJ============================================================== RX RR| ADJ状態を維持してください。| | RAを送ってください。| | SRMを設定してください、そして、CSNPを送ってください。| | (注意1) | | 保持時間をアップデートしてください。| | Restart Modeを設定してください。| | (注意2) | -------------+----------------------+------------------------- RX RR clr| Clr Restartモード| -------------+----------------------+------------------------- RX SA| 抑圧、隣人です。| | LSP(s)のTLV| | 抑圧されたゴトーADJ| -------------+----------------------+------------------------- RX SA clr| |Unsuppressは隣接物です。| | LSP(s)のTLV| |ゴトーの走行==============================================================

   Note 1: CSNPs are sent by routers in accordance with Section 3.2.1c

注意1: セクション3.2.1cに応じて、ルータはCSNPsを送ります。

   Note 2: If Restart Mode clear

注意2: Restart Modeがクリアするなら

Shand & Ginsberg            Standards Track                    [Page 17]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[17ページ]RFC5306がシグナリングを再開する、-、2008年10月

4.2.  Restarting Router

4.2. ルータを再開します。

  Event      | Restarting         | ADJ Seen  | ADJ Seen  | SPF Wait
             |                    |    RA     |   CSNP    |
 ===================================================================
  Router     | Send IIH/RR        |           |           |
   restarts  | ADJ Init           |           |           |
             | Start T1,T2,T3     |           |           |
 ------------+--------------------+-----------+-----------+------------
  RX RR      | Send RA            |           |           |
 ------------+--------------------+-----------+-----------+------------
  RX RA      | Adjust T3          |           | Cancel T1 |
             | Goto ADJ Seen RA   |           | Adjust T3 |
 ----------- +--------------------+-----------+-----------+------------
  RX CSNP set| Goto ADJ Seen CSNP | Cancel T1 |           |
 ------------+--------------------+-----------+-----------+------------
  RX IIH w/o | Cancel T1 (Point-  |           |           |
  Restart TLV|  to-point only)    |           |           |
 ------------+--------------------+-----------+-----------+------------
  T1 expires | Send IIH/RR        |Send IIH/RR|Send IIH/RR|
             | Restart T1         | Restart T1| Restart T1|
 ------------+--------------------+-----------+-----------+------------
  T1 expires | Send IIH/          | Send IIH/ | Send IIH/ |
   nth time  |   normal           |   normal  |   normal  |
 ------------+--------------------+-----------+-----------+------------
  T2 expires | Trigger SPF        |           |           |
             | Goto SPF Wait      |           |           |
 ------------+--------------------+-----------+-----------+------------
  T3 expires | Set overload bit   |           |           |
             | Flood local LSPs   |           |           |
             | Update fwd plane   |           |           |
 ------------+--------------------+-----------+-----------+------------
  LSP DB Sync| Cancel T2, and T3  |           |           |
             | Trigger SPF        |           |           |
             | Goto SPF wait      |           |           |
 ------------+--------------------+-----------+-----------+------------
 All SPF     |                    |           |           | Clear
   done      |                    |           |           | overload bit
             |                    |           |           | Update fwd
             |                    |           |           |  plane
             |                    |           |           | Flood local
             |                    |           |           |   LSPs
             |                    |           |           | Goto Running
 ======================================================================

出来事| 再開します。| 見られたADJ| 見られたADJ| SPFは待っています。| | RA| CSNP| =================================================================== ルータ| IIH/RRを送ってください。| | | 再開します。| ADJイニット| | | | T1、T2、T3を始動してください。| | | ------------+--------------------+-----------+-----------+------------ RX RR| RAを送ってください。| | | ------------+--------------------+-----------+-----------+------------ RX RA| T3を調整してください。| | T1を取り消してください。| | ゴトーのADJの目にふれているRA| | T3を調整してください。| ----------- +--------------------+-----------+-----------+------------ RX CSNPはセットしました。| ゴトーのADJの目にふれているCSNP| T1を取り消してください。| | ------------+--------------------+-----------+-----------+------------ RX IIH| T1を取り消してください、(ポイント| | | TLVを再開してください|、ポイント、単に)| | | ------------+--------------------+-----------+-----------+------------ T1は期限が切れます。| IIH/RRを送ってください。|IIH/RRを送ってください。|IIH/RRを送ってください。| | 再開T1| 再開T1| 再開T1| ------------+--------------------+-----------+-----------+------------ T1は期限が切れます。| IIH/を送ってください。| IIH/を送ってください。| IIH/を送ってください。| n番目の時間| 標準| 標準| 標準| ------------+--------------------+-----------+-----------+------------ T2は期限が切れます。| 引き金のSPF| | | | ゴトーSPFは待っています。| | | ------------+--------------------+-----------+-----------+------------ T3は期限が切れます。| セットオーバーロードビット| | | | 地方のLSPsをあふれさせてください。| | | | アップデートfwd飛行機| | | ------------+--------------------+-----------+-----------+------------ LSP DBの同時性| T2、およびT3を取り消してください。| | | | 引き金のSPF| | | | ゴトーSPFは待っています。| | | ------------+--------------------+-----------+-----------+------------ すべてのSPF| | | | していた状態で、クリアしてください。| | | | オーバーロードビット| | | | アップデートfwd| | | | 飛行機| | | | 地方で、浸水してください。| | | | LSPs| | | | ゴトーの走行======================================================================

Shand & Ginsberg            Standards Track                    [Page 18]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[18ページ]RFC5306がシグナリングを再開する、-、2008年10月

4.3.  Starting Router

4.3. 始めのルータ

    Event       | Starting          | ADJ Seen RA| ADJ Seen CSNP
   =============================================================
   Router       | Send IIH/SA       |            |
     starts     | Start T1,T2       |            |
   -------------+-------------------+------------+---------------
   RX RR        | Send RA           |            |
   -------------+-------------------+------------+---------------
   RX RA        | Goto ADJ Seen RA  |            | Cancel T1
   -------------+-------------------+------------+---------------
   RX CSNP Set  | Goto ADJ Seen CSNP| Cancel T1  |
   -------------+-------------------+------------+---------------
   RX IIH w     | Cancel T1         |            |
     no Restart | (Point-to-Point   |            |
     TLV        |   only)           |            |
   -------------+-------------------+------------+---------------
   ADJ UP       | Start T1          |            |
                | Send local LSPs   |            |
                |  with overload bit|            |
                |  set              |            |
   -------------+-------------------+------------+---------------
   T1 expires   | Send IIH/RR       |Send IIH/RR | Send IIH/RR
                |   and SA          |   and SA   |   and SA
                | Restart T1        |Restart T1  | Restart T1
   -------------+-------------------+------------+---------------
   T1 expires   | Send IIH/SA       |Send IIH/SA | Send IIH/SA
    nth time    |                   |            |
   -------------+-------------------+------------+---------------
   T2 expires   | Clear overload bit|            |
                | Send IIH normal   |            |
                | Goto Running      |            |
   -------------+-------------------+------------+---------------
   LSP DB Sync  | Cancel T2         |            |
                | Clear overload bit|            |
                | Send IIH normal   |            |
   ==============================================================

出来事| 始まります。| ADJの目にふれているRA| ADJの目にふれているCSNP============================================================= ルータ| IIH/SAを送ってください。| | 始め| T1、T2を始動してください。| | -------------+-------------------+------------+--------------- RX RR| RAを送ってください。| | -------------+-------------------+------------+--------------- RX RA| ゴトーのADJの目にふれているRA| | T1を取り消してください。-------------+-------------------+------------+--------------- RX CSNPはセットしました。| ゴトーのADJの目にふれているCSNP| T1を取り消してください。| -------------+-------------------+------------+--------------- RX IIH w| T1を取り消してください。| | Restartがありません。| (| | TLVをポイントに指してください| 唯一)です。 | | -------------+-------------------+------------+--------------- ADJは上昇します。| T1を始動してください。| | | 地方のLSPsを送ってください。| | | オーバーロードビットで| | | セットします。| | -------------+-------------------+------------+--------------- T1は期限が切れます。| IIH/RRを送ってください。|IIH/RRを送ってください。| IIH/RRを送ってください。| そして、SA| そして、SA| そして、SA| 再開T1|再開T1| 再開T1-------------+-------------------+------------+--------------- T1は期限が切れます。| IIH/SAを送ってください。|IIH/SAを送ってください。| n番目の時間、IIH/SAを送ってください。| | | -------------+-------------------+------------+--------------- T2は期限が切れます。| 明確なオーバーロードビット| | | 標準をIIHに送ってください。| | | ゴトーの走行| | -------------+-------------------+------------+--------------- LSP DBの同時性| T2を取り消してください。| | | 明確なオーバーロードビット| | | 標準をIIHに送ってください。| | ==============================================================

5.  Security Considerations

5. セキュリティ問題

   Any new security issues raised by the procedures in this document
   depend upon the ability of an attacker to inject a false but
   apparently valid IIH, the ease/difficulty of which has not been
   altered.

手順で提起されたどんな新しい安全保障問題も本書では攻撃者が誤りましたが、明らかに有効なIIHを注入する能力に依存します。それの容易さ/困難はIIHのために変更されていません。

Shand & Ginsberg            Standards Track                    [Page 19]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[19ページ]RFC5306がシグナリングを再開する、-、2008年10月

   If the RR bit is set in a false IIH, neighbors who receive such an
   IIH will continue to maintain an existing adjacency in the "UP" state
   and may (re)send a complete set of CSNPs.  While the latter action is
   wasteful, neither action causes any disruption in correct protocol
   operation.

RRビットが偽のIIHに設定されるなら、そのようなIIHを受け取る隣人は、“UP"状態で既存の隣接番組を維持し続けて、CSNPsの完全なセットを送るかもしれません(re)。 後者の動きは無駄ですが、どちらの動作も正しいプロトコル操作における少しの分裂も引き起こしません。

   If the RA bit is set in a false IIH, a (re)starting router that
   receives such an IIH may falsely believe that there is a neighbor on
   the corresponding interface that supports the procedures described in
   this document.  In the absence of receipt of a complete set of CSNPs
   on that interface, this could delay the completion of (re)start
   procedures by requiring the timer T1 to time out the locally defined
   maximum number of retries.  This behavior is the same as would occur
   on a LAN where none of the (re)starting router's neighbors support
   the procedures in this document and is covered in Sections 3.3.1 and
   3.3.2.

RAビットが偽のIIHに設定されるなら、そのようなIIHを受ける(re)始めのルータは、隣人が本書では説明された手順を支持する対応するインタフェースにいると間違って信じるかもしれません。 そのインタフェースのCSNPsの完全なセットの領収書がないとき、これは、局所的に定義された最大が付番する再試行のタイムアウトにタイマT1を必要とすることによって、(re)スタート手順の完成を遅らせるかもしれません。 この振舞いは(re)始めのルータの隣人のだれも本書では手順を支持しないところにLANに起こって、セクション3.3.1で覆われているのと同じ、そして、3.3.2です。

   If an SA bit is set in a false IIH, this could cause suppression of
   the advertisement of an IS neighbor, which could either continue for
   an indefinite period or occur intermittently with the result being a
   possible loss of reachability to some destinations in the network
   and/or increased frequency of LSP flooding and SPF calculation.

SAビットが偽のIIHに設定されるなら、これが広告の抑圧を引き起こす場合があった、隣人はそうです。(その隣人は、無期限に続くか、または断続的にLSP氾濫とSPF計算のネットワーク、そして/または、増加する頻度におけるいくつかの目的地に可到達性の可能な損失である結果で起こることができました)。

   The possibility of IS-IS PDU spoofing can be reduced by the use of
   authentication as described in [RFC1195] and [ISO10589], and
   especially the use of cryptographic authentication as described in
   [RFC5304].

可能性、-、IS PDU、スプーフィング、[RFC5304]で説明されるように[RFC1195]、[ISO10589]、および特に暗号の認証の使用で説明される認証の使用で減少できます。

6.  IANA Considerations

6. IANA問題

   This document defines the following IS-IS TLV that is listed in the
   IS-IS TLV codepoint registry:

このドキュメントが以下を定義する、-、IS TLV、それが記載されている、-、TLV codepoint登録、:

   Type        Description                            IIH   LSP   SNP
   ----        -----------------------------------    ---   ---   ---
   211         Restart TLV                              y     n     n

型記述IIH LSP SNP---- ----------------------------------- --- --- --- 211再開TLV y n n

7.  Manageability Considerations

7. 管理可能性問題

   These extensions that have been designed, developed, and deployed for
   many years do not have any new impact on management and operation of
   the IS-IS protocol via this standardization process.

数年がどんな新しい影響力も管理と操作に持っていない多くのために設計されていて、発生して、配備されたこれらの拡大、-、この標準化過程で、議定書を作ってください。

8.  Acknowledgements

8. 承認

   The authors would like to acknowledge contributions made by Jeff
   Parker, Radia Perlman, Mark Schaefer, Naiming Shen, Nischal Sheth,
   Russ White, and Rena Yang.

作者はジェフ・パーカー、Radiaパールマン、マークSchaefer、Naimingシン、Nischal Sheth、ラス・ホワイト、およびリナYangによってされた貢献を承諾したがっています。

Shand & Ginsberg            Standards Track                    [Page 20]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[20ページ]RFC5306がシグナリングを再開する、-、2008年10月

9.  Normative References

9. 引用規格

   [ISO10589]  ISO, "Intermediate System to Intermediate System intra-
               domain routeing information exchange protocol for use in
               conjunction with the protocol for providing the
               connectionless-mode network service (ISO 8473)",
               International Standard 10589:2002, Second Edition, 2002.

[ISO10589]ISO、「Intermediate Systemイントラドメインrouteing情報交換への中間的Systemは使用のためにコネクションレスなモードネットワーク・サービス(ISO8473)を提供するためのプロトコルに関連して議定書を作ります」、国際規格。10589:2002 Second Edition、2002。

   [RFC1195]   Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
               dual environments", RFC 1195, December 1990.

[RFC1195]Callon、R.、「使用、TCP/IPと二元的な環境におけるルーティングのためのOSI IS存在、」、RFC1195、12月1990日

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119] ブラドナー、S.、「Indicate Requirement LevelsへのRFCsにおける使用のためのキーワード」、BCP14、RFC2119、1997年3月。

   [RFC5303]   Katz, D., Saluja, R., and D. Eastlake 3rd, "Three-Way
               Handshake for IS-IS Point-to-Point Adjacencies",
               RFC 5303, October 2008.

[RFC5303] キャッツ、D.、Saluja、R.、およびD.イーストレーク3番目、「3方向ハンドシェイク、-、二地点間隣接番組、」、RFC5303、10月2008日

   [RFC5304]   Li, T. and R. Atkinson, "IS-IS Cryptographic
               Authentication", RFC 5304, October 2008.

[RFC5304] 李、T.、およびR.アトキンソン、「-、暗号の認証、」、RFC5304、10月2008日

Authors' Addresses

作者のアドレス

   Mike Shand
   Cisco Systems
   250, Longwater Avenue.
   Reading, Berks  RG2 6GB
   UK

マイクシャンドシスコシステムズ250、Longwaterアベニュー。 読書、ばかRG2 6GBイギリス

   Phone: +44 208 824 8690
   EMail: mshand@cisco.com

以下に電話をしてください。 +44 8690年の208 824メール: mshand@cisco.com

   Les Ginsberg
   Cisco Systems
   510 McCarthy Blvd
   Milpitas, CA  95035
   USA

レスギンズバーグシスコシステムズ510マッカーシー・Blvdカリフォルニア95035ミルピタス(米国)

   EMail: ginsberg@cisco.com

メール: ginsberg@cisco.com

Shand & Ginsberg            Standards Track                    [Page 21]

RFC 5306              Restart Signaling for IS-IS           October 2008

シャンドとギンズバーグ標準化過程[21ページ]RFC5306がシグナリングを再開する、-、2008年10月

Full Copyright Statement

完全な著作権宣言文

   Copyright (C) The IETF Trust (2008).

IETFが信じる著作権(C)(2008)。

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

このドキュメントはBCP78に含まれた権利、ライセンス、および制限を受けることがあります、そして、そこに詳しく説明されるのを除いて、作者は彼らのすべての権利を保有します。

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

このドキュメントとここに含まれた情報はその人が代理をするか、または(もしあれば)後援される組織、インターネットの振興発展を目的とする組織、「そのままで」という基礎と貢献者の上で提供していて、IETFはそして、インターネット・エンジニアリング・タスク・フォースがすべての保証を放棄すると信じます、急行である、または暗示していて、他を含んでいて、情報の使用がここに侵害しないどんな保証も少しもまっすぐになるということであるかいずれが市場性か特定目的への適合性の黙示的な保証です。

Intellectual Property

知的所有権

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

IETFはどんなIntellectual Property Rightsの正当性か範囲、実現に関係すると主張されるかもしれない他の権利、本書では説明された技術の使用またはそのような権利の下におけるどんなライセンスも利用可能であるかもしれない、または利用可能でないかもしれない範囲に関しても立場を全く取りません。 または、それはそれを表しません。どんなそのような権利も特定するためのどんな独立している努力もしました。 BCP78とBCP79でRFCドキュメントの権利に関する手順に関する情報を見つけることができます。

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

IPR公開のコピーが利用可能に作られるべきライセンスの保証、または一般的な免許を取得するのが作られた試みの結果をIETF事務局といずれにもしたか、または http://www.ietf.org/ipr のIETFのオンラインIPR倉庫からこの仕様のimplementersかユーザによるそのような所有権の使用のために許可を得ることができます。

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

IETFはこの規格を実行するのに必要であるかもしれない技術をカバーするかもしれないどんな著作権もその注目していただくどんな利害関係者、特許、特許出願、または他の所有権も招待します。 ietf-ipr@ietf.org のIETFに情報を記述してください。

Shand & Ginsberg            Standards Track                    [Page 22]

シャンドとギンズバーグ標準化過程[22ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

iusリポジトリで公開されているパッケージの一覧

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る