RFC4827 日本語訳

4827 An Extensible Markup Language (XML) Configuration Access Protocol(XCAP) Usage for Manipulating Presence Document Contents. M. Isomaki,E. Leppanen. May 2007. (Format: TXT=22896 bytes) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
英語原文

Network Working Group                                         M. Isomaki
Request for Comments: 4827                                   E. Leppanen
Category: Standards Track                                          Nokia
                                                                May 2007

Network Working Group M. Isomaki Request for Comments: 4827 E. Leppanen Category: Standards Track Nokia May 2007

An Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
           Usage for Manipulating Presence Document Contents

An Extensible Markup Language (XML) Configuration Access Protocol (XCAP) Usage for Manipulating Presence Document Contents

Status of This Memo

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Copyright (C) The IETF Trust (2007).

Abstract

Abstract

   This document describes a usage of the Extensible Markup Language
   (XML) Configuration Access Protocol (XCAP) for manipulating the
   contents of Presence Information Data Format (PIDF) based presence
   documents.  It is intended to be used in Session Initiation Protocol
   (SIP) based presence systems, where the Event State Compositor can
   use the XCAP-manipulated presence document as one of the inputs on
   which it builds the overall presence state for the presentity.

This document describes a usage of the Extensible Markup Language (XML) Configuration Access Protocol (XCAP) for manipulating the contents of Presence Information Data Format (PIDF) based presence documents. It is intended to be used in Session Initiation Protocol (SIP) based presence systems, where the Event State Compositor can use the XCAP-manipulated presence document as one of the inputs on which it builds the overall presence state for the presentity.

Isomaki & Leppanen          Standards Track                     [Page 1]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 1] RFC 4827 XCAP for Manipulating Presence Document May 2007

Table of Contents

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 3
   2.  Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   3.  Relationship with Presence State Published Using SIP
       PUBLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   4.  Application Usage ID  . . . . . . . . . . . . . . . . . . . . . 6
   5.  MIME Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
   6.  Structure of Manipulated Presence Information . . . . . . . . . 6
   7.  Additional Constraints  . . . . . . . . . . . . . . . . . . . . 6
   8.  Resource Interdependencies  . . . . . . . . . . . . . . . . . . 6
   9.  Naming Conventions  . . . . . . . . . . . . . . . . . . . . . . 6
   10. Authorization Policies  . . . . . . . . . . . . . . . . . . . . 6
   11. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
   12. Security Considerations . . . . . . . . . . . . . . . . . . . . 8
   13. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 9
     13.1.  XCAP Application Usage ID  . . . . . . . . . . . . . . . . 9
   14. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . 9
   15. References  . . . . . . . . . . . . . . . . . . . . . . . . . . 9
     15.1.  Normative References . . . . . . . . . . . . . . . . . . . 9
     15.2.  Informative References . . . . . . . . . . . . . . . . . . 9

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Relationship with Presence State Published Using SIP PUBLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Application Usage ID . . . . . . . . . . . . . . . . . . . . . 6 5. MIME Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6. Structure of Manipulated Presence Information . . . . . . . . . 6 7. Additional Constraints . . . . . . . . . . . . . . . . . . . . 6 8. Resource Interdependencies . . . . . . . . . . . . . . . . . . 6 9. Naming Conventions . . . . . . . . . . . . . . . . . . . . . . 6 10. Authorization Policies . . . . . . . . . . . . . . . . . . . . 6 11. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 12. Security Considerations . . . . . . . . . . . . . . . . . . . . 8 13. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 9 13.1. XCAP Application Usage ID . . . . . . . . . . . . . . . . 9 14. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 9 15. References . . . . . . . . . . . . . . . . . . . . . . . . . . 9 15.1. Normative References . . . . . . . . . . . . . . . . . . . 9 15.2. Informative References . . . . . . . . . . . . . . . . . . 9

Isomaki & Leppanen          Standards Track                     [Page 2]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 2] RFC 4827 XCAP for Manipulating Presence Document May 2007

1.  Introduction

1. Introduction

   The Session Initiation Protocol (SIP) for Instant Messaging and
   Presence (SIMPLE) specifications allow a user, called a watcher, to
   subscribe to another user, called a presentity, in order to learn its
   presence information [7].  The presence data model has been specified
   in [10].  The data model makes a clean separation between person-,
   service-, and device-related information.

The Session Initiation Protocol (SIP) for Instant Messaging and Presence (SIMPLE) specifications allow a user, called a watcher, to subscribe to another user, called a presentity, in order to learn its presence information [7]. The presence data model has been specified in [10]. The data model makes a clean separation between person-, service-, and device-related information.

   A SIP-based mechanism, SIP PUBLISH method, has been defined for
   publishing presence state [4].  Using SIP PUBLISH, a Presence User
   Agent (PUA) can publish its view of the presence state, independently
   of and without the need to learn about the states set by other PUAs.
   However, SIP PUBLISH has a limited scope and does not address all the
   requirements for setting presence state.  The main issue is that SIP
   PUBLISH creates a soft state that expires after the negotiated
   lifetime unless it is refreshed.  This makes it unsuitable for cases
   where the state should prevail without active devices capable of
   refreshing the state.

A SIP-based mechanism, SIP PUBLISH method, has been defined for publishing presence state [4]. Using SIP PUBLISH, a Presence User Agent (PUA) can publish its view of the presence state, independently of and without the need to learn about the states set by other PUAs. However, SIP PUBLISH has a limited scope and does not address all the requirements for setting presence state. The main issue is that SIP PUBLISH creates a soft state that expires after the negotiated lifetime unless it is refreshed. This makes it unsuitable for cases where the state should prevail without active devices capable of refreshing the state.

   There are three main use cases where setting of permanent presence
   state that is independent of activeness of any particular device is
   useful.  The first case concerns setting person-related state.  The
   presentity would often like to set its presence state even for
   periods when it has no active devices capable of publishing
   available.  Good examples are traveling, vacations, and so on.  The
   second case is about setting state for services that are open for
   communication, even if the presentity does not have a device running
   that service online.  Examples of these kinds of services include
   e-mail, Multimedia Messaging Service (MMS), and Short Message Service
   (SMS).  In these services, the presentity is provisioned with a
   server that makes the service persistently available, at least in
   certain forms, and it would be good to be able to advertise this to
   the watchers.  Since it is not realistic to assume that all e-mail,
   MMS, or SMS servers can publish presence state on their own (and even
   if this were possible, such state would almost never change), this
   has to be done by some other device.  And since the availability of
   the service is not dependent on that device, it would be impractical
   to require that device to be constantly active just to publish such
   availability.  The third case concerns setting the default state of
   any person, service, or device in the absence of any device capable
   of actively publishing such state.  For instance, the presentity
   might want to advertise that his or her voice service is currently
   closed, just to let the watchers know that such service might be open
   at some point.  Again, this type of default state is independent of
   any particular device and can be considered rather persistent.

There are three main use cases where setting of permanent presence state that is independent of activeness of any particular device is useful. The first case concerns setting person-related state. The presentity would often like to set its presence state even for periods when it has no active devices capable of publishing available. Good examples are traveling, vacations, and so on. The second case is about setting state for services that are open for communication, even if the presentity does not have a device running that service online. Examples of these kinds of services include e-mail, Multimedia Messaging Service (MMS), and Short Message Service (SMS). In these services, the presentity is provisioned with a server that makes the service persistently available, at least in certain forms, and it would be good to be able to advertise this to the watchers. Since it is not realistic to assume that all e-mail, MMS, or SMS servers can publish presence state on their own (and even if this were possible, such state would almost never change), this has to be done by some other device. And since the availability of the service is not dependent on that device, it would be impractical to require that device to be constantly active just to publish such availability. The third case concerns setting the default state of any person, service, or device in the absence of any device capable of actively publishing such state. For instance, the presentity might want to advertise that his or her voice service is currently closed, just to let the watchers know that such service might be open at some point. Again, this type of default state is independent of any particular device and can be considered rather persistent.

Isomaki & Leppanen          Standards Track                     [Page 3]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 3] RFC 4827 XCAP for Manipulating Presence Document May 2007

   Even though SIP PUBLISH remains the main way of publishing presence
   state in SIMPLE-based presence systems and is especially well-suited
   for publishing dynamic state (which presence mainly is), it needs to
   be complemented by the mechanism described in this document to
   address the use cases presented above.

Even though SIP PUBLISH remains the main way of publishing presence state in SIMPLE-based presence systems and is especially well-suited for publishing dynamic state (which presence mainly is), it needs to be complemented by the mechanism described in this document to address the use cases presented above.

   XML Configuration Access Protocol (XCAP) [2] allows a client to read,
   write, and modify application configuration data stored in XML format
   on a server.  The data has no expiration time, so it must be
   explicitly inserted and deleted.  The protocol allows multiple
   clients to manipulate the data, provided that they are authorized to
   do so.  XCAP is already used in SIMPLE-based presence systems for
   manipulation of presence lists and presence authorization policies.
   This makes XCAP an ideal choice for doing device-independent presence
   document manipulation.

XML Configuration Access Protocol (XCAP) [2] allows a client to read, write, and modify application configuration data stored in XML format on a server. The data has no expiration time, so it must be explicitly inserted and deleted. The protocol allows multiple clients to manipulate the data, provided that they are authorized to do so. XCAP is already used in SIMPLE-based presence systems for manipulation of presence lists and presence authorization policies. This makes XCAP an ideal choice for doing device-independent presence document manipulation.

   This document defines an XML Configuration Access Protocol (XCAP)
   application usage for manipulating the contents of presence document.
   Presence Information Document Format (PIDF) [3] is used as the
   presence document format, since the event state compositor already
   has to support it, as it is used in SIP PUBLISH.

This document defines an XML Configuration Access Protocol (XCAP) application usage for manipulating the contents of presence document. Presence Information Document Format (PIDF) [3] is used as the presence document format, since the event state compositor already has to support it, as it is used in SIP PUBLISH.

   Section 3 describes in detail how the presence document manipulated
   with XCAP is related to soft state publishing done with SIP PUBLISH.

Section 3 describes in detail how the presence document manipulated with XCAP is related to soft state publishing done with SIP PUBLISH.

   XCAP requires application usages to standardize several pieces of
   information, including a unique application usage ID (AUID) and an
   XML schema for the manipulated data.  These are specified starting
   from Section 4.

XCAP requires application usages to standardize several pieces of information, including a unique application usage ID (AUID) and an XML schema for the manipulated data. These are specified starting from Section 4.

2.  Conventions

2. Conventions

   In this document, the key words 'MUST', 'MUST NOT', 'REQUIRED',
   'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY',
   and 'OPTIONAL' are to be interpreted as described in RFC 2119 [1] and
   indicate requirement levels for compliant implementations.

In this document, the key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' are to be interpreted as described in RFC 2119 [1] and indicate requirement levels for compliant implementations.

   Comprehensive terminology of presence and event state publishing is
   provided in "Session Initiation Protocol (SIP) Extension for Event
   State Publication" [4].

Comprehensive terminology of presence and event state publishing is provided in "Session Initiation Protocol (SIP) Extension for Event State Publication" [4].

3.  Relationship with Presence State Published Using SIP PUBLISH

3. Relationship with Presence State Published Using SIP PUBLISH

   The framework for publishing presence state is described in Figure 1.
   A central part of the framework is the event state compositor
   element, whose function is to compose presence information received
   from several sources into a single coherent presence document.

The framework for publishing presence state is described in Figure 1. A central part of the framework is the event state compositor element, whose function is to compose presence information received from several sources into a single coherent presence document.

Isomaki & Leppanen          Standards Track                     [Page 4]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 4] RFC 4827 XCAP for Manipulating Presence Document May 2007

   The presence state manipulated with XCAP can be seen as one of the
   information sources for the compositor to be combined with the soft
   state information published using SIP PUBLISH.  This is illustrated
   in Figure 1.  It is expected that, in the normal case, there can be
   several PUAs publishing their separate views with SIP PUBLISH, but
   only a single XCAP manipulated presence document.  As shown in the
   figure, multiple XCAP clients (for instance, in different physical
   devices) can manipulate the same document on the XCAP server, but
   this still creates only one input to the event state compositor.  The
   XCAP server stores the XCAP manipulated presence document under the
   "users" tree in the XCAP document hierarchy.  See Section 9 for
   details and Section 11 for an example.

The presence state manipulated with XCAP can be seen as one of the information sources for the compositor to be combined with the soft state information published using SIP PUBLISH. This is illustrated in Figure 1. It is expected that, in the normal case, there can be several PUAs publishing their separate views with SIP PUBLISH, but only a single XCAP manipulated presence document. As shown in the figure, multiple XCAP clients (for instance, in different physical devices) can manipulate the same document on the XCAP server, but this still creates only one input to the event state compositor. The XCAP server stores the XCAP manipulated presence document under the "users" tree in the XCAP document hierarchy. See Section 9 for details and Section 11 for an example.

   As individual inputs, the presence states set by XCAP and SIP PUBLISH
   are completely separated, and it is not possible to directly
   manipulate the state set by one mechanism with the other.  How the
   compositor treats XCAP-based inputs with respect to SIP PUBLISH-based
   inputs is a matter of compositor policy, which is beyond the scope of
   this specification.  Since the SIP PUBLISH specification already
   mandates the compositor to be able to construct the overall presence
   state from multiple inputs, which may contain non-orthogonal (or in
   some ways even conflicting) information, this XCAP usage does not
   impose any new requirements on the compositor functionality.

As individual inputs, the presence states set by XCAP and SIP PUBLISH are completely separated, and it is not possible to directly manipulate the state set by one mechanism with the other. How the compositor treats XCAP-based inputs with respect to SIP PUBLISH-based inputs is a matter of compositor policy, which is beyond the scope of this specification. Since the SIP PUBLISH specification already mandates the compositor to be able to construct the overall presence state from multiple inputs, which may contain non-orthogonal (or in some ways even conflicting) information, this XCAP usage does not impose any new requirements on the compositor functionality.

               +---------------+         +------------+
               |   Event State |         |  Presence  |<-- SIP SUBSCRIBE
               |   Compositor  +---------+  Agent     |--> SIP NOTIFY
               |               |         |   (PA)     |
               +-------+-------+         +------------+
                 ^     ^     ^
                 |     |     |
                 |     |     |       +---------------+
        +--------+     |     +-------|  XCAP server  |
        |              |             +-------+-------+
        |              |                 ^         ^
        | SIP Publish  |                 |  XCAP   |
        |              |                 |         |
     +--+--+        +--+--+         +-------+   +-------+
     | PUA |        | PUA |         | XCAP  |   | XCAP  |
     |     |        |     |         | client|   | client|
     +-----+        +-----+         +-------+   +-------+

+---------------+ +------------+ | Event State | | Presence |<-- SIP SUBSCRIBE | Compositor +---------+ Agent |--> SIP NOTIFY | | | (PA) | +-------+-------+ +------------+ ^ ^ ^ | | | | | | +---------------+ +--------+ | +-------| XCAP server | | | +-------+-------+ | | ^ ^ | SIP Publish | | XCAP | | | | | +--+--+ +--+--+ +-------+ +-------+ | PUA | | PUA | | XCAP | | XCAP | | | | | | client| | client| +-----+ +-----+ +-------+ +-------+

        Figure 1: Framework for Presence Publishing and Event State
                                Composition

Figure 1: Framework for Presence Publishing and Event State Composition

   The protocol interface between XCAP server and the event state
   compositor is not specified here.

The protocol interface between XCAP server and the event state compositor is not specified here.

Isomaki & Leppanen          Standards Track                     [Page 5]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 5] RFC 4827 XCAP for Manipulating Presence Document May 2007

4.  Application Usage ID

4. Application Usage ID

   XCAP requires application usages to define a unique application usage
   ID (AUID) in either the IETF tree or a vendor tree.  This
   specification defines the 'pidf-manipulation' AUID within the IETF
   tree, via the IANA registration in Section 13.

XCAP requires application usages to define a unique application usage ID (AUID) in either the IETF tree or a vendor tree. This specification defines the 'pidf-manipulation' AUID within the IETF tree, via the IANA registration in Section 13.

5.  MIME Type

5. MIME Type

   The MIME type for this application usage is 'application/pidf+xml'.

The MIME type for this application usage is 'application/pidf+xml'.

6.  Structure of Manipulated Presence Information

6. Structure of Manipulated Presence Information

   The XML Schema of the presence information is defined in the Presence
   Information Data Format (PIDF) [3].  The PIDF also defines a
   mechanism for extending presence information.  See [8], [9], [11],
   and [12] for currently defined PIDF extensions and their XML Schemas.

The XML Schema of the presence information is defined in the Presence Information Data Format (PIDF) [3]. The PIDF also defines a mechanism for extending presence information. See [8], [9], [11], and [12] for currently defined PIDF extensions and their XML Schemas.

   The namespace URI for PIDF is 'urn:ietf:params:xml:ns:pidf' which is
   also the XCAP default document namespace.

The namespace URI for PIDF is 'urn:ietf:params:xml:ns:pidf' which is also the XCAP default document namespace.

7.  Additional Constraints

7. Additional Constraints

   There are no constraints on the document beyond those described in
   the XML schemas (PIDF and its extensions) and in the description of
   PIDF [3].

There are no constraints on the document beyond those described in the XML schemas (PIDF and its extensions) and in the description of PIDF [3].

8.  Resource Interdependencies

8. Resource Interdependencies

   There are no resource interdependencies beyond the possible
   interdependencies defined in PIDF [3] and XCAP [2] that need to be
   defined for this application usage.

There are no resource interdependencies beyond the possible interdependencies defined in PIDF [3] and XCAP [2] that need to be defined for this application usage.

9.  Naming Conventions

9. Naming Conventions

   The XCAP server MUST store only a single XCAP manipulated presence
   document for each user.  The presence document MUST be located under
   the "users" tree, using filename "index".  See an example in
   Section 11.

The XCAP server MUST store only a single XCAP manipulated presence document for each user. The presence document MUST be located under the "users" tree, using filename "index". See an example in Section 11.

10.  Authorization Policies

10. Authorization Policies

   This application usage does not modify the default XCAP authorization
   policy, which allows only a user (owner) to read, write, or modify
   their own documents.  A server can allow privileged users to modify
   documents that they do not own, but the establishment and indication
   of such policies is outside the scope of this document.

This application usage does not modify the default XCAP authorization policy, which allows only a user (owner) to read, write, or modify their own documents. A server can allow privileged users to modify documents that they do not own, but the establishment and indication of such policies is outside the scope of this document.

Isomaki & Leppanen          Standards Track                     [Page 6]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 6] RFC 4827 XCAP for Manipulating Presence Document May 2007

11.  Example

11. Example

   The section provides an example of a presence document provided by an
   XCAP Client to an XCAP Server.  The presence document illustrates the
   situation where a (human) presentity has left for vacation, and
   before that, has set his presence information so that he is only
   available via e-mail.  In the absence of any published soft state
   information, this would be the sole input to the compositor forming
   the presence document.  The example document contains PIDF extensions
   specified in "RPID: Rich Presence Extensions to the Presence
   Information Data Format (PIDF)" [8] and "CIPID: Contact Information
   in Presence Information Data Format" [9].

The section provides an example of a presence document provided by an XCAP Client to an XCAP Server. The presence document illustrates the situation where a (human) presentity has left for vacation, and before that, has set his presence information so that he is only available via e-mail. In the absence of any published soft state information, this would be the sole input to the compositor forming the presence document. The example document contains PIDF extensions specified in "RPID: Rich Presence Extensions to the Presence Information Data Format (PIDF)" [8] and "CIPID: Contact Information in Presence Information Data Format" [9].

   It is assumed that the presentity is a SIP user with Address-of-
   Record (AOR) sip:someone@example.com.  The XCAP root URI for
   example.com is assumed to be http://xcap.example.com.  The XCAP User
   Identifier (XUI) is assumed to be identical to the SIP AOR, according
   to XCAP recommendations.  In this case, the presence document would
   be located at http://xcap.example.com/pidf-manipulation/users/
   sip:someone@example.com/index.

It is assumed that the presentity is a SIP user with Address-of- Record (AOR) sip:someone@example.com. The XCAP root URI for example.com is assumed to be http://xcap.example.com. The XCAP User Identifier (XUI) is assumed to be identical to the SIP AOR, according to XCAP recommendations. In this case, the presence document would be located at http://xcap.example.com/pidf-manipulation/users/ sip:someone@example.com/index.

   The presence document is created with the following XCAP operation:

The presence document is created with the following XCAP operation:

  PUT /pidf-manipulation/users/sip:someone@example.com/index HTTP/1.1
  Host: xcap.example.com
  Content-Type: application/pidf+xml
  ...

PUT /pidf-manipulation/users/sip:someone@example.com/index HTTP/1.1 Host: xcap.example.com Content-Type: application/pidf+xml ...

  <?xml version="1.0" encoding="UTF-8"?>
        <presence xmlns="urn:ietf:params:xml:ns:pidf"
             xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid"
             xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
             xmlns:ci="urn:ietf:params:xml:ns:pidf:cipid"
             entity="sip:someone@example.com">

<?xml version="1.0" encoding="UTF-8"?> <presence xmlns="urn:ietf:params:xml:ns:pidf" xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns:ci="urn:ietf:params:xml:ns:pidf:cipid" entity="sip:someone@example.com">

          <tuple id="x8eg92m">
            <status>
              <basic>closed</basic>
            </status>
            <rp:user-input>idle</rp:user-input>
            <rp:class>auth-1</rp:class>
            <contact priority="0.5">sip:user@example.com</contact>
            <note>I'm available only by e-mail.</note>
            <timestamp>2004-02-06T16:49:29Z</timestamp>
          </tuple>

<tuple id="x8eg92m"> <status> <basic>closed</basic> </status> <rp:user-input>idle</rp:user-input> <rp:class>auth-1</rp:class> <contact priority="0.5">sip:user@example.com</contact> <note>I'm available only by e-mail.</note> <timestamp>2004-02-06T16:49:29Z</timestamp> </tuple>

          <tuple id="x8eg92n">
            <status>

<tuple id="x8eg92n"> <status>

Isomaki & Leppanen          Standards Track                     [Page 7]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 7] RFC 4827 XCAP for Manipulating Presence Document May 2007

              <basic>open</basic>
            </status>
            <rp:class>auth-1</rp:class>
            <contact priority="1.0">mailto:someone@example.com</contact>
            <note>I'm reading mail a couple of times a week</note>
          </tuple>

<basic>open</basic> </status> <rp:class>auth-1</rp:class> <contact priority="1.0">mailto:someone@example.com</contact> <note>I'm reading mail a couple of times a week</note> </tuple>

          <dm:person id="p1">
             <rp:class>auth-A</rp:class>
             <ci:homepage>http://www.example.com/~someone</ci:homepage>
             <rp:activities>
                 <rp:vacation/>
             </rp:activities>
          </dm:person>

<dm:person id="p1"> <rp:class>auth-A</rp:class> <ci:homepage>http://www.example.com/~someone</ci:homepage> <rp:activities> <rp:vacation/> </rp:activities> </dm:person>

        </presence>

</presence>

  When the user wants to change the note related to e-mail service,
  it is done with the following XCAP operation:

When the user wants to change the note related to e-mail service, it is done with the following XCAP operation:

  PUT /pidf-manipulation/users/sip:someone@example.com/index/
  ~~/presence/tuple%5b@id='x8eg92n'%5d/note HTTP/1.1
  If-Match: "xyz"
  Host: xcap.example.com
  Content-Type: application/xcap-el+xml
  ...

PUT /pidf-manipulation/users/sip:someone@example.com/index/ ~~/presence/tuple%5b@id='x8eg92n'%5d/note HTTP/1.1 If-Match: "xyz" Host: xcap.example.com Content-Type: application/xcap-el+xml ...

  <note>I'm reading mails on Tuesdays and Fridays</note>

<note>I'm reading mails on Tuesdays and Fridays</note>

12.  Security Considerations

12. Security Considerations

   A presence document may contain information that is highly sensitive.
   Its delivery to watchers needs to happen strictly according to the
   relevant authorization policies.  It is also important that only
   authorized clients are able to manipulate the presence information.

A presence document may contain information that is highly sensitive. Its delivery to watchers needs to happen strictly according to the relevant authorization policies. It is also important that only authorized clients are able to manipulate the presence information.

   The XCAP base specification mandates that all XCAP servers MUST
   implement HTTP Digest authentication specified in RFC 2617 [5].
   Furthermore, XCAP servers MUST implement HTTP over TLS [6].  It is
   recommended that administrators of XCAP servers use an HTTPS URI as
   the XCAP root services' URI, so that the digest client authentication
   occurs over TLS.  By using these means, XCAP client and server can
   ensure the confidentiality and integrity of the XCAP presence
   document manipulation operations, and that only authorized clients
   are allowed to perform them.

The XCAP base specification mandates that all XCAP servers MUST implement HTTP Digest authentication specified in RFC 2617 [5]. Furthermore, XCAP servers MUST implement HTTP over TLS [6]. It is recommended that administrators of XCAP servers use an HTTPS URI as the XCAP root services' URI, so that the digest client authentication occurs over TLS. By using these means, XCAP client and server can ensure the confidentiality and integrity of the XCAP presence document manipulation operations, and that only authorized clients are allowed to perform them.

Isomaki & Leppanen          Standards Track                     [Page 8]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 8] RFC 4827 XCAP for Manipulating Presence Document May 2007

13.  IANA Considerations

13. IANA Considerations

   There is an IANA consideration associated with this specification.

There is an IANA consideration associated with this specification.

13.1.  XCAP Application Usage ID

13.1. XCAP Application Usage ID

   This section registers a new XCAP Application Usage ID (AUID)
   according to the IANA procedures defined in [2].

This section registers a new XCAP Application Usage ID (AUID) according to the IANA procedures defined in [2].

   Name of the AUID: pidf-manipulation

Name of the AUID: pidf-manipulation

   Description: Pidf-manipulation application usage defines how XCAP is
   used to manipulate the contents of PIDF-based presence documents.

Description: Pidf-manipulation application usage defines how XCAP is used to manipulate the contents of PIDF-based presence documents.

14.  Acknowledgements

14. Acknowledgements

   The authors would like to thank Jari Urpalainen, Jonathan Rosenberg,
   Hisham Khartabil, Aki Niemi, Mikko Lonnfors, Oliver Biot, Alex Audu,
   Krisztian Kiss, Jose Costa-Requena, George Foti, and Paul Kyzivat for
   their comments.

The authors would like to thank Jari Urpalainen, Jonathan Rosenberg, Hisham Khartabil, Aki Niemi, Mikko Lonnfors, Oliver Biot, Alex Audu, Krisztian Kiss, Jose Costa-Requena, George Foti, and Paul Kyzivat for their comments.

15.  References

15. References

15.1.  Normative References

15.1. Normative References

   [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

   [2]   Rosenberg, J., "The Extensible Markup Language (XML)
         Configuration Access Protocol (XCAP)", RFC 4825, May 2007.

[2] Rosenberg, J., "The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)", RFC 4825, May 2007.

   [3]   Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
         J. Peterson, "Presence Information Data Format (PIDF)",
         RFC 3863, August 2004.

[3] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and J. Peterson, "Presence Information Data Format (PIDF)", RFC 3863, August 2004.

   [4]   Niemi, A., "Session Initiation Protocol (SIP) Extension for
         Event State Publication", RFC 3903, October 2004.

[4] Niemi, A., "Session Initiation Protocol (SIP) Extension for Event State Publication", RFC 3903, October 2004.

   [5]   Franks, J., "HTTP Authentication: Basic and Digest Access
         Authentication", RFC 2617, June 1999.

[5] Franks, J., "HTTP Authentication: Basic and Digest Access Authentication", RFC 2617, June 1999.

   [6]   Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[6] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

15.2.  Informative References

15.2. Informative References

   [7]   Rosenberg, J., "A Presence Event Package for the Session
         Initiation Protocol (SIP)", RFC 3856, August 2004.

[7] Rosenberg, J., "A Presence Event Package for the Session Initiation Protocol (SIP)", RFC 3856, August 2004.

Isomaki & Leppanen          Standards Track                     [Page 9]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 9] RFC 4827 XCAP for Manipulating Presence Document May 2007

   [8]   Schulzrinne, H., Gurbani, V., Kyzivat, P., and J. Rosenberg,
         "RPID: Rich Presence Extensions to the Presence Information
         Data Format (PIDF)", RFC 4480, July 2006.

[8] Schulzrinne, H., Gurbani, V., Kyzivat, P., and J. Rosenberg, "RPID: Rich Presence Extensions to the Presence Information Data Format (PIDF)", RFC 4480, July 2006.

   [9]   Schulzrinne, H., "CIPID: Contact Information for the Presence
         Information Data Format", RFC 4482, July 2006.

[9] Schulzrinne, H., "CIPID: Contact Information for the Presence Information Data Format", RFC 4482, July 2006.

   [10]  Rosenberg, J., "A Data Model for Presence", RFC 4479,
         July 2006.

[10] Rosenberg, J., "A Data Model for Presence", RFC 4479, July 2006.

   [11]  Lonnfors, M. and K. Kiss, "Session Initiation Protocol (SIP)
         User Agent Capability Extension to Presence Information Data
         Format (PIDF)", Work in Progress, July 2006.

[11] Lonnfors, M. and K. Kiss, "Session Initiation Protocol (SIP) User Agent Capability Extension to Presence Information Data Format (PIDF)", Work in Progress, July 2006.

   [12]  Schulzrinne, H., "Timed Presence Extensions to the Presence
         Information Data Format (PIDF) to Indicate Status Information
         for Past and Future Time Intervals", RFC 4481, July 2006.

[12] Schulzrinne, H., "Timed Presence Extensions to the Presence Information Data Format (PIDF) to Indicate Status Information for Past and Future Time Intervals", RFC 4481, July 2006.

Authors' Addresses

Authors' Addresses

   Markus Isomaki
   Nokia
   P.O. BOX 100
   00045 NOKIA GROUP
   Finland

Markus Isomaki Nokia P.O. BOX 100 00045 NOKIA GROUP Finland

   EMail: markus.isomaki@nokia.com

EMail: markus.isomaki@nokia.com

   Eva Leppanen
   Nokia
   P.O. BOX 785
   33101 Tampere
   Finland

Eva Leppanen Nokia P.O. BOX 785 33101 Tampere Finland

   EMail: eva-maria.leppanen@nokia.com

EMail: eva-maria.leppanen@nokia.com

Isomaki & Leppanen          Standards Track                    [Page 10]

RFC 4827        XCAP for Manipulating Presence Document         May 2007

Isomaki & Leppanen Standards Track [Page 10] RFC 4827 XCAP for Manipulating Presence Document May 2007

Full Copyright Statement

Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Funding for the RFC Editor function is currently provided by the Internet Society.

Isomaki & Leppanen          Standards Track                    [Page 11]

Isomaki & Leppanen Standards Track [Page 11]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

chia wallet show ウォレット情報を表示

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る